Moving src/webrtc into src/.
In order to eliminate the WebRTC Subtree mirror in Chromium, WebRTC is moving the content of the src/webrtc directory up to the src/ directory. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true TBR=tommi@webrtc.org Bug: chromium:611808 Change-Id: Iac59c5b51b950f174119565bac87955a7994bc38 Reviewed-on: https://webrtc-review.googlesource.com/1560 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Henrik Kjellander <kjellander@webrtc.org> Cr-Commit-Position: refs/heads/master@{#19845}
This commit is contained in:
committed by
Commit Bot
parent
6674846b4a
commit
bb547203bf
255
modules/audio_coding/neteq/background_noise.cc
Normal file
255
modules/audio_coding/neteq/background_noise.cc
Normal file
@ -0,0 +1,255 @@
|
||||
/*
|
||||
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "webrtc/modules/audio_coding/neteq/background_noise.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h> // memcpy
|
||||
|
||||
#include <algorithm> // min, max
|
||||
|
||||
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
||||
#include "webrtc/modules/audio_coding/neteq/audio_multi_vector.h"
|
||||
#include "webrtc/modules/audio_coding/neteq/cross_correlation.h"
|
||||
#include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
// static
|
||||
const size_t BackgroundNoise::kMaxLpcOrder;
|
||||
|
||||
BackgroundNoise::BackgroundNoise(size_t num_channels)
|
||||
: num_channels_(num_channels),
|
||||
channel_parameters_(new ChannelParameters[num_channels_]),
|
||||
mode_(NetEq::kBgnOn) {
|
||||
Reset();
|
||||
}
|
||||
|
||||
BackgroundNoise::~BackgroundNoise() {}
|
||||
|
||||
void BackgroundNoise::Reset() {
|
||||
initialized_ = false;
|
||||
for (size_t channel = 0; channel < num_channels_; ++channel) {
|
||||
channel_parameters_[channel].Reset();
|
||||
}
|
||||
// Keep _bgnMode as it is.
|
||||
}
|
||||
|
||||
void BackgroundNoise::Update(const AudioMultiVector& input,
|
||||
const PostDecodeVad& vad) {
|
||||
if (vad.running() && vad.active_speech()) {
|
||||
// Do not update the background noise parameters if we know that the signal
|
||||
// is active speech.
|
||||
return;
|
||||
}
|
||||
|
||||
int32_t auto_correlation[kMaxLpcOrder + 1];
|
||||
int16_t fiter_output[kMaxLpcOrder + kResidualLength];
|
||||
int16_t reflection_coefficients[kMaxLpcOrder];
|
||||
int16_t lpc_coefficients[kMaxLpcOrder + 1];
|
||||
|
||||
for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
|
||||
ChannelParameters& parameters = channel_parameters_[channel_ix];
|
||||
int16_t temp_signal_array[kVecLen + kMaxLpcOrder] = {0};
|
||||
int16_t* temp_signal = &temp_signal_array[kMaxLpcOrder];
|
||||
input[channel_ix].CopyTo(kVecLen, input.Size() - kVecLen, temp_signal);
|
||||
int32_t sample_energy = CalculateAutoCorrelation(temp_signal, kVecLen,
|
||||
auto_correlation);
|
||||
|
||||
if ((!vad.running() &&
|
||||
sample_energy < parameters.energy_update_threshold) ||
|
||||
(vad.running() && !vad.active_speech())) {
|
||||
// Generate LPC coefficients.
|
||||
if (auto_correlation[0] > 0) {
|
||||
// Regardless of whether the filter is actually updated or not,
|
||||
// update energy threshold levels, since we have in fact observed
|
||||
// a low energy signal.
|
||||
if (sample_energy < parameters.energy_update_threshold) {
|
||||
// Never go under 1.0 in average sample energy.
|
||||
parameters.energy_update_threshold = std::max(sample_energy, 1);
|
||||
parameters.low_energy_update_threshold = 0;
|
||||
}
|
||||
|
||||
// Only update BGN if filter is stable, i.e., if return value from
|
||||
// Levinson-Durbin function is 1.
|
||||
if (WebRtcSpl_LevinsonDurbin(auto_correlation, lpc_coefficients,
|
||||
reflection_coefficients,
|
||||
kMaxLpcOrder) != 1) {
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
// Center value in auto-correlation is not positive. Do not update.
