Thinning out the Transport class.

Connecting TransportChannelImpls directly to the TransportController,
and removing redundant signal forwarding/state aggregating code from
Transport. This brings us closer to just getting rid of Transport
entirely.

R=pthatcher@webrtc.org

Review URL: https://codereview.webrtc.org/1380563002 .

Cr-Commit-Position: refs/heads/master@{#10120}
This commit is contained in:
Taylor Brandstetter
2015-09-30 10:32:59 -07:00
parent 2b342bf99c
commit c4d3a5d44c
6 changed files with 216 additions and 593 deletions

View File

@ -75,8 +75,6 @@ class DtlsTestClient : public sigslot::has_slots<> {
transport_->SetIceRole(role);
transport_->SetIceTiebreaker(
(role == cricket::ICEROLE_CONTROLLING) ? 1 : 2);
transport_->SignalWritableState.connect(this,
&DtlsTestClient::OnTransportWritableState);
for (int i = 0; i < count; ++i) {
cricket::DtlsTransportChannelWrapper* channel =
@ -193,7 +191,15 @@ class DtlsTestClient : public sigslot::has_slots<> {
}
bool all_channels_writable() const {
return transport_->all_channels_writable();
if (channels_.empty()) {
return false;
}
for (cricket::DtlsTransportChannelWrapper* channel : channels_) {
if (!channel->writable()) {
return false;
}
}
return true;
}
void CheckRole(rtc::SSLRole role) {
@ -313,11 +319,6 @@ class DtlsTestClient : public sigslot::has_slots<> {
return (num_matches < ((static_cast<int>(size) - 5) / 10));
}
// Transport callbacks
void OnTransportWritableState(cricket::Transport* transport) {
LOG(LS_INFO) << name_ << ": is writable";
}
// Transport channel callbacks
void OnTransportChannelWritableState(cricket::TransportChannel* channel) {
LOG(LS_INFO) << name_ << ": Channel '" << channel->component()

