[ACM] iSAC audio codec removed

Note: this CL has to leave behind one part of iSAC, which is its VAD
currently used by AGC1 in APM. The target visibility has been
restricted and the VAD will be removed together with AGC1 when the
time comes.

Tested: see https://chromium-review.googlesource.com/c/chromium/src/+/4013319

Bug: webrtc:14450
Change-Id: I69cc518b16280eae62a1f1977cdbfa24c08cf5f9
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/282421
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Henrik Boström <hbos@webrtc.org>
Commit-Queue: Alessio Bazzica <alessiob@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38652}
This commit is contained in:
Alessio Bazzica
2022-11-11 16:52:46 +01:00
committed by WebRTC LUCI CQ
parent 6aa755c201
commit b46c4bf27b
164 changed files with 117 additions and 39429 deletions

View File

@ -1,635 +0,0 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* encode.c
*
* Encoding function for the iSAC coder.
*
*/
#include "rtc_base/checks.h"
#include "modules/audio_coding/codecs/isac/fix/source/codec.h"
#include <stdio.h>
#include "modules/audio_coding/codecs/isac/fix/source/arith_routins.h"
#include "modules/audio_coding/codecs/isac/fix/source/bandwidth_estimator.h"
#include "modules/audio_coding/codecs/isac/fix/source/entropy_coding.h"
#include "modules/audio_coding/codecs/isac/fix/source/lpc_masking_model.h"
#include "modules/audio_coding/codecs/isac/fix/source/lpc_tables.h"
#include "modules/audio_coding/codecs/isac/fix/source/pitch_estimator.h"
#include "modules/audio_coding/codecs/isac/fix/source/pitch_gain_tables.h"
#include "modules/audio_coding/codecs/isac/fix/source/pitch_lag_tables.h"
#include "modules/audio_coding/codecs/isac/fix/source/structs.h"
int WebRtcIsacfix_EncodeImpl(int16_t *in,
IsacFixEncoderInstance *ISACenc_obj,
BwEstimatorstr *bw_estimatordata,
int16_t CodingMode)
{
int16_t stream_length = 0;
int16_t usefulstr_len = 0;
int k;
int16_t BWno;
int16_t lofilt_coefQ15[(ORDERLO)*SUBFRAMES];
int16_t hifilt_coefQ15[(ORDERHI)*SUBFRAMES];
int32_t gain_lo_hiQ17[2*SUBFRAMES];
int16_t LPandHP[FRAMESAMPLES/2 + QLOOKAHEAD];
int16_t LP16a[FRAMESAMPLES/2 + QLOOKAHEAD];
int16_t HP16a[FRAMESAMPLES/2 + QLOOKAHEAD];
int16_t PitchLags_Q7[PITCH_SUBFRAMES];
int16_t PitchGains_Q12[PITCH_SUBFRAMES];
int16_t AvgPitchGain_Q12;
int16_t frame_mode; /* 0 for 30ms, 1 for 60ms */
int16_t processed_samples;
int status;
int32_t bits_gainsQ11;
int16_t MinBytes;
int16_t bmodel;
transcode_obj transcodingParam;
int16_t payloadLimitBytes;
int16_t arithLenBeforeEncodingDFT;
int16_t iterCntr;
/* copy new frame length and bottle neck rate only for the first 10 ms data */
if (ISACenc_obj->buffer_index == 0) {
/* set the framelength for the next packet */
ISACenc_obj->current_framesamples = ISACenc_obj->new_framelength;
}
frame_mode = ISACenc_obj->current_framesamples/MAX_FRAMESAMPLES; /* 0 (30 ms) or 1 (60 ms) */
processed_samples = ISACenc_obj->current_framesamples/(frame_mode+1); /* 480 (30, 60 ms) */
/* buffer speech samples (by 10ms packet) until the framelength is reached (30 or 60 ms) */
/**************************************************************************************/
