Moving src/webrtc into src/.
In order to eliminate the WebRTC Subtree mirror in Chromium, WebRTC is moving the content of the src/webrtc directory up to the src/ directory. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true TBR=tommi@webrtc.org Bug: chromium:611808 Change-Id: Iac59c5b51b950f174119565bac87955a7994bc38 Reviewed-on: https://webrtc-review.googlesource.com/1560 Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Henrik Kjellander <kjellander@webrtc.org> Cr-Commit-Position: refs/heads/master@{#19845}
This commit is contained in:

committed by
Commit Bot

parent
6674846b4a
commit
bb547203bf
507
modules/video_coding/codecs/h264/h264_encoder_impl.cc
Normal file
507
modules/video_coding/codecs/h264/h264_encoder_impl.cc
Normal file
@ -0,0 +1,507 @@
|
||||
/*
|
||||
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "webrtc/modules/video_coding/codecs/h264/h264_encoder_impl.h"
|
||||
|
||||
#include <limits>
|
||||
#include <string>
|
||||
|
||||
#include "third_party/openh264/src/codec/api/svc/codec_api.h"
|
||||
#include "third_party/openh264/src/codec/api/svc/codec_app_def.h"
|
||||
#include "third_party/openh264/src/codec/api/svc/codec_def.h"
|
||||
#include "third_party/openh264/src/codec/api/svc/codec_ver.h"
|
||||
|
||||
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
|
||||
#include "webrtc/rtc_base/checks.h"
|
||||
#include "webrtc/rtc_base/logging.h"
|
||||
#include "webrtc/rtc_base/timeutils.h"
|
||||
#include "webrtc/system_wrappers/include/metrics.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
namespace {
|
||||
|
||||
const bool kOpenH264EncoderDetailedLogging = false;
|
||||
|
||||
// Used by histograms. Values of entries should not be changed.
|
||||
enum H264EncoderImplEvent {
|
||||
kH264EncoderEventInit = 0,
|
||||
kH264EncoderEventError = 1,
|
||||
kH264EncoderEventMax = 16,
|
||||
};
|
||||
|
||||
int NumberOfThreads(int width, int height, int number_of_cores) {
|
||||
// TODO(hbos): In Chromium, multiple threads do not work with sandbox on Mac,
|
||||
// see crbug.com/583348. Until further investigated, only use one thread.
|
||||
// if (width * height >= 1920 * 1080 && number_of_cores > 8) {
|
||||
// return 8; // 8 threads for 1080p on high perf machines.
|
||||
// } else if (width * height > 1280 * 960 && number_of_cores >= 6) {
|
||||
// return 3; // 3 threads for 1080p.
|
||||
// } else if (width * height > 640 * 480 && number_of_cores >= 3) {
|
||||
// return 2; // 2 threads for qHD/HD.
|
||||
// } else {
|
||||
// return 1; // 1 thread for VGA or less.
|
||||
// }
|
||||
// TODO(sprang): Also check sSliceArgument.uiSliceNum om GetEncoderPrams(),
|
||||
// before enabling multithreading here.
|
||||
return 1;
|
||||
}
|
||||
|
||||
FrameType ConvertToVideoFrameType(EVideoFrameType type) {
|
||||
switch (type) {
|
||||
case videoFrameTypeIDR:
|
||||
return kVideoFrameKey;
|
||||
case videoFrameTypeSkip:
|
||||
case videoFrameTypeI:
|
||||
case videoFrameTypeP:
|
||||
case videoFrameTypeIPMixed:
|
||||
return kVideoFrameDelta;
|
||||
case videoFrameTypeInvalid:
|
||||
break;
|
||||
}
|
||||
RTC_NOTREACHED() << "Unexpected/invalid frame type: " << type;
|
||||
return kEmptyFrame;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Helper method used by H264EncoderImpl::Encode.
|
||||
// Copies the encoded bytes from |info| to |encoded_image| and updates the
|
||||
// fragmentation information of |frag_header|. The |encoded_image->_buffer| may
|
||||
// be deleted and reallocated if a bigger buffer is required.