View File

@ -17,7 +17,7 @@
#include "webrtc/p2p/base/port.h"
#include "webrtc/p2p/base/transportchannelimpl.h"
#include "webrtc/base/bind.h"
#include "webrtc/base/common.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
namespace cricket {
@ -69,59 +69,22 @@ Transport::Transport(const std::string& name, PortAllocator* allocator)
: name_(name), allocator_(allocator) {}
Transport::~Transport() {
ASSERT(channels_destroyed_);
}
bool Transport::AllChannelsCompleted() const {
// We aren't completed until at least one channel is complete, so if there
// are no channels, we aren't complete yet.
if (channels_.empty()) {
LOG(LS_INFO) << name() << " transport is not complete"
<< " because it has no TransportChannels";
return false;
}
// A Transport's ICE process is completed if all of its channels are writable,
// have finished allocating candidates, and have pruned all but one of their
// connections.
for (const auto& iter : channels_) {
const TransportChannelImpl* channel = iter.second.get();
bool complete =
channel->writable() &&
channel->GetState() == TransportChannelState::STATE_COMPLETED &&
channel->GetIceRole() == ICEROLE_CONTROLLING &&
channel->gathering_state() == kIceGatheringComplete;
if (!complete) {
LOG(LS_INFO) << name() << " transport is not complete"
<< " because a channel is still incomplete.";
return false;
}
}
return true;
}
bool Transport::AnyChannelFailed() const {
for (const auto& iter : channels_) {
if (iter.second->GetState() == TransportChannelState::STATE_FAILED) {
return true;
}
}
return false;
RTC_DCHECK(channels_destroyed_);
}
void Transport::SetIceRole(IceRole role) {
ice_role_ = role;
for (auto& iter : channels_) {
iter.second->SetIceRole(ice_role_);
for (const auto& kv : channels_) {
kv.second->SetIceRole(ice_role_);
}
}
bool Transport::GetRemoteSSLCertificate(rtc::SSLCertificate** cert) {
if (channels_.empty())
if (channels_.empty()) {
return false;
}
ChannelMap::iterator iter = channels_.begin();
auto iter = channels_.begin();
return iter->second->GetRemoteSSLCertificate(cert);
}
@ -155,8 +118,8 @@ bool Transport::SetLocalTransportDescription(
local_description_.reset(new TransportDescription(description));
for (auto& iter : channels_) {
ret &= ApplyLocalTransportDescription(iter.second.get(), error_desc);
for (const auto& kv : channels_) {
ret &= ApplyLocalTransportDescription(kv.second, error_desc);
}
if (!ret) {
return false;
@ -186,8 +149,8 @@ bool Transport::SetRemoteTransportDescription(
}
remote_description_.reset(new TransportDescription(description));
for (auto& iter : channels_) {
ret &= ApplyRemoteTransportDescription(iter.second.get(), error_desc);
for (const auto& kv : channels_) {
ret &= ApplyRemoteTransportDescription(kv.second, error_desc);
}
// If PRANSWER/ANSWER is set, we should decide transport protocol type.
@ -202,67 +165,48 @@ bool Transport::SetRemoteTransportDescription(
}
TransportChannelImpl* Transport::CreateChannel(int component) {
TransportChannelImpl* impl;
TransportChannelImpl* channel;
// Create the entry if it does not exist.
bool impl_exists = false;
auto iterator = channels_.find(component);
if (iterator == channels_.end()) {
impl = CreateTransportChannel(component);
iterator = channels_.insert(std::pair<int, ChannelMapEntry>(
component, ChannelMapEntry(impl))).first;
bool channel_exists = false;
auto iter = channels_.find(component);
if (iter == channels_.end()) {
channel = CreateTransportChannel(component);
channels_.insert(std::pair<int, TransportChannelImpl*>(component, channel));
} else {
impl = iterator->second.get();
impl_exists = true;
channel = iter->second;
channel_exists = true;
}
// Increase the ref count.
iterator->second.AddRef();
channels_destroyed_ = false;
if (impl_exists) {
// If this is an existing channel, we should just return it without
// connecting to all the signal again.
return impl;
if (channel_exists) {
// If this is an existing channel, we should just return it.
return channel;
}
// Push down our transport state to the new channel.
impl->SetIceRole(ice_role_);
impl->SetIceTiebreaker(tiebreaker_);
impl->SetIceConfig(ice_config_);
channel->SetIceRole(ice_role_);
channel->SetIceTiebreaker(tiebreaker_);
channel->SetIceConfig(ice_config_);
// TODO(ronghuawu): Change CreateChannel to be able to return error since
// below Apply**Description calls can fail.
if (local_description_)
ApplyLocalTransportDescription(impl, NULL);
ApplyLocalTransportDescription(channel, nullptr);
if (remote_description_)
ApplyRemoteTransportDescription(impl, NULL);
ApplyRemoteTransportDescription(channel, nullptr);
if (local_description_ && remote_description_)
ApplyNegotiatedTransportDescription(impl, NULL);
impl->SignalWritableState.connect(this, &Transport::OnChannelWritableState);