|
||||
return;
|
||||
}
|
||||
|
||||
// Generate the CNG gain factor by looking at the energy of the residual.
|
||||
WebRtcSpl_FilterMAFastQ12(temp_signal + kVecLen - kResidualLength,
|
||||
fiter_output, lpc_coefficients,
|
||||
kMaxLpcOrder + 1, kResidualLength);
|
||||
int32_t residual_energy = WebRtcSpl_DotProductWithScale(fiter_output,
|
||||
fiter_output,
|
||||
kResidualLength,
|
||||
0);
|
||||
|
||||
// Check spectral flatness.
|
||||
// Comparing the residual variance with the input signal variance tells
|
||||
// if the spectrum is flat or not.
|
||||
// If 5 * residual_energy >= 16 * sample_energy, the spectrum is flat
|
||||
// enough. Also ensure that the energy is non-zero.
|
||||
if ((sample_energy > 0) &&
|
||||
(int64_t{5} * residual_energy >= int64_t{16} * sample_energy)) {
|
||||
// Spectrum is flat enough; save filter parameters.
|
||||
// |temp_signal| + |kVecLen| - |kMaxLpcOrder| points at the first of the
|
||||
// |kMaxLpcOrder| samples in the residual signal, which will form the
|
||||
// filter state for the next noise generation.
|
||||
SaveParameters(channel_ix, lpc_coefficients,
|
||||
temp_signal + kVecLen - kMaxLpcOrder, sample_energy,
|
||||
residual_energy);
|
||||
}
|
||||
} else {
|
||||
// Will only happen if post-decode VAD is disabled and |sample_energy| is
|
||||
// not low enough. Increase the threshold for update so that it increases
|
||||
// by a factor 4 in 4 seconds.
|
||||
IncrementEnergyThreshold(channel_ix, sample_energy);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
int32_t BackgroundNoise::Energy(size_t channel) const {
|
||||
assert(channel < num_channels_);
|
||||
return channel_parameters_[channel].energy;
|
||||
}
|
||||
|
||||
void BackgroundNoise::SetMuteFactor(size_t channel, int16_t value) {
|
||||
assert(channel < num_channels_);
|
||||
channel_parameters_[channel].mute_factor = value;
|
||||
}
|
||||
|
||||
int16_t BackgroundNoise::MuteFactor(size_t channel) const {
|
||||
assert(channel < num_channels_);
|
||||
return channel_parameters_[channel].mute_factor;
|
||||
}
|
||||
|
||||
const int16_t* BackgroundNoise::Filter(size_t channel) const {
|
||||
assert(channel < num_channels_);
|
||||
return channel_parameters_[channel].filter;
|
||||
}
|
||||
|
||||
const int16_t* BackgroundNoise::FilterState(size_t channel) const {
|
||||
assert(channel < num_channels_);
|
||||
return channel_parameters_[channel].filter_state;
|
||||
}
|
||||
|
||||
void BackgroundNoise::SetFilterState(size_t channel, const int16_t* input,
|
||||
size_t length) {
|
||||
assert(channel < num_channels_);
|
||||
length = std::min(length, kMaxLpcOrder);
|
||||
memcpy(channel_parameters_[channel].filter_state, input,
|
||||
length * sizeof(int16_t));
|
||||
}
|
||||
|
||||
int16_t BackgroundNoise::Scale(size_t channel) const {
|
||||
assert(channel < num_channels_);
|
||||
return channel_parameters_[channel].scale;
|
||||
}
|
||||
int16_t BackgroundNoise::ScaleShift(size_t channel) const {
|
||||
assert(channel < num_channels_);
|
||||
return channel_parameters_[channel].scale_shift;
|
||||
}
|
||||
|
||||
int32_t BackgroundNoise::CalculateAutoCorrelation(
|
||||
const int16_t* signal, size_t length, int32_t* auto_correlation) const {
|
||||
static const int kCorrelationStep = -1;
|
||||
const int correlation_scale =
|
||||
CrossCorrelationWithAutoShift(signal, signal, length, kMaxLpcOrder + 1,
|
||||
kCorrelationStep, auto_correlation);
|
||||
|
||||
// Number of shifts to normalize energy to energy/sample.