|
||||
//
|
||||
// After OpenH264 encoding, the encoded bytes are stored in |info| spread out
|
||||
// over a number of layers and "NAL units". Each NAL unit is a fragment starting
|
||||
// with the four-byte start code {0,0,0,1}. All of this data (including the
|
||||
// start codes) is copied to the |encoded_image->_buffer| and the |frag_header|
|
||||
// is updated to point to each fragment, with offsets and lengths set as to
|
||||
// exclude the start codes.
|
||||
static void RtpFragmentize(EncodedImage* encoded_image,
|
||||
std::unique_ptr<uint8_t[]>* encoded_image_buffer,
|
||||
const VideoFrameBuffer& frame_buffer,
|
||||
SFrameBSInfo* info,
|
||||
RTPFragmentationHeader* frag_header) {
|
||||
// Calculate minimum buffer size required to hold encoded data.
|
||||
size_t required_size = 0;
|
||||
size_t fragments_count = 0;
|
||||
for (int layer = 0; layer < info->iLayerNum; ++layer) {
|
||||
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
|
||||
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++fragments_count) {
|
||||
RTC_CHECK_GE(layerInfo.pNalLengthInByte[nal], 0);
|
||||
// Ensure |required_size| will not overflow.
|
||||
RTC_CHECK_LE(layerInfo.pNalLengthInByte[nal],
|
||||
std::numeric_limits<size_t>::max() - required_size);
|
||||
required_size += layerInfo.pNalLengthInByte[nal];
|
||||
}
|
||||
}
|
||||
if (encoded_image->_size < required_size) {
|
||||
// Increase buffer size. Allocate enough to hold an unencoded image, this
|
||||
// should be more than enough to hold any encoded data of future frames of
|
||||
// the same size (avoiding possible future reallocation due to variations in
|
||||
// required size).
|
||||
encoded_image->_size = CalcBufferSize(
|
||||
VideoType::kI420, frame_buffer.width(), frame_buffer.height());
|
||||
if (encoded_image->_size < required_size) {
|
||||
// Encoded data > unencoded data. Allocate required bytes.
|
||||
LOG(LS_WARNING) << "Encoding produced more bytes than the original image "
|
||||
<< "data! Original bytes: " << encoded_image->_size
|
||||
<< ", encoded bytes: " << required_size << ".";
|
||||
encoded_image->_size = required_size;
|
||||
}
|
||||
encoded_image->_buffer = new uint8_t[encoded_image->_size];
|
||||
encoded_image_buffer->reset(encoded_image->_buffer);
|
||||
}
|
||||
|
||||
// Iterate layers and NAL units, note each NAL unit as a fragment and copy
|
||||
// the data to |encoded_image->_buffer|.
|
||||
const uint8_t start_code[4] = {0, 0, 0, 1};
|
||||
frag_header->VerifyAndAllocateFragmentationHeader(fragments_count);
|
||||
size_t frag = 0;
|
||||
encoded_image->_length = 0;
|
||||
for (int layer = 0; layer < info->iLayerNum; ++layer) {
|
||||
const SLayerBSInfo& layerInfo = info->sLayerInfo[layer];
|
||||
// Iterate NAL units making up this layer, noting fragments.
|
||||
size_t layer_len = 0;
|
||||
for (int nal = 0; nal < layerInfo.iNalCount; ++nal, ++frag) {
|
||||
// Because the sum of all layer lengths, |required_size|, fits in a
|
||||
// |size_t|, we know that any indices in-between will not overflow.
|
||||
RTC_DCHECK_GE(layerInfo.pNalLengthInByte[nal], 4);
|
||||
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+0], start_code[0]);
|
||||
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+1], start_code[1]);
|
||||
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+2], start_code[2]);
|
||||
RTC_DCHECK_EQ(layerInfo.pBsBuf[layer_len+3], start_code[3]);
|
||||
frag_header->fragmentationOffset[frag] =
|
||||
encoded_image->_length + layer_len + sizeof(start_code);
|
||||
frag_header->fragmentationLength[frag] =
|
||||
layerInfo.pNalLengthInByte[nal] - sizeof(start_code);
|
||||
layer_len += layerInfo.pNalLengthInByte[nal];
|
||||
}
|
||||
// Copy the entire layer's data (including start codes).