impl->SignalReceivingState.connect(this, &Transport::OnChannelReceivingState);
impl->SignalGatheringState.connect(this, &Transport::OnChannelGatheringState);
impl->SignalCandidateGathered.connect(this,
&Transport::OnChannelCandidateGathered);
impl->SignalRouteChange.connect(this, &Transport::OnChannelRouteChange);
impl->SignalRoleConflict.connect(this, &Transport::OnRoleConflict);
impl->SignalConnectionRemoved.connect(
this, &Transport::OnChannelConnectionRemoved);
ApplyNegotiatedTransportDescription(channel, nullptr);
if (connect_requested_) {
impl->Connect();
if (channels_.size() == 1) {
// If this is the first channel, then indicate that we have started
// connecting.
SignalConnecting(this);
channel->Connect();
}
}
return impl;
return channel;
}
TransportChannelImpl* Transport::GetChannel(int component) {
ChannelMap::iterator iter = channels_.find(component);
return (iter != channels_.end()) ? iter->second.get() : NULL;
auto iter = channels_.find(component);
return (iter != channels_.end()) ? iter->second : nullptr;
}
bool Transport::HasChannels() {
@ -270,32 +214,13 @@ bool Transport::HasChannels() {
}
void Transport::DestroyChannel(int component) {
ChannelMap::iterator iter = channels_.find(component);
auto iter = channels_.find(component);
if (iter == channels_.end())
return;
TransportChannelImpl* impl = NULL;
iter->second.DecRef();
if (!iter->second.ref()) {
impl = iter->second.get();
TransportChannelImpl* channel = iter->second;
channels_.erase(iter);
}
if (connect_requested_ && channels_.empty()) {
// We're no longer attempting to connect.
SignalConnecting(this);
}
if (impl) {
DestroyTransportChannel(impl);
// Need to update aggregate state after destroying a channel,
// for example if it was the only one that wasn't yet writable.
UpdateWritableState();
UpdateReceivingState();
UpdateGatheringState();
MaybeSignalCompleted();
}
DestroyTransportChannel(channel);
}
void Transport::ConnectChannels() {
@ -316,14 +241,11 @@ void Transport::ConnectChannels() {
TransportDescription desc(
std::vector<std::string>(), rtc::CreateRandomString(ICE_UFRAG_LENGTH),
rtc::CreateRandomString(ICE_PWD_LENGTH), ICEMODE_FULL,
CONNECTIONROLE_NONE, NULL, Candidates());
SetLocalTransportDescription(desc, CA_OFFER, NULL);
CONNECTIONROLE_NONE, nullptr, Candidates());
SetLocalTransportDescription(desc, CA_OFFER, nullptr);
}
CallChannels(&TransportChannelImpl::Connect);
if (HasChannels()) {
SignalConnecting(this);
}
}
void Transport::MaybeStartGathering() {
@ -333,24 +255,16 @@ void Transport::MaybeStartGathering() {
}
void Transport::DestroyAllChannels() {
std::vector<TransportChannelImpl*> impls;
for (auto& iter : channels_) {
iter.second.DecRef();
if (!iter.second.ref())
impls.push_back(iter.second.get());
for (const auto& kv : channels_) {
DestroyTransportChannel(kv.second);
}
channels_.clear();
for (TransportChannelImpl* impl : impls) {
DestroyTransportChannel(impl);
}
channels_destroyed_ = true;
}
void Transport::CallChannels(TransportChannelFunc func) {
for (const auto& iter : channels_) {
((iter.second.get())->*func)();
for (const auto& kv : channels_) {
(kv.second->*func)();
}
}
@ -389,13 +303,13 @@ bool Transport::VerifyCandidate(const Candidate& cand, std::string* error) {
bool Transport::GetStats(TransportStats* stats) {
stats->transport_name = name();
stats->channel_stats.clear();
for (auto iter : channels_) {
ChannelMapEntry& entry = iter.second;
for (auto kv : channels_) {
TransportChannelImpl* channel = kv.second;
TransportChannelStats substats;
substats.component = entry->component();
entry->GetSrtpCipher(&substats.srtp_cipher);
entry->GetSslCipher(&substats.ssl_cipher);
if (!entry->GetStats(&substats.connection_infos)) {
substats.component = channel->component();
channel->GetSrtpCipher(&substats.srtp_cipher);
channel->GetSslCipher(&substats.ssl_cipher);
if (!channel->GetStats(&substats.connection_infos)) {
return false;
}
stats->channel_stats.push_back(substats);
@ -418,170 +332,15 @@ bool Transport::AddRemoteCandidates(const std::vector<Candidate>& candidates,
}
}
for (std::vector<Candidate>::const_iterator iter = candidates.begin();
iter != candidates.end();
++iter) {
TransportChannelImpl* channel = GetChannel(iter->component());
if (channel != NULL) {
channel->AddRemoteCandidate(*iter);
for (const Candidate& candidate : candidates) {
TransportChannelImpl* channel = GetChannel(candidate.component());
if (channel != nullptr) {
channel->AddRemoteCandidate(candidate);
}
}
return true;
}
void Transport::OnChannelWritableState(TransportChannel* channel) {
LOG(LS_INFO) << name() << " TransportChannel " << channel->component()
<< " writability changed to " << channel->writable()
<< ". Check if transport is complete.";
UpdateWritableState();