/* fill the buffer with 10ms input data */
for(k=0; k<FRAMESAMPLES_10ms; k++) {
ISACenc_obj->data_buffer_fix[k + ISACenc_obj->buffer_index] = in[k];
}
/* if buffersize is not equal to current framesize, and end of file is not reached yet, */
/* increase index and go back to main to get more speech samples */
if (ISACenc_obj->buffer_index + FRAMESAMPLES_10ms != processed_samples) {
ISACenc_obj->buffer_index = ISACenc_obj->buffer_index + FRAMESAMPLES_10ms;
return 0;
}
/* if buffer reached the right size, reset index and continue with encoding the frame */
ISACenc_obj->buffer_index = 0;
/* end of buffer function */
/**************************/
/* encoding */
/************/
if (frame_mode == 0 || ISACenc_obj->frame_nb == 0 )
{
/* reset bitstream */
ISACenc_obj->bitstr_obj.W_upper = 0xFFFFFFFF;
ISACenc_obj->bitstr_obj.streamval = 0;
ISACenc_obj->bitstr_obj.stream_index = 0;
ISACenc_obj->bitstr_obj.full = 1;
if (CodingMode == 0) {
ISACenc_obj->BottleNeck = WebRtcIsacfix_GetUplinkBandwidth(bw_estimatordata);
ISACenc_obj->MaxDelay = WebRtcIsacfix_GetUplinkMaxDelay(bw_estimatordata);
}
if (CodingMode == 0 && frame_mode == 0 && (ISACenc_obj->enforceFrameSize == 0)) {
ISACenc_obj->new_framelength = WebRtcIsacfix_GetNewFrameLength(ISACenc_obj->BottleNeck,
ISACenc_obj->current_framesamples);
}
// multiply the bottleneck by 0.88 before computing SNR, 0.88 is tuned by experimenting on TIMIT
// 901/1024 is 0.87988281250000
ISACenc_obj->s2nr = WebRtcIsacfix_GetSnr(
(int16_t)(ISACenc_obj->BottleNeck * 901 >> 10),
ISACenc_obj->current_framesamples);
/* encode frame length */
status = WebRtcIsacfix_EncodeFrameLen(ISACenc_obj->current_framesamples, &ISACenc_obj->bitstr_obj);
if (status < 0)
{
/* Wrong frame size */
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
/* Save framelength for multiple packets memory */
if (ISACenc_obj->SaveEnc_ptr != NULL) {
(ISACenc_obj->SaveEnc_ptr)->framelength=ISACenc_obj->current_framesamples;
}
/* bandwidth estimation and coding */
BWno = WebRtcIsacfix_GetDownlinkBwIndexImpl(bw_estimatordata);
status = WebRtcIsacfix_EncodeReceiveBandwidth(&BWno, &ISACenc_obj->bitstr_obj);
if (status < 0)
{
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
}
/* split signal in two bands */
WebRtcIsacfix_SplitAndFilter1(ISACenc_obj->data_buffer_fix, LP16a, HP16a, &ISACenc_obj->prefiltbankstr_obj );
/* estimate pitch parameters and pitch-filter lookahead signal */
WebRtcIsacfix_PitchAnalysis(LP16a+QLOOKAHEAD, LPandHP,
&ISACenc_obj->pitchanalysisstr_obj, PitchLags_Q7, PitchGains_Q12); /* LPandHP = LP_lookahead_pfQ0, */
/* Set where to store data in multiple packets memory */
if (ISACenc_obj->SaveEnc_ptr != NULL) {
if (frame_mode == 0 || ISACenc_obj->frame_nb == 0)
{
(ISACenc_obj->SaveEnc_ptr)->startIdx = 0;
}
else
{
(ISACenc_obj->SaveEnc_ptr)->startIdx = 1;
}
}
/* quantize & encode pitch parameters */
status = WebRtcIsacfix_EncodePitchGain(PitchGains_Q12, &ISACenc_obj->bitstr_obj, ISACenc_obj->SaveEnc_ptr);
if (status < 0)
{
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
status = WebRtcIsacfix_EncodePitchLag(PitchLags_Q7 , PitchGains_Q12, &ISACenc_obj->bitstr_obj, ISACenc_obj->SaveEnc_ptr);
if (status < 0)
{
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
