Reland "Move webrtc/{base => rtc_base}" (https://codereview.webrtc.org/2877023002)
Reland the base->rtc_base without adding stub headers (will be done in follow-up CL). This preserves git blame history of all files. BUG=webrtc:7634 NOTRY=True TBR=kwiberg@webrtc.org Change-Id: Iea3bb6f3f67b8374c96337b63e8f5aa3e6181012 Reviewed-on: https://chromium-review.googlesource.com/554611 Reviewed-by: Henrik Kjellander <kjellander@webrtc.org> Cr-Commit-Position: refs/heads/master@{#18821}
This commit is contained in:
@ -1,174 +0,0 @@
|
||||
/*
|
||||
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_BASE_ROLLINGACCUMULATOR_H_
|
||||
#define WEBRTC_BASE_ROLLINGACCUMULATOR_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#include "webrtc/base/checks.h"
|
||||
#include "webrtc/base/constructormagic.h"
|
||||
|
||||
namespace rtc {
|
||||
|
||||
// RollingAccumulator stores and reports statistics
|
||||
// over N most recent samples.
|
||||
//
|
||||
// T is assumed to be an int, long, double or float.
|
||||
template<typename T>
|
||||
class RollingAccumulator {
|
||||
public:
|
||||
explicit RollingAccumulator(size_t max_count)
|
||||
: samples_(max_count) {
|
||||
Reset();
|
||||
}
|
||||
~RollingAccumulator() {
|
||||
}
|
||||
|
||||
size_t max_count() const {
|
||||
return samples_.size();
|
||||
}
|
||||
|
||||
size_t count() const {
|
||||
return count_;
|
||||
}
|
||||
|
||||
void Reset() {
|
||||
count_ = 0U;
|
||||
next_index_ = 0U;
|
||||
sum_ = 0.0;
|
||||
sum_2_ = 0.0;
|
||||
max_ = T();
|
||||
max_stale_ = false;
|
||||
min_ = T();
|
||||
min_stale_ = false;
|
||||
}
|
||||
|
||||
void AddSample(T sample) {
|
||||
if (count_ == max_count()) {
|
||||
// Remove oldest sample.
|
||||
T sample_to_remove = samples_[next_index_];
|
||||
sum_ -= sample_to_remove;
|
||||
sum_2_ -= static_cast<double>(sample_to_remove) * sample_to_remove;
|
||||
if (sample_to_remove >= max_) {
|
||||
max_stale_ = true;
|
||||
}
|
||||
if (sample_to_remove <= min_) {
|
||||
min_stale_ = true;
|
||||
}
|
||||
} else {
|
||||
// Increase count of samples.
|
||||
++count_;
|
||||
}
|
||||
// Add new sample.
|
||||
samples_[next_index_] = sample;
|
||||
sum_ += sample;
|
||||
sum_2_ += static_cast<double>(sample) * sample;
|
||||
if (count_ == 1 || sample >= max_) {
|
||||
max_ = sample;
|
||||
max_stale_ = false;
|
||||
}
|
||||
if (count_ == 1 || sample <= min_) {
|
||||
min_ = sample;
|
||||
min_stale_ = false;
|
||||
}
|
||||
// Update next_index_.
|
||||
next_index_ = (next_index_ + 1) % max_count();
|
||||
}
|
||||
|
||||
T ComputeSum() const {
|
||||
return static_cast<T>(sum_);
|
||||
}
|
||||
|
||||
double ComputeMean() const {
|
||||
if (count_ == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return sum_ / count_;
|
||||
}
|
||||
|
||||
T ComputeMax() const {
|
||||
if (max_stale_) {
|
||||
RTC_DCHECK(count_ > 0) <<
|
||||
"It shouldn't be possible for max_stale_ && count_ == 0";
|
||||
max_ = samples_[next_index_];
|
||||
for (size_t i = 1u; i < count_; i++) {
|
||||
max_ = std::max(max_, samples_[(next_index_ + i) % max_count()]);
|
||||
}
|
||||
max_stale_ = false;
|
||||
}
|
||||
return max_;
|
||||
}
|
||||
|
||||
T ComputeMin() const {
|
||||
if (min_stale_) {
|
||||
RTC_DCHECK(count_ > 0) <<
|
||||
"It shouldn't be possible for min_stale_ && count_ == 0";
|
||||
min_ = samples_[next_index_];
|
||||
for (size_t i = 1u; i < count_; i++) {
|
||||
min_ = std::min(min_, samples_[(next_index_ + i) % max_count()]);
|
||||
}
|
||||
min_stale_ = false;
|
||||
}
|
||||
return min_;
|
||||
}
|
||||
|
||||
// O(n) time complexity.
|
||||
// Weights nth sample with weight (learning_rate)^n. Learning_rate should be
|
||||
// between (0.0, 1.0], otherwise the non-weighted mean is returned.
|
||||
double ComputeWeightedMean(double learning_rate) const {
|
||||
if (count_ < 1 || learning_rate <= 0.0 || learning_rate >= 1.0) {
|
||||
return ComputeMean();
|
||||
}
|
||||
double weighted_mean = 0.0;
|
||||
double current_weight = 1.0;
|
||||
double weight_sum = 0.0;
|
||||
const size_t max_size = max_count();
|
||||
for (size_t i = 0; i < count_; ++i) {
|
||||
current_weight *= learning_rate;
|
||||
weight_sum += current_weight;
|
||||
// Add max_size to prevent underflow.
|
||||
size_t index = (next_index_ + max_size - i - 1) % max_size;
|
||||
weighted_mean += current_weight * samples_[index];
|
||||
}
|
||||
return weighted_mean / weight_sum;
|
||||
}
|
||||
|
||||
// Compute estimated variance. Estimation is more accurate
|
||||
// as the number of samples grows.
|
||||
double ComputeVariance() const {
|
||||
if (count_ == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
// Var = E[x^2] - (E[x])^2
|
||||
double count_inv = 1.0 / count_;
|
||||
double mean_2 = sum_2_ * count_inv;
|
||||
double mean = sum_ * count_inv;
|
||||
return mean_2 - (mean * mean);
|
||||
}
|
||||
|
||||
private:
|
||||
size_t count_;
|
||||
size_t next_index_;
|
||||
double sum_; // Sum(x) - double to avoid overflow
|
||||
double sum_2_; // Sum(x*x) - double to avoid overflow
|
||||
mutable T max_;
|
||||
mutable bool max_stale_;
|
||||
mutable T min_;
|
||||
mutable bool min_stale_;
|
||||
std::vector<T> samples_;
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(RollingAccumulator);
|
||||
};
|
||||
|
||||
} // namespace rtc
|
||||
|
||||
#endif // WEBRTC_BASE_ROLLINGACCUMULATOR_H_
|
||||
Reference in New Issue
Block a user