MaybeSignalCompleted();
}
void Transport::OnChannelReceivingState(TransportChannel* channel) {
UpdateReceivingState();
}
TransportState Transport::GetTransportState(TransportStateType state_type) {
bool any = false;
bool all = !channels_.empty();
for (const auto iter : channels_) {
bool b = false;
switch (state_type) {
case TRANSPORT_WRITABLE_STATE:
b = iter.second->writable();
break;
case TRANSPORT_RECEIVING_STATE:
b = iter.second->receiving();
break;
default:
ASSERT(false);
}
any |= b;
all &= b;
}
if (all) {
return TRANSPORT_STATE_ALL;
} else if (any) {
return TRANSPORT_STATE_SOME;
}
return TRANSPORT_STATE_NONE;
}
void Transport::OnChannelGatheringState(TransportChannelImpl* channel) {
ASSERT(channels_.find(channel->component()) != channels_.end());
UpdateGatheringState();
if (gathering_state_ == kIceGatheringComplete) {
// If UpdateGatheringState brought us to kIceGatheringComplete, check if
// our connection state is also "Completed". Otherwise, there's no point in
// checking (since it would only produce log messages).
MaybeSignalCompleted();
}
}
void Transport::OnChannelCandidateGathered(TransportChannelImpl* channel,
const Candidate& candidate) {
// We should never signal peer-reflexive candidates.
if (candidate.type() == PRFLX_PORT_TYPE) {
ASSERT(false);
return;
}
ASSERT(connect_requested_);
std::vector<Candidate> candidates;
candidates.push_back(candidate);
SignalCandidatesGathered(this, candidates);
}
void Transport::OnChannelRouteChange(TransportChannel* channel,
const Candidate& remote_candidate) {
SignalRouteChange(this, remote_candidate.component(), remote_candidate);
}
void Transport::OnRoleConflict(TransportChannelImpl* channel) {
SignalRoleConflict();
}
void Transport::OnChannelConnectionRemoved(TransportChannelImpl* channel) {
LOG(LS_INFO) << name() << " TransportChannel " << channel->component()
<< " connection removed. Check if transport is complete.";
MaybeSignalCompleted();
// Check if the state is now Failed.
// Failed is only available in the Controlling ICE role.
if (channel->GetIceRole() != ICEROLE_CONTROLLING) {
return;
}
// Failed can only occur after candidate gathering has stopped.
if (channel->gathering_state() != kIceGatheringComplete) {
return;
}
if (channel->GetState() == TransportChannelState::STATE_FAILED) {
// A Transport has failed if any of its channels have no remaining
// connections.
SignalFailed(this);
}
}
void Transport::MaybeSignalCompleted() {
if (AllChannelsCompleted()) {
LOG(LS_INFO) << name() << " transport is complete"
<< " because all the channels are complete.";
SignalCompleted(this);
}
// TODO(deadbeef): Should we do anything if we previously were completed,
// but now are not (if, for example, a new remote candidate is added)?
}
void Transport::UpdateGatheringState() {
IceGatheringState new_state = kIceGatheringNew;
bool any_gathering = false;
bool all_complete = !channels_.empty();
for (const auto& kv : channels_) {
any_gathering =
any_gathering || kv.second->gathering_state() != kIceGatheringNew;
all_complete =
all_complete && kv.second->gathering_state() == kIceGatheringComplete;
}
if (all_complete) {
new_state = kIceGatheringComplete;
} else if (any_gathering) {
new_state = kIceGatheringGathering;
}
if (gathering_state_ != new_state) {
gathering_state_ = new_state;
if (gathering_state_ == kIceGatheringGathering) {
LOG(LS_INFO) << "Transport: " << name_ << ", gathering candidates";
} else if (gathering_state_ == kIceGatheringComplete) {
LOG(LS_INFO) << "Transport " << name() << " gathering complete.";
}
SignalGatheringState(this);
}
}
void Transport::UpdateReceivingState() {
TransportState receiving = GetTransportState(TRANSPORT_RECEIVING_STATE);
if (receiving_ != receiving) {
receiving_ = receiving;
SignalReceivingState(this);
}
}
void Transport::UpdateWritableState() {
TransportState writable = GetTransportState(TRANSPORT_WRITABLE_STATE);
LOG(LS_INFO) << name() << " transport writable state changed? " << writable_
<< " => " << writable;
if (writable_ != writable) {
was_writable_ = (writable_ == TRANSPORT_STATE_ALL);
writable_ = writable;
SignalWritableState(this);
}
}
bool Transport::ApplyLocalTransportDescription(TransportChannelImpl* ch,
std::string* error_desc) {
ch->SetIceCredentials(local_description_->ice_ufrag,
@ -623,10 +382,11 @@ bool Transport::NegotiateTransportDescription(ContentAction local_role,
// between future SetRemote/SetLocal invocations and new channel
// creation, we have the negotiation state saved until a new
// negotiation happens.
for (auto& iter : channels_) {
if (!ApplyNegotiatedTransportDescription(iter.second.get(), error_desc))
for (const auto& kv : channels_) {
if (!ApplyNegotiatedTransportDescription(kv.second, error_desc)) {
return false;
}
}
return true;
}