AvgPitchGain_Q12 = (PitchGains_Q12[0] + PitchGains_Q12[1] +
PitchGains_Q12[2] + PitchGains_Q12[3]) >> 2;
/* find coefficients for perceptual pre-filters */
WebRtcIsacfix_GetLpcCoef(LPandHP, HP16a+QLOOKAHEAD, &ISACenc_obj->maskfiltstr_obj,
ISACenc_obj->s2nr, PitchGains_Q12,
gain_lo_hiQ17, lofilt_coefQ15, hifilt_coefQ15); /*LPandHP = LP_lookahead_pfQ0*/
// record LPC Gains for possible bit-rate reduction
for(k = 0; k < KLT_ORDER_GAIN; k++)
{
transcodingParam.lpcGains[k] = gain_lo_hiQ17[k];
}
/* code LPC model and shape - gains not quantized yet */
status = WebRtcIsacfix_EncodeLpc(gain_lo_hiQ17, lofilt_coefQ15, hifilt_coefQ15,
&bmodel, &bits_gainsQ11, &ISACenc_obj->bitstr_obj, ISACenc_obj->SaveEnc_ptr, &transcodingParam);
if (status < 0)
{
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
arithLenBeforeEncodingDFT = (ISACenc_obj->bitstr_obj.stream_index << 1) + (1-ISACenc_obj->bitstr_obj.full);
/* low-band filtering */
WebRtcIsacfix_NormLatticeFilterMa(ORDERLO, ISACenc_obj->maskfiltstr_obj.PreStateLoGQ15,
LP16a, lofilt_coefQ15, gain_lo_hiQ17, 0, LPandHP);/* LPandHP = LP16b */
/* pitch filter */
WebRtcIsacfix_PitchFilter(LPandHP, LP16a, &ISACenc_obj->pitchfiltstr_obj, PitchLags_Q7, PitchGains_Q12, 1);/* LPandHP = LP16b */
/* high-band filtering */
WebRtcIsacfix_NormLatticeFilterMa(ORDERHI, ISACenc_obj->maskfiltstr_obj.PreStateHiGQ15,
HP16a, hifilt_coefQ15, gain_lo_hiQ17, 1, LPandHP);/*LPandHP = HP16b*/
/* transform */
WebRtcIsacfix_Time2Spec(LP16a, LPandHP, LP16a, LPandHP); /*LPandHP = HP16b*/
/* Save data for multiple packets memory */
if (ISACenc_obj->SaveEnc_ptr != NULL) {
for (k = 0; k < FRAMESAMPLES_HALF; k++) {
(ISACenc_obj->SaveEnc_ptr)->fre[k + (ISACenc_obj->SaveEnc_ptr)->startIdx*FRAMESAMPLES_HALF] = LP16a[k];
(ISACenc_obj->SaveEnc_ptr)->fim[k + (ISACenc_obj->SaveEnc_ptr)->startIdx*FRAMESAMPLES_HALF] = LPandHP[k];
}
(ISACenc_obj->SaveEnc_ptr)->AvgPitchGain[(ISACenc_obj->SaveEnc_ptr)->startIdx] = AvgPitchGain_Q12;
}
/* quantization and lossless coding */
status = WebRtcIsacfix_EncodeSpec(LP16a, LPandHP, &ISACenc_obj->bitstr_obj, AvgPitchGain_Q12);
if((status <= -1) && (status != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) /*LPandHP = HP16b*/
{
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
if((frame_mode == 1) && (ISACenc_obj->frame_nb == 0))
{
// it is a 60ms and we are in the first 30ms
// then the limit at this point should be half of the assigned value
payloadLimitBytes = ISACenc_obj->payloadLimitBytes60 >> 1;
}
else if (frame_mode == 0)
{
// it is a 30ms frame
payloadLimitBytes = (ISACenc_obj->payloadLimitBytes30) - 3;
}
else
{
// this is the second half of a 60ms frame.
payloadLimitBytes = ISACenc_obj->payloadLimitBytes60 - 3; // subract 3 because termination process may add 3 bytes
}
iterCntr = 0;
while((((ISACenc_obj->bitstr_obj.stream_index) << 1) > payloadLimitBytes) ||
(status == -ISAC_DISALLOWED_BITSTREAM_LENGTH))
{
int16_t arithLenDFTByte;
int16_t bytesLeftQ5;
int16_t ratioQ5[8] = {0, 6, 9, 12, 16, 19, 22, 25};
// According to experiments on TIMIT the following is proper for audio, but it is not agressive enough for tonal inputs
// such as DTMF, sweep-sine, ...