|
||||
memcpy(encoded_image->_buffer + encoded_image->_length,
|
||||
layerInfo.pBsBuf,
|
||||
layer_len);
|
||||
encoded_image->_length += layer_len;
|
||||
}
|
||||
}
|
||||
|
||||
H264EncoderImpl::H264EncoderImpl(const cricket::VideoCodec& codec)
|
||||
: openh264_encoder_(nullptr),
|
||||
width_(0),
|
||||
height_(0),
|
||||
max_frame_rate_(0.0f),
|
||||
target_bps_(0),
|
||||
max_bps_(0),
|
||||
mode_(kRealtimeVideo),
|
||||
frame_dropping_on_(false),
|
||||
key_frame_interval_(0),
|
||||
packetization_mode_(H264PacketizationMode::SingleNalUnit),
|
||||
max_payload_size_(0),
|
||||
number_of_cores_(0),
|
||||
encoded_image_callback_(nullptr),
|
||||
has_reported_init_(false),
|
||||
has_reported_error_(false) {
|
||||
RTC_CHECK(cricket::CodecNamesEq(codec.name, cricket::kH264CodecName));
|
||||
std::string packetization_mode_string;
|
||||
if (codec.GetParam(cricket::kH264FmtpPacketizationMode,
|
||||
&packetization_mode_string) &&
|
||||
packetization_mode_string == "1") {
|
||||
packetization_mode_ = H264PacketizationMode::NonInterleaved;
|
||||
}
|
||||
}
|
||||
|
||||
H264EncoderImpl::~H264EncoderImpl() {
|
||||
Release();
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::InitEncode(const VideoCodec* codec_settings,
|
||||
int32_t number_of_cores,
|
||||
size_t max_payload_size) {
|
||||
ReportInit();
|
||||
if (!codec_settings ||
|
||||
codec_settings->codecType != kVideoCodecH264) {
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
||||
}
|
||||
if (codec_settings->maxFramerate == 0) {
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
||||
}
|
||||
if (codec_settings->width < 1 || codec_settings->height < 1) {
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
||||
}
|
||||
|
||||
int32_t release_ret = Release();
|
||||
if (release_ret != WEBRTC_VIDEO_CODEC_OK) {
|
||||
ReportError();
|
||||
return release_ret;
|
||||
}
|
||||
RTC_DCHECK(!openh264_encoder_);
|
||||
|
||||
// Create encoder.
|
||||
if (WelsCreateSVCEncoder(&openh264_encoder_) != 0) {
|
||||
// Failed to create encoder.
|
||||
LOG(LS_ERROR) << "Failed to create OpenH264 encoder";
|
||||
RTC_DCHECK(!openh264_encoder_);
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_ERROR;
|
||||
}
|
||||
RTC_DCHECK(openh264_encoder_);
|
||||
if (kOpenH264EncoderDetailedLogging) {
|
||||
int trace_level = WELS_LOG_DETAIL;
|
||||
openh264_encoder_->SetOption(ENCODER_OPTION_TRACE_LEVEL,
|
||||
&trace_level);
|
||||
}
|
||||
// else WELS_LOG_DEFAULT is used by default.
|
||||
|
||||
number_of_cores_ = number_of_cores;
|
||||
// Set internal settings from codec_settings
|
||||
width_ = codec_settings->width;
|
||||
height_ = codec_settings->height;
|
||||
max_frame_rate_ = static_cast<float>(codec_settings->maxFramerate);
|
||||
mode_ = codec_settings->mode;
|
||||
frame_dropping_on_ = codec_settings->H264().frameDroppingOn;
|
||||
key_frame_interval_ = codec_settings->H264().keyFrameInterval;
|
||||
max_payload_size_ = max_payload_size;
|
||||
|
||||
// Codec_settings uses kbits/second; encoder uses bits/second.
|
||||
max_bps_ = codec_settings->maxBitrate * 1000;
|
||||
if (codec_settings->targetBitrate == 0)
|
||||
target_bps_ = codec_settings->startBitrate * 1000;
|
||||
else
|
||||
target_bps_ = codec_settings->targetBitrate * 1000;
|
||||
|
||||
SEncParamExt encoder_params = CreateEncoderParams();
|
||||
|
||||
// Initialize.
|
||||
if (openh264_encoder_->InitializeExt(&encoder_params) != 0) {
|
||||
LOG(LS_ERROR) << "Failed to initialize OpenH264 encoder";
|
||||
Release();
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_ERROR;
|
||||
}
|
||||
// TODO(pbos): Base init params on these values before submitting.