View File

@ -65,21 +65,6 @@ enum IceGatheringState {
kIceGatheringComplete,
};
// For "writable" and "receiving", we need to differentiate between
// none, all, and some.
enum TransportState {
TRANSPORT_STATE_NONE = 0,
TRANSPORT_STATE_SOME,
TRANSPORT_STATE_ALL
};
// When checking transport state, we need to differentiate between
// "writable" or "receiving" check.
enum TransportStateType {
TRANSPORT_WRITABLE_STATE = 0,
TRANSPORT_RECEIVING_STATE
};
// Stats that we can return about the connections for a transport channel.
// TODO(hta): Rename to ConnectionStats
struct ConnectionInfo {
@ -165,37 +150,10 @@ class Transport : public sigslot::has_slots<> {
// Returns the port allocator object for this transport.
PortAllocator* port_allocator() { return allocator_; }
// Returns the states of this manager. These bits are the ORs
// of the corresponding bits on the managed channels. Each time one of these
// states changes, a signal is raised.
// TODO(honghaiz): Replace uses of writable() with any_channels_writable().
bool writable() const { return any_channels_writable(); }
bool was_writable() const { return was_writable_; }
bool any_channels_writable() const {
return (writable_ == TRANSPORT_STATE_SOME ||
writable_ == TRANSPORT_STATE_ALL);
}
bool all_channels_writable() const {
return (writable_ == TRANSPORT_STATE_ALL);
}
bool any_channel_receiving() const {
return (receiving_ == TRANSPORT_STATE_SOME ||
receiving_ == TRANSPORT_STATE_ALL);
}
bool ready_for_remote_candidates() const {
return local_description_set_ && remote_description_set_;
}
bool AllChannelsCompleted() const;
bool AnyChannelFailed() const;
IceGatheringState gathering_state() const { return gathering_state_; }
sigslot::signal1<Transport*> SignalWritableState;
sigslot::signal1<Transport*> SignalReceivingState;
sigslot::signal1<Transport*> SignalCompleted;
sigslot::signal1<Transport*> SignalFailed;
// Returns whether the client has requested the channels to connect.
bool connect_requested() const { return connect_requested_; }
@ -229,6 +187,7 @@ class Transport : public sigslot::has_slots<> {
return (NULL != GetChannel(component));
}
bool HasChannels();
void DestroyChannel(int component);
// Set the local TransportDescription to be used by TransportChannels.
@ -241,10 +200,8 @@ class Transport : public sigslot::has_slots<> {
ContentAction action,
std::string* error_desc);
// Tells all current and future channels to start connecting. When the first
// channel begins connecting, the following signal is raised.
// Tells all current and future channels to start connecting.
void ConnectChannels();
sigslot::signal1<Transport*> SignalConnecting;
// Tells channels to start gathering candidates if necessary.
// Should be called after ConnectChannels() has been called at least once,
@ -260,12 +217,6 @@ class Transport : public sigslot::has_slots<> {
bool GetStats(TransportStats* stats);
sigslot::signal1<Transport*> SignalGatheringState;
// Handles sending of ready candidates and receiving of remote candidates.
sigslot::signal2<Transport*, const std::vector<Candidate>&>
SignalCandidatesGathered;
// Called when one or more candidates are ready from the remote peer.
bool AddRemoteCandidates(const std::vector<Candidate>& candidates,
std::string* error);
@ -275,14 +226,6 @@ class Transport : public sigslot::has_slots<> {
virtual bool VerifyCandidate(const Candidate& candidate,
std::string* error);
// Signals when the best connection for a channel changes.
sigslot::signal3<Transport*,
int, // component
const Candidate&> SignalRouteChange;
// Forwards the signal from TransportChannel to BaseSession.
sigslot::signal0<> SignalRoleConflict;
virtual bool GetSslRole(rtc::SSLRole* ssl_role) const { return false; }
// Must be called before channel is starting to connect.
@ -335,74 +278,16 @@ class Transport : public sigslot::has_slots<> {
std::string* error_desc);
private:
struct ChannelMapEntry {
ChannelMapEntry() : impl_(NULL), ref_(0) {}
explicit ChannelMapEntry(TransportChannelImpl *impl)
: impl_(impl),
ref_(0) {
}
void AddRef() { ++ref_; }
void DecRef() {
ASSERT(ref_ > 0);
--ref_;
}
int ref() const { return ref_; }
TransportChannelImpl* get() const { return impl_; }
TransportChannelImpl* operator->() const { return impl_; }
private:
TransportChannelImpl* impl_;
int ref_;
};
// Candidate component => ChannelMapEntry
typedef std::map<int, ChannelMapEntry> ChannelMap;
// Called when the write state of a channel changes.
void OnChannelWritableState(TransportChannel* channel);
// Called when the receiving state of a channel changes.
void OnChannelReceivingState(TransportChannel* channel);
// Called when a channel starts finishes gathering candidates
void OnChannelGatheringState(TransportChannelImpl* channel);
// Called when a candidate is ready from channel.
void OnChannelCandidateGathered(TransportChannelImpl* channel,
const Candidate& candidate);
void OnChannelRouteChange(TransportChannel* channel,
const Candidate& remote_candidate);
// Called when there is ICE role change.
void OnRoleConflict(TransportChannelImpl* channel);
// Called when the channel removes a connection.
void OnChannelConnectionRemoved(TransportChannelImpl* channel);
// Candidate component => TransportChannelImpl*
typedef std::map<int, TransportChannelImpl*> ChannelMap;
// Helper function that invokes the given function on every channel.
typedef void (TransportChannelImpl::* TransportChannelFunc)();
void CallChannels(TransportChannelFunc func);
// Computes the AND and OR of the channel's read/write/receiving state
// (argument picks the operation).
TransportState GetTransportState(TransportStateType type);
// Sends SignalCompleted if we are now in that state.
void MaybeSignalCompleted();
// Sends SignalGatheringState if gathering state changed
void UpdateGatheringState();
void UpdateWritableState();
void UpdateReceivingState();
const std::string name_;
PortAllocator* const allocator_;
bool channels_destroyed_ = false;
TransportState readable_ = TRANSPORT_STATE_NONE;
TransportState writable_ = TRANSPORT_STATE_NONE;
TransportState receiving_ = TRANSPORT_STATE_NONE;
bool was_writable_ = false;
bool connect_requested_ = false;
IceRole ice_role_ = ICEROLE_UNKNOWN;
uint64 tiebreaker_ = 0;
@ -412,7 +297,6 @@ class Transport : public sigslot::has_slots<> {
rtc::scoped_ptr<TransportDescription> remote_description_;
bool local_description_set_ = false;
bool remote_description_set_ = false;
IceGatheringState gathering_state_ = kIceGatheringNew;
ChannelMap channels_;