|
||||
int energy_sample_shift = kLogVecLen - correlation_scale;
|
||||
return auto_correlation[0] >> energy_sample_shift;
|
||||
}
|
||||
|
||||
void BackgroundNoise::IncrementEnergyThreshold(size_t channel,
|
||||
int32_t sample_energy) {
|
||||
// TODO(hlundin): Simplify the below threshold update. What this code
|
||||
// does is simply "threshold += (increment * threshold) >> 16", but due
|
||||
// to the limited-width operations, it is not exactly the same. The
|
||||
// difference should be inaudible, but bit-exactness would not be
|
||||
// maintained.
|
||||
assert(channel < num_channels_);
|
||||
ChannelParameters& parameters = channel_parameters_[channel];
|
||||
int32_t temp_energy =
|
||||
(kThresholdIncrement * parameters.low_energy_update_threshold) >> 16;
|
||||
temp_energy += kThresholdIncrement *
|
||||
(parameters.energy_update_threshold & 0xFF);
|
||||
temp_energy += (kThresholdIncrement *
|
||||
((parameters.energy_update_threshold>>8) & 0xFF)) << 8;
|
||||
parameters.low_energy_update_threshold += temp_energy;
|
||||
|
||||
parameters.energy_update_threshold += kThresholdIncrement *
|
||||
(parameters.energy_update_threshold>>16);
|
||||
parameters.energy_update_threshold +=
|
||||
parameters.low_energy_update_threshold >> 16;
|
||||
parameters.low_energy_update_threshold =
|
||||
parameters.low_energy_update_threshold & 0x0FFFF;
|
||||
|
||||
// Update maximum energy.
|
||||
// Decrease by a factor 1/1024 each time.
|
||||
parameters.max_energy = parameters.max_energy -
|
||||
(parameters.max_energy >> 10);
|
||||
if (sample_energy > parameters.max_energy) {
|
||||
parameters.max_energy = sample_energy;
|
||||
}
|
||||
|
||||
// Set |energy_update_threshold| to no less than 60 dB lower than
|
||||
// |max_energy_|. Adding 524288 assures proper rounding.
|
||||
int32_t energy_update_threshold = (parameters.max_energy + 524288) >> 20;
|
||||
if (energy_update_threshold > parameters.energy_update_threshold) {
|
||||
parameters.energy_update_threshold = energy_update_threshold;
|
||||
}
|
||||
}
|
||||
|
||||
void BackgroundNoise::SaveParameters(size_t channel,
|
||||
const int16_t* lpc_coefficients,
|
||||
const int16_t* filter_state,
|
||||
int32_t sample_energy,
|
||||
int32_t residual_energy) {
|
||||
assert(channel < num_channels_);
|
||||
ChannelParameters& parameters = channel_parameters_[channel];
|
||||
memcpy(parameters.filter, lpc_coefficients,
|
||||
(kMaxLpcOrder+1) * sizeof(int16_t));
|
||||
memcpy(parameters.filter_state, filter_state,
|
||||
kMaxLpcOrder * sizeof(int16_t));
|
||||
// Save energy level and update energy threshold levels.
|
||||
// Never get under 1.0 in average sample energy.
|
||||
parameters.energy = std::max(sample_energy, 1);
|
||||
parameters.energy_update_threshold = parameters.energy;
|
||||
parameters.low_energy_update_threshold = 0;
|
||||
|
||||
// Normalize residual_energy to 29 or 30 bits before sqrt.
|
||||
int16_t norm_shift = WebRtcSpl_NormW32(residual_energy) - 1;
|
||||
if (norm_shift & 0x1) {
|
||||
norm_shift -= 1; // Even number of shifts required.
|
||||
}
|
||||
residual_energy = WEBRTC_SPL_SHIFT_W32(residual_energy, norm_shift);
|
||||
|
||||
// Calculate scale and shift factor.
|
||||
parameters.scale = static_cast<int16_t>(WebRtcSpl_SqrtFloor(residual_energy));
|
||||
// Add 13 to the |scale_shift_|, since the random numbers table is in
|
||||
// Q13.
|
||||
// TODO(hlundin): Move the "13" to where the |scale_shift_| is used?
|
||||
parameters.scale_shift =
|
||||
static_cast<int16_t>(13 + ((kLogResidualLength + norm_shift) / 2));
|
||||
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
Reference in New Issue
Block a user