//
// (0.55 - (0.8 - ratio[i]/32) * 5 / 6) * 2^14
// int16_t scaleQ14[8] = {0, 648, 1928, 3208, 4915, 6195, 7475, 8755};
// This is a supper-agressive scaling passed the tests (tonal inputs) tone with one iteration for payload limit
// of 120 (32kbps bottleneck), number of frames needed a rate-reduction was 58403
//
int16_t scaleQ14[8] = {0, 348, 828, 1408, 2015, 3195, 3500, 3500};
int16_t idx;
if(iterCntr >= MAX_PAYLOAD_LIMIT_ITERATION)
{
// We were not able to limit the payload size
if((frame_mode == 1) && (ISACenc_obj->frame_nb == 0))
{
// This was the first 30ms of a 60ms frame. Although the payload is larger than it
// should be but we let the second 30ms be encoded. Maybe togetehr we won't exceed
// the limit.
ISACenc_obj->frame_nb = 1;
return 0;
}
else if((frame_mode == 1) && (ISACenc_obj->frame_nb == 1))
{
ISACenc_obj->frame_nb = 0;
}
if(status != -ISAC_DISALLOWED_BITSTREAM_LENGTH)
{
return -ISAC_PAYLOAD_LARGER_THAN_LIMIT;
}
else
{
return status;
}
}
if(status != -ISAC_DISALLOWED_BITSTREAM_LENGTH)
{
arithLenDFTByte = (ISACenc_obj->bitstr_obj.stream_index << 1) + (1-ISACenc_obj->bitstr_obj.full) - arithLenBeforeEncodingDFT;
bytesLeftQ5 = (payloadLimitBytes - arithLenBeforeEncodingDFT) << 5;
// bytesLeft / arithLenDFTBytes indicates how much scaling is required a rough estimate (agressive)
// scale = 0.55 - (0.8 - bytesLeft / arithLenDFTBytes) * 5 / 6
// bytesLeft / arithLenDFTBytes below 0.2 will have a scale of zero and above 0.8 are treated as 0.8
// to avoid division we do more simplification.
//
// values of (bytesLeft / arithLenDFTBytes)*32 between ratioQ5[i] and ratioQ5[i+1] are rounded to ratioQ5[i]
// and the corresponding scale is chosen
// we compare bytesLeftQ5 with ratioQ5[]*arithLenDFTByte;
idx = 4;
idx += (bytesLeftQ5 >= ratioQ5[idx] * arithLenDFTByte) ? 2 : -2;
idx += (bytesLeftQ5 >= ratioQ5[idx] * arithLenDFTByte) ? 1 : -1;
idx += (bytesLeftQ5 >= ratioQ5[idx] * arithLenDFTByte) ? 0 : -1;
}
else
{
// we are here because the bit-stream did not fit into the buffer, in this case, the stream_index is not
// trustable, especially if the is the first 30ms of a packet. Thereforem, we will go for the most agressive
// case.