View File

@ -34,15 +34,7 @@ class TransportTest : public testing::Test,
public sigslot::has_slots<> {
public:
TransportTest()
: transport_(new FakeTransport("test content name")),
channel_(NULL),
connecting_signalled_(false),
completed_(false),
failed_(false) {
transport_->SignalConnecting.connect(this, &TransportTest::OnConnecting);
transport_->SignalCompleted.connect(this, &TransportTest::OnCompleted);
transport_->SignalFailed.connect(this, &TransportTest::OnFailed);
}
: transport_(new FakeTransport("test content name")), channel_(NULL) {}
~TransportTest() {
transport_->DestroyAllChannels();
}
@ -60,30 +52,10 @@ class TransportTest : public testing::Test,
}
protected:
void OnConnecting(Transport* transport) {
connecting_signalled_ = true;
}
void OnCompleted(Transport* transport) {
completed_ = true;
}
void OnFailed(Transport* transport) {
failed_ = true;
}
rtc::scoped_ptr<FakeTransport> transport_;
FakeTransportChannel* channel_;
bool connecting_signalled_;
bool completed_;
bool failed_;
};
// Test that calling ConnectChannels triggers an OnConnecting signal.
TEST_F(TransportTest, TestConnectChannelsDoesSignal) {
EXPECT_TRUE(SetupChannel());
transport_->ConnectChannels();
EXPECT_TRUE(connecting_signalled_);
}
// This test verifies channels are created with proper ICE
// role, tiebreaker and remote ice mode and credentials after offer and
// answer negotiations.
@ -200,41 +172,6 @@ TEST_F(TransportTest, TestIceControllingOnIceRestartIfRemoteIsIceLite) {
EXPECT_EQ(cricket::ICEROLE_CONTROLLING, channel_->GetIceRole());
}
// This test verifies that the Completed and Failed states can be reached.
TEST_F(TransportTest, TestChannelCompletedAndFailed) {
transport_->SetIceRole(cricket::ICEROLE_CONTROLLING);
cricket::TransportDescription local_desc(kIceUfrag1, kIcePwd1);
ASSERT_TRUE(transport_->SetLocalTransportDescription(local_desc,
cricket::CA_OFFER,
NULL));
EXPECT_TRUE(SetupChannel());
cricket::TransportDescription remote_desc(kIceUfrag1, kIcePwd1);
ASSERT_TRUE(transport_->SetRemoteTransportDescription(remote_desc,
cricket::CA_ANSWER,
NULL));
channel_->SetConnectionCount(2);
channel_->SetCandidatesGatheringComplete();
channel_->SetWritable(true);
EXPECT_TRUE_WAIT(transport_->all_channels_writable(), 100);
// ICE is not yet completed because there is still more than one connection.
EXPECT_FALSE(completed_);
EXPECT_FALSE(failed_);
// When the connection count drops to 1, SignalCompleted should be emitted,
// and completed() should be true.
channel_->SetConnectionCount(1);
EXPECT_TRUE_WAIT(completed_, 100);
completed_ = false;
// When the connection count drops to 0, SignalFailed should be emitted, and
// completed() should be false.
channel_->SetConnectionCount(0);
EXPECT_TRUE_WAIT(failed_, 100);
EXPECT_FALSE(completed_);
}
// Tests channel role is reversed after receiving ice-lite from remote.
TEST_F(TransportTest, TestSetRemoteIceLiteInOffer) {
transport_->SetIceRole(cricket::ICEROLE_CONTROLLED);
@ -293,23 +230,3 @@ TEST_F(TransportTest, TestGetStats) {
EXPECT_EQ(1, stats.channel_stats[0].component);
}
TEST_F(TransportTest, TestReceivingStateChange) {
ASSERT_TRUE(SetupChannel());
channel_->SetConnectionCount(1);
transport_->ConnectChannels();
EXPECT_FALSE(transport_->any_channel_receiving());
channel_->SetReceiving(true);
EXPECT_TRUE_WAIT(transport_->any_channel_receiving(), 100);
FakeTransportChannel* channel2 = CreateChannel(2);
channel2->SetReceiving(true);
EXPECT_TRUE_WAIT(transport_->any_channel_receiving(), 100);
channel2->SetReceiving(false);
EXPECT_TRUE_WAIT(transport_->any_channel_receiving(), 100);
// After both channels become not receiving, the transport receiving state
// becomes TRANSPORT_STATE_NONE.
channel_->SetReceiving(false);
EXPECT_TRUE_WAIT(!transport_->any_channel_receiving(), 100);
}