|
||||
int video_format = EVideoFormatType::videoFormatI420;
|
||||
openh264_encoder_->SetOption(ENCODER_OPTION_DATAFORMAT,
|
||||
&video_format);
|
||||
|
||||
// Initialize encoded image. Default buffer size: size of unencoded data.
|
||||
encoded_image_._size = CalcBufferSize(VideoType::kI420, codec_settings->width,
|
||||
codec_settings->height);
|
||||
encoded_image_._buffer = new uint8_t[encoded_image_._size];
|
||||
encoded_image_buffer_.reset(encoded_image_._buffer);
|
||||
encoded_image_._completeFrame = true;
|
||||
encoded_image_._encodedWidth = 0;
|
||||
encoded_image_._encodedHeight = 0;
|
||||
encoded_image_._length = 0;
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::Release() {
|
||||
if (openh264_encoder_) {
|
||||
RTC_CHECK_EQ(0, openh264_encoder_->Uninitialize());
|
||||
WelsDestroySVCEncoder(openh264_encoder_);
|
||||
openh264_encoder_ = nullptr;
|
||||
}
|
||||
encoded_image_._buffer = nullptr;
|
||||
encoded_image_buffer_.reset();
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::RegisterEncodeCompleteCallback(
|
||||
EncodedImageCallback* callback) {
|
||||
encoded_image_callback_ = callback;
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::SetRateAllocation(
|
||||
const BitrateAllocation& bitrate_allocation,
|
||||
uint32_t framerate) {
|
||||
if (bitrate_allocation.get_sum_bps() <= 0 || framerate <= 0)
|
||||
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
|
||||
|
||||
target_bps_ = bitrate_allocation.get_sum_bps();
|
||||
max_frame_rate_ = static_cast<float>(framerate);
|
||||
|
||||
SBitrateInfo target_bitrate;
|
||||
memset(&target_bitrate, 0, sizeof(SBitrateInfo));
|
||||
target_bitrate.iLayer = SPATIAL_LAYER_ALL,
|
||||
target_bitrate.iBitrate = target_bps_;
|
||||
openh264_encoder_->SetOption(ENCODER_OPTION_BITRATE,
|
||||
&target_bitrate);
|
||||
openh264_encoder_->SetOption(ENCODER_OPTION_FRAME_RATE, &max_frame_rate_);
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::Encode(const VideoFrame& input_frame,
|
||||
const CodecSpecificInfo* codec_specific_info,
|
||||
const std::vector<FrameType>* frame_types) {
|
||||
if (!IsInitialized()) {
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
||||
}
|
||||
if (!encoded_image_callback_) {
|
||||
LOG(LS_WARNING) << "InitEncode() has been called, but a callback function "
|
||||
<< "has not been set with RegisterEncodeCompleteCallback()";
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
||||
}
|
||||
|
||||
bool force_key_frame = false;
|
||||
if (frame_types != nullptr) {
|
||||
// We only support a single stream.
|
||||
RTC_DCHECK_EQ(frame_types->size(), 1);
|
||||
// Skip frame?
|
||||
if ((*frame_types)[0] == kEmptyFrame) {
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
// Force key frame?
|
||||
force_key_frame = (*frame_types)[0] == kVideoFrameKey;
|
||||
}
|
||||
if (force_key_frame) {
|
||||
// API doc says ForceIntraFrame(false) does nothing, but calling this
|
||||
// function forces a key frame regardless of the |bIDR| argument's value.
|
||||
// (If every frame is a key frame we get lag/delays.)
|
||||
openh264_encoder_->ForceIntraFrame(true);
|
||||
}
|
||||
rtc::scoped_refptr<const I420BufferInterface> frame_buffer =
|
||||
input_frame.video_frame_buffer()->ToI420();
|
||||
// EncodeFrame input.
|
||||
SSourcePicture picture;
|
||||
memset(&picture, 0, sizeof(SSourcePicture));
|
||||
picture.iPicWidth = frame_buffer->width();
|
||||
picture.iPicHeight = frame_buffer->height();
|
||||
picture.iColorFormat = EVideoFormatType::videoFormatI420;
|
||||
picture.uiTimeStamp = input_frame.ntp_time_ms();
|
||||
picture.iStride[0] = frame_buffer->StrideY();
|
||||
picture.iStride[1] = frame_buffer->StrideU();
|
||||
picture.iStride[2] = frame_buffer->StrideV();
|
||||
picture.pData[0] = const_cast<uint8_t*>(frame_buffer->DataY());
|
||||
picture.pData[1] = const_cast<uint8_t*>(frame_buffer->DataU());
|
||||
picture.pData[2] = const_cast<uint8_t*>(frame_buffer->DataV());
|
||||
|
||||
// EncodeFrame output.