idx = 0;
}
// scale FFT coefficients to reduce the bit-rate
for(k = 0; k < FRAMESAMPLES_HALF; k++)
{
LP16a[k] = (int16_t)(LP16a[k] * scaleQ14[idx] >> 14);
LPandHP[k] = (int16_t)(LPandHP[k] * scaleQ14[idx] >> 14);
}
// Save data for multiple packets memory
if (ISACenc_obj->SaveEnc_ptr != NULL)
{
for(k = 0; k < FRAMESAMPLES_HALF; k++)
{
(ISACenc_obj->SaveEnc_ptr)->fre[k + (ISACenc_obj->SaveEnc_ptr)->startIdx*FRAMESAMPLES_HALF] = LP16a[k];
(ISACenc_obj->SaveEnc_ptr)->fim[k + (ISACenc_obj->SaveEnc_ptr)->startIdx*FRAMESAMPLES_HALF] = LPandHP[k];
}
}
// scale the unquantized LPC gains and save the scaled version for the future use
for(k = 0; k < KLT_ORDER_GAIN; k++)
{
gain_lo_hiQ17[k] = WEBRTC_SPL_MUL_16_32_RSFT14(scaleQ14[idx], transcodingParam.lpcGains[k]);//transcodingParam.lpcGains[k]; //
transcodingParam.lpcGains[k] = gain_lo_hiQ17[k];
}
// reset the bit-stream object to the state which it had before encoding LPC Gains
ISACenc_obj->bitstr_obj.full = transcodingParam.full;
ISACenc_obj->bitstr_obj.stream_index = transcodingParam.stream_index;
ISACenc_obj->bitstr_obj.streamval = transcodingParam.streamval;
ISACenc_obj->bitstr_obj.W_upper = transcodingParam.W_upper;
ISACenc_obj->bitstr_obj.stream[transcodingParam.stream_index-1] = transcodingParam.beforeLastWord;
ISACenc_obj->bitstr_obj.stream[transcodingParam.stream_index] = transcodingParam.lastWord;
// quantize and encode LPC gain
WebRtcIsacfix_EstCodeLpcGain(gain_lo_hiQ17, &ISACenc_obj->bitstr_obj, ISACenc_obj->SaveEnc_ptr);
arithLenBeforeEncodingDFT = (ISACenc_obj->bitstr_obj.stream_index << 1) + (1-ISACenc_obj->bitstr_obj.full);
status = WebRtcIsacfix_EncodeSpec(LP16a, LPandHP, &ISACenc_obj->bitstr_obj, AvgPitchGain_Q12);
if((status <= -1) && (status != -ISAC_DISALLOWED_BITSTREAM_LENGTH)) /*LPandHP = HP16b*/
{
if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
// If this is the second 30ms of a 60ms frame reset this such that in the next call
// encoder starts fresh.
ISACenc_obj->frame_nb = 0;
}
return status;
}
iterCntr++;
}
if (frame_mode == 1 && ISACenc_obj->frame_nb == 0)
/* i.e. 60 ms framesize and just processed the first 30ms, */
/* go back to main function to buffer the other 30ms speech frame */
{
ISACenc_obj->frame_nb = 1;
return 0;
}
else if (frame_mode == 1 && ISACenc_obj->frame_nb == 1)
{
ISACenc_obj->frame_nb = 0;
/* also update the framelength for next packet, in Adaptive mode only */
if (CodingMode == 0 && (ISACenc_obj->enforceFrameSize == 0)) {
ISACenc_obj->new_framelength = WebRtcIsacfix_GetNewFrameLength(ISACenc_obj->BottleNeck,
ISACenc_obj->current_framesamples);
}
}
/* complete arithmetic coding */
stream_length = WebRtcIsacfix_EncTerminate(&ISACenc_obj->bitstr_obj);
/* can this be negative? */
if(CodingMode == 0)
{
/* update rate model and get minimum number of bytes in this packet */
MinBytes = WebRtcIsacfix_GetMinBytes(&ISACenc_obj->rate_data_obj, (int16_t) stream_length,
ISACenc_obj->current_framesamples, ISACenc_obj->BottleNeck, ISACenc_obj->MaxDelay);
/* if bitstream is too short, add garbage at the end */
/* Store length of coded data */
usefulstr_len = stream_length;
/* Make sure MinBytes does not exceed packet size limit */
if ((ISACenc_obj->frame_nb == 0) && (MinBytes > ISACenc_obj->payloadLimitBytes30)) {
MinBytes = ISACenc_obj->payloadLimitBytes30;
} else if ((ISACenc_obj->frame_nb == 1) && (MinBytes > ISACenc_obj->payloadLimitBytes60)) {
MinBytes = ISACenc_obj->payloadLimitBytes60;
}
/* Make sure we don't allow more than 255 bytes of garbage data.