View File

@ -10,11 +10,14 @@
#include "webrtc/p2p/base/transportcontroller.h"
#include <algorithm>
#include "webrtc/base/bind.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/thread.h"
#include "webrtc/p2p/base/dtlstransport.h"
#include "webrtc/p2p/base/p2ptransport.h"
#include "webrtc/p2p/base/port.h"
namespace cricket {
@ -140,8 +143,32 @@ TransportChannel* TransportController::CreateTransportChannel_w(
int component) {
RTC_DCHECK(worker_thread_->IsCurrent());
auto it = FindChannel_w(transport_name, component);
if (it != channels_.end()) {
// Channel already exists; increment reference count and return.
it->AddRef();
return it->get();
}
// Need to create a new channel.
Transport* transport = GetOrCreateTransport_w(transport_name);
return transport->CreateChannel(component);
TransportChannelImpl* channel = transport->CreateChannel(component);
channel->SignalWritableState.connect(
this, &TransportController::OnChannelWritableState_w);
channel->SignalReceivingState.connect(
this, &TransportController::OnChannelReceivingState_w);
channel->SignalGatheringState.connect(
this, &TransportController::OnChannelGatheringState_w);
channel->SignalCandidateGathered.connect(
this, &TransportController::OnChannelCandidateGathered_w);
channel->SignalRoleConflict.connect(
this, &TransportController::OnChannelRoleConflict_w);
channel->SignalConnectionRemoved.connect(
this, &TransportController::OnChannelConnectionRemoved_w);
channels_.insert(channels_.end(), RefCountedChannel(channel))->AddRef();
// Adding a channel could cause aggregate state to change.
UpdateAggregateStates_w();
return channel;
}
void TransportController::DestroyTransportChannel_w(
@ -149,18 +176,29 @@ void TransportController::DestroyTransportChannel_w(
int component) {
RTC_DCHECK(worker_thread_->IsCurrent());
Transport* transport = GetTransport_w(transport_name);
if (!transport) {
ASSERT(false);
auto it = FindChannel_w(transport_name, component);
if (it == channels_.end()) {
LOG(LS_WARNING) << "Attempting to delete " << transport_name
<< " TransportChannel " << component
<< ", which doesn't exist.";
return;
}
transport->DestroyChannel(component);
it->DecRef();
if (it->ref() > 0) {
return;
}
channels_.erase(it);
Transport* transport = GetTransport_w(transport_name);
transport->DestroyChannel(component);
// Just as we create a Transport when its first channel is created,
// we delete it when its last channel is deleted.
if (!transport->HasChannels()) {
DestroyTransport_w(transport_name);
}
// Removing a channel could cause aggregate state to change.
UpdateAggregateStates_w();
}
const rtc::scoped_refptr<rtc::RTCCertificate>&
@ -221,6 +259,17 @@ void TransportController::OnMessage(rtc::Message* pmsg) {
}
}
std::vector<TransportController::RefCountedChannel>::iterator
TransportController::FindChannel_w(const std::string& transport_name,
int component) {
return std::find_if(
channels_.begin(), channels_.end(),
[transport_name, component](const RefCountedChannel& channel) {
return channel->transport_name() == transport_name &&
channel->component() == component;
});
}
Transport* TransportController::GetOrCreateTransport_w(
const std::string& transport_name) {
RTC_DCHECK(worker_thread_->IsCurrent());
@ -240,22 +289,6 @@ Transport* TransportController::GetOrCreateTransport_w(
if (certificate_) {
transport->SetLocalCertificate(certificate_);
}
transport->SignalConnecting.connect(
this, &TransportController::OnTransportConnecting_w);
transport->SignalWritableState.connect(
this, &TransportController::OnTransportWritableState_w);
transport->SignalReceivingState.connect(
this, &TransportController::OnTransportReceivingState_w);
transport->SignalCompleted.connect(
this, &TransportController::OnTransportCompleted_w);
transport->SignalFailed.connect(this,
&TransportController::OnTransportFailed_w);
transport->SignalGatheringState.connect(
this, &TransportController::OnTransportGatheringState_w);
transport->SignalCandidatesGathered.connect(
this, &TransportController::OnTransportCandidatesGathered_w);
transport->SignalRoleConflict.connect(
this, &TransportController::OnTransportRoleConflict_w);
transports_[transport_name] = transport;
return transport;
@ -270,8 +303,6 @@ void TransportController::DestroyTransport_w(
delete iter->second;
transports_.erase(transport_name);
}
// Destroying a transport may cause aggregate state to change.
UpdateAggregateStates_w();
}
void TransportController::DestroyAllTransports_w() {
@ -447,49 +478,49 @@ bool TransportController::GetStats_w(const std::string& transport_name,
return transport->GetStats(stats);
}
void TransportController::OnTransportConnecting_w(Transport* transport) {
void TransportController::OnChannelWritableState_w(TransportChannel* channel) {
RTC_DCHECK(worker_thread_->IsCurrent());
LOG(LS_INFO) << channel->transport_name() << " TransportChannel "
<< channel->component() << " writability changed to "
<< channel->writable() << ".";
UpdateAggregateStates_w();
}
void TransportController::OnChannelReceivingState_w(TransportChannel* channel) {
RTC_DCHECK(worker_thread_->IsCurrent());
UpdateAggregateStates_w();
}
void TransportController::OnTransportWritableState_w(Transport* transport) {