|
||||
SFrameBSInfo info;
|
||||
memset(&info, 0, sizeof(SFrameBSInfo));
|
||||
|
||||
// Encode!
|
||||
int enc_ret = openh264_encoder_->EncodeFrame(&picture, &info);
|
||||
if (enc_ret != 0) {
|
||||
LOG(LS_ERROR) << "OpenH264 frame encoding failed, EncodeFrame returned "
|
||||
<< enc_ret << ".";
|
||||
ReportError();
|
||||
return WEBRTC_VIDEO_CODEC_ERROR;
|
||||
}
|
||||
|
||||
encoded_image_._encodedWidth = frame_buffer->width();
|
||||
encoded_image_._encodedHeight = frame_buffer->height();
|
||||
encoded_image_._timeStamp = input_frame.timestamp();
|
||||
encoded_image_.ntp_time_ms_ = input_frame.ntp_time_ms();
|
||||
encoded_image_.capture_time_ms_ = input_frame.render_time_ms();
|
||||
encoded_image_.rotation_ = input_frame.rotation();
|
||||
encoded_image_.content_type_ = (mode_ == kScreensharing)
|
||||
? VideoContentType::SCREENSHARE
|
||||
: VideoContentType::UNSPECIFIED;
|
||||
encoded_image_.timing_.flags = TimingFrameFlags::kInvalid;
|
||||
encoded_image_._frameType = ConvertToVideoFrameType(info.eFrameType);
|
||||
|
||||
// Split encoded image up into fragments. This also updates |encoded_image_|.
|
||||
RTPFragmentationHeader frag_header;
|
||||
RtpFragmentize(&encoded_image_, &encoded_image_buffer_, *frame_buffer, &info,
|
||||
&frag_header);
|
||||
|
||||
// Encoder can skip frames to save bandwidth in which case
|
||||
// |encoded_image_._length| == 0.
|
||||
if (encoded_image_._length > 0) {
|
||||
// Parse QP.
|
||||
h264_bitstream_parser_.ParseBitstream(encoded_image_._buffer,
|
||||
encoded_image_._length);
|
||||
h264_bitstream_parser_.GetLastSliceQp(&encoded_image_.qp_);
|
||||
|
||||
// Deliver encoded image.
|
||||
CodecSpecificInfo codec_specific;
|
||||
codec_specific.codecType = kVideoCodecH264;
|
||||
codec_specific.codecSpecific.H264.packetization_mode = packetization_mode_;
|
||||
encoded_image_callback_->OnEncodedImage(encoded_image_, &codec_specific,
|
||||
&frag_header);
|
||||
}
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
const char* H264EncoderImpl::ImplementationName() const {
|
||||
return "OpenH264";
|
||||
}
|
||||
|
||||
bool H264EncoderImpl::IsInitialized() const {
|
||||
return openh264_encoder_ != nullptr;
|
||||
}
|
||||
|
||||
// Initialization parameters.
|
||||
// There are two ways to initialize. There is SEncParamBase (cleared with
|
||||
// memset(&p, 0, sizeof(SEncParamBase)) used in Initialize, and SEncParamExt
|
||||
// which is a superset of SEncParamBase (cleared with GetDefaultParams) used
|
||||
// in InitializeExt.
|
||||
SEncParamExt H264EncoderImpl::CreateEncoderParams() const {
|
||||
RTC_DCHECK(openh264_encoder_);
|
||||
SEncParamExt encoder_params;
|
||||
openh264_encoder_->GetDefaultParams(&encoder_params);
|
||||
if (mode_ == kRealtimeVideo) {
|
||||
encoder_params.iUsageType = CAMERA_VIDEO_REAL_TIME;
|
||||
} else if (mode_ == kScreensharing) {
|
||||
encoder_params.iUsageType = SCREEN_CONTENT_REAL_TIME;
|
||||
} else {
|
||||
RTC_NOTREACHED();
|
||||
}
|
||||
encoder_params.iPicWidth = width_;
|
||||
encoder_params.iPicHeight = height_;
|
||||
encoder_params.iTargetBitrate = target_bps_;
|
||||
encoder_params.iMaxBitrate = max_bps_;
|
||||
// Rate Control mode
|
||||
encoder_params.iRCMode = RC_BITRATE_MODE;
|
||||
encoder_params.fMaxFrameRate = max_frame_rate_;
|
||||
|
||||
// The following parameters are extension parameters (they're in SEncParamExt,
|
||||
// not in SEncParamBase).