We store the length of the garbage data in 8 bits in the bitstream,
255 is the max garbage lenght we can signal using 8 bits. */
if( MinBytes > usefulstr_len + 255 ) {
MinBytes = usefulstr_len + 255;
}
/* Save data for creation of multiple bitstreams */
if (ISACenc_obj->SaveEnc_ptr != NULL) {
(ISACenc_obj->SaveEnc_ptr)->minBytes = MinBytes;
}
while (stream_length < MinBytes)
{
RTC_DCHECK_GE(stream_length, 0);
if (stream_length & 0x0001){
ISACenc_obj->bitstr_seed = WEBRTC_SPL_RAND( ISACenc_obj->bitstr_seed );
ISACenc_obj->bitstr_obj.stream[stream_length / 2] |=
(uint16_t)(ISACenc_obj->bitstr_seed & 0xFF);
} else {
ISACenc_obj->bitstr_seed = WEBRTC_SPL_RAND( ISACenc_obj->bitstr_seed );
ISACenc_obj->bitstr_obj.stream[stream_length / 2] =
((uint16_t)ISACenc_obj->bitstr_seed << 8);
}
stream_length++;
}
/* to get the real stream_length, without garbage */
if (usefulstr_len & 0x0001) {
ISACenc_obj->bitstr_obj.stream[usefulstr_len>>1] &= 0xFF00;
ISACenc_obj->bitstr_obj.stream[usefulstr_len>>1] += (MinBytes - usefulstr_len) & 0x00FF;
}
else {
ISACenc_obj->bitstr_obj.stream[usefulstr_len>>1] &= 0x00FF;
ISACenc_obj->bitstr_obj.stream[usefulstr_len >> 1] +=
((uint16_t)((MinBytes - usefulstr_len) & 0x00FF) << 8);
}
}
else
{
/* update rate model */
WebRtcIsacfix_UpdateRateModel(&ISACenc_obj->rate_data_obj, (int16_t) stream_length,
ISACenc_obj->current_framesamples, ISACenc_obj->BottleNeck);
}
return stream_length;
}
/* This function is used to create a new bitstream with new BWE.
The same data as previously encoded with the fucntion WebRtcIsacfix_EncodeImpl()
is used. The data needed is taken from the struct, where it was stored
when calling the encoder. */
int WebRtcIsacfix_EncodeStoredData(IsacFixEncoderInstance *ISACenc_obj,
int BWnumber,
float scale)
{
int ii;
int status;
int16_t BWno = (int16_t)BWnumber;
int stream_length = 0;
int16_t model;
const uint16_t *Q_PitchGain_cdf_ptr[1];
const uint16_t **cdf;
const IsacSaveEncoderData *SaveEnc_str;
int32_t tmpLPCcoeffs_g[KLT_ORDER_GAIN<<1];
int16_t tmpLPCindex_g[KLT_ORDER_GAIN<<1];
int16_t tmp_fre[FRAMESAMPLES];
int16_t tmp_fim[FRAMESAMPLES];
SaveEnc_str = ISACenc_obj->SaveEnc_ptr;
/* Check if SaveEnc memory exists */
if (SaveEnc_str == NULL) {
return (-1);
}
/* Sanity Check - possible values for BWnumber is 0 - 23 */
if ((BWnumber < 0) || (BWnumber > 23)) {
return -ISAC_RANGE_ERROR_BW_ESTIMATOR;
}
/* reset bitstream */
ISACenc_obj->bitstr_obj.W_upper = 0xFFFFFFFF;
ISACenc_obj->bitstr_obj.streamval = 0;
ISACenc_obj->bitstr_obj.stream_index = 0;
ISACenc_obj->bitstr_obj.full = 1;
/* encode frame length */
status = WebRtcIsacfix_EncodeFrameLen(SaveEnc_str->framelength, &ISACenc_obj->bitstr_obj);
if (status < 0) {
/* Wrong frame size */
return status;
}
/* encode bandwidth estimate */
status = WebRtcIsacfix_EncodeReceiveBandwidth(&BWno, &ISACenc_obj->bitstr_obj);
if (status < 0) {
return status;
}
/* Transcoding */
/* If scale < 1, rescale data to produce lower bitrate signal */
if ((0.0 < scale) && (scale < 1.0)) {
/* Compensate LPC gain */
for (ii = 0; ii < (KLT_ORDER_GAIN*(1+SaveEnc_str->startIdx)); ii++) {
tmpLPCcoeffs_g[ii] = (int32_t) ((scale) * (float) SaveEnc_str->LPCcoeffs_g[ii]);
}
/* Scale DFT */
for (ii = 0; ii < (FRAMESAMPLES_HALF*(1+SaveEnc_str->startIdx)); ii++) {
tmp_fre[ii] = (int16_t) ((scale) * (float) SaveEnc_str->fre[ii]) ;
tmp_fim[ii] = (int16_t) ((scale) * (float) SaveEnc_str->fim[ii]) ;
}
} else {
for (ii = 0; ii < (KLT_ORDER_GAIN*(1+SaveEnc_str->startIdx)); ii++) {
tmpLPCindex_g[ii] = SaveEnc_str->LPCindex_g[ii];
}
for (ii = 0; ii < (FRAMESAMPLES_HALF*(1+SaveEnc_str->startIdx)); ii++) {
tmp_fre[ii] = SaveEnc_str->fre[ii];
tmp_fim[ii] = SaveEnc_str->fim[ii];
}
}
/* Loop over number of 30 msec */
for (ii = 0; ii <= SaveEnc_str->startIdx; ii++)
{
/* encode pitch gains */
*Q_PitchGain_cdf_ptr = WebRtcIsacfix_kPitchGainCdf;
status = WebRtcIsacfix_EncHistMulti(&ISACenc_obj->bitstr_obj, &SaveEnc_str->pitchGain_index[ii],
Q_PitchGain_cdf_ptr, 1);
if (status < 0) {
return status;
}
/* entropy coding of quantization pitch lags */
/* voicing classificiation */
if (SaveEnc_str->meanGain[ii] <= 819) {
cdf = WebRtcIsacfix_kPitchLagPtrLo;
} else if (SaveEnc_str->meanGain[ii] <= 1638) {
cdf = WebRtcIsacfix_kPitchLagPtrMid;
} else {
cdf = WebRtcIsacfix_kPitchLagPtrHi;
}
status = WebRtcIsacfix_EncHistMulti(&ISACenc_obj->bitstr_obj,
&SaveEnc_str->pitchIndex[PITCH_SUBFRAMES*ii], cdf, PITCH_SUBFRAMES);
if (status < 0) {
return status;
}
/* LPC */
/* entropy coding of model number */
model = 0;
status = WebRtcIsacfix_EncHistMulti(&ISACenc_obj->bitstr_obj, &model,
WebRtcIsacfix_kModelCdfPtr, 1);
if (status < 0) {
return status;
}
/* entropy coding of quantization indices - LPC shape only */
status = WebRtcIsacfix_EncHistMulti(&ISACenc_obj->bitstr_obj, &SaveEnc_str->LPCindex_s[KLT_ORDER_SHAPE*ii],
WebRtcIsacfix_kCdfShapePtr[0], KLT_ORDER_SHAPE);
if (status < 0) {
return status;
}
/* If transcoding, get new LPC gain indices */
if (scale < 1.0) {
WebRtcIsacfix_TranscodeLpcCoef(&tmpLPCcoeffs_g[KLT_ORDER_GAIN*ii], &tmpLPCindex_g[KLT_ORDER_GAIN*ii]);
}
/* entropy coding of quantization indices - LPC gain */
status = WebRtcIsacfix_EncHistMulti(&ISACenc_obj->bitstr_obj, &tmpLPCindex_g[KLT_ORDER_GAIN*ii],
WebRtcIsacfix_kCdfGainPtr[0], KLT_ORDER_GAIN);
if (status < 0) {
return status;
}
/* quantization and lossless coding */
status = WebRtcIsacfix_EncodeSpec(&tmp_fre[ii*FRAMESAMPLES_HALF], &tmp_fim[ii*FRAMESAMPLES_HALF],
&ISACenc_obj->bitstr_obj, SaveEnc_str->AvgPitchGain[ii]);
if (status < 0) {
return status;
}
}
/* complete arithmetic coding */
stream_length = WebRtcIsacfix_EncTerminate(&ISACenc_obj->bitstr_obj);
return stream_length;
}