|
||||
encoder_params.bEnableFrameSkip = frame_dropping_on_;
|
||||
// |uiIntraPeriod| - multiple of GOP size
|
||||
// |keyFrameInterval| - number of frames
|
||||
encoder_params.uiIntraPeriod = key_frame_interval_;
|
||||
encoder_params.uiMaxNalSize = 0;
|
||||
// Threading model: use auto.
|
||||
// 0: auto (dynamic imp. internal encoder)
|
||||
// 1: single thread (default value)
|
||||
// >1: number of threads
|
||||
encoder_params.iMultipleThreadIdc = NumberOfThreads(
|
||||
encoder_params.iPicWidth, encoder_params.iPicHeight, number_of_cores_);
|
||||
// The base spatial layer 0 is the only one we use.
|
||||
encoder_params.sSpatialLayers[0].iVideoWidth = encoder_params.iPicWidth;
|
||||
encoder_params.sSpatialLayers[0].iVideoHeight = encoder_params.iPicHeight;
|
||||
encoder_params.sSpatialLayers[0].fFrameRate = encoder_params.fMaxFrameRate;
|
||||
encoder_params.sSpatialLayers[0].iSpatialBitrate =
|
||||
encoder_params.iTargetBitrate;
|
||||
encoder_params.sSpatialLayers[0].iMaxSpatialBitrate =
|
||||
encoder_params.iMaxBitrate;
|
||||
LOG(INFO) << "OpenH264 version is " << OPENH264_MAJOR << "."
|
||||
<< OPENH264_MINOR;
|
||||
switch (packetization_mode_) {
|
||||
case H264PacketizationMode::SingleNalUnit:
|
||||
// Limit the size of the packets produced.
|
||||
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
|
||||
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
|
||||
SM_SIZELIMITED_SLICE;
|
||||
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceSizeConstraint =
|
||||
static_cast<unsigned int>(max_payload_size_);
|
||||
break;
|
||||
case H264PacketizationMode::NonInterleaved:
|
||||
// When uiSliceMode = SM_FIXEDSLCNUM_SLICE, uiSliceNum = 0 means auto
|
||||
// design it with cpu core number.
|
||||
// TODO(sprang): Set to 0 when we understand why the rate controller borks
|
||||
// when uiSliceNum > 1.
|
||||
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceNum = 1;
|
||||
encoder_params.sSpatialLayers[0].sSliceArgument.uiSliceMode =
|
||||
SM_FIXEDSLCNUM_SLICE;
|
||||
break;
|
||||
}
|
||||
return encoder_params;
|
||||
}
|
||||
|
||||
void H264EncoderImpl::ReportInit() {
|
||||
if (has_reported_init_)
|
||||
return;
|
||||
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
|
||||
kH264EncoderEventInit,
|
||||
kH264EncoderEventMax);
|
||||
has_reported_init_ = true;
|
||||
}
|
||||
|
||||
void H264EncoderImpl::ReportError() {
|
||||
if (has_reported_error_)
|
||||
return;
|
||||
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.H264EncoderImpl.Event",
|
||||
kH264EncoderEventError,
|
||||
kH264EncoderEventMax);
|
||||
has_reported_error_ = true;
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::SetChannelParameters(
|
||||
uint32_t packet_loss, int64_t rtt) {
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
int32_t H264EncoderImpl::SetPeriodicKeyFrames(bool enable) {
|
||||
return WEBRTC_VIDEO_CODEC_OK;
|
||||
}
|
||||
|
||||
VideoEncoder::ScalingSettings H264EncoderImpl::GetScalingSettings() const {
|
||||
return VideoEncoder::ScalingSettings(true);
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
Reference in New Issue
Block a user