void TransportController::OnChannelGatheringState_w(
TransportChannelImpl* channel) {
RTC_DCHECK(worker_thread_->IsCurrent());
UpdateAggregateStates_w();
}
void TransportController::OnTransportReceivingState_w(Transport* transport) {
void TransportController::OnChannelCandidateGathered_w(
TransportChannelImpl* channel,
const Candidate& candidate) {
RTC_DCHECK(worker_thread_->IsCurrent());
UpdateAggregateStates_w();
}
void TransportController::OnTransportCompleted_w(Transport* transport) {
RTC_DCHECK(worker_thread_->IsCurrent());
UpdateAggregateStates_w();
}
void TransportController::OnTransportFailed_w(Transport* transport) {
RTC_DCHECK(worker_thread_->IsCurrent());
UpdateAggregateStates_w();
}
void TransportController::OnTransportGatheringState_w(Transport* transport) {
RTC_DCHECK(worker_thread_->IsCurrent());
UpdateAggregateStates_w();
}
void TransportController::OnTransportCandidatesGathered_w(
Transport* transport,
const std::vector<Candidate>& candidates) {
RTC_DCHECK(worker_thread_->IsCurrent());
CandidatesData* data = new CandidatesData(transport->name(), candidates);
// We should never signal peer-reflexive candidates.
if (candidate.type() == PRFLX_PORT_TYPE) {
RTC_DCHECK(false);
return;
}
std::vector<Candidate> candidates;
candidates.push_back(candidate);
CandidatesData* data =
new CandidatesData(channel->transport_name(), candidates);
signaling_thread_->Post(this, MSG_CANDIDATESGATHERED, data);
}
void TransportController::OnTransportRoleConflict_w() {
void TransportController::OnChannelRoleConflict_w(
TransportChannelImpl* channel) {
RTC_DCHECK(worker_thread_->IsCurrent());
if (ice_role_switch_) {
LOG(LS_WARNING) << "Repeat of role conflict signal from Transport.";
LOG(LS_WARNING)
<< "Repeat of role conflict signal from TransportChannelImpl.";
return;
}
@ -502,6 +533,15 @@ void TransportController::OnTransportRoleConflict_w() {
}
}
void TransportController::OnChannelConnectionRemoved_w(
TransportChannelImpl* channel) {
RTC_DCHECK(worker_thread_->IsCurrent());
LOG(LS_INFO) << channel->transport_name() << " TransportChannel "
<< channel->component()
<< " connection removed. Check if state is complete.";
UpdateAggregateStates_w();
}
void TransportController::UpdateAggregateStates_w() {
RTC_DCHECK(worker_thread_->IsCurrent());
@ -509,24 +549,24 @@ void TransportController::UpdateAggregateStates_w() {
IceGatheringState new_gathering_state = kIceGatheringNew;
bool any_receiving = false;
bool any_failed = false;
bool all_connected = HasChannels_w();
bool all_completed = HasChannels_w();
bool all_connected = !channels_.empty();
bool all_completed = !channels_.empty();
bool any_gathering = false;
bool all_done_gathering = HasChannels_w();
for (const auto& kv : transports_) {
// Ignore transports without channels since they're about to be deleted,
// and their state is meaningless.
if (!kv.second->HasChannels()) {
continue;
}
any_receiving = any_receiving || kv.second->any_channel_receiving();
any_failed = any_failed || kv.second->AnyChannelFailed();
all_connected = all_connected && kv.second->all_channels_writable();
all_completed = all_completed && kv.second->AllChannelsCompleted();
bool all_done_gathering = !channels_.empty();
for (const auto& channel : channels_) {
any_receiving = any_receiving || channel->receiving();
any_failed = any_failed ||
channel->GetState() == TransportChannelState::STATE_FAILED;
all_connected = all_connected && channel->writable();
all_completed =
all_completed && channel->writable() &&
channel->GetState() == TransportChannelState::STATE_COMPLETED &&
channel->GetIceRole() == ICEROLE_CONTROLLING &&
channel->gathering_state() == kIceGatheringComplete;
any_gathering =
any_gathering || kv.second->gathering_state() != kIceGatheringNew;
any_gathering || channel->gathering_state() != kIceGatheringNew;
all_done_gathering = all_done_gathering &&
kv.second->gathering_state() == kIceGatheringComplete;
channel->gathering_state() == kIceGatheringComplete;
}
if (any_failed) {
@ -562,13 +602,4 @@ void TransportController::UpdateAggregateStates_w() {
}
}
bool TransportController::HasChannels_w() {
for (const auto& kv : transports_) {
if (kv.second->HasChannels()) {
return true;
}
}
return false;
}
} // namespace cricket

View File

@ -81,9 +81,14 @@ class TransportController : public sigslot::has_slots<>,
bool ReadyForRemoteCandidates(const std::string& transport_name);
bool GetStats(const std::string& transport_name, TransportStats* stats);
// Creates a channel if it doesn't exist. Otherwise, increments a reference
// count and returns an existing channel.
virtual TransportChannel* CreateTransportChannel_w(
const std::string& transport_name,
int component);
// Decrements a channel's reference count, and destroys the channel if
// nothing is referencing it.
virtual void DestroyTransportChannel_w(const std::string& transport_name,
int component);
@ -121,6 +126,33 @@ class TransportController : public sigslot::has_slots<>,
private:
void OnMessage(rtc::Message* pmsg) override;
// It's the Transport that's currently responsible for creating/destroying
// channels, but the TransportController keeps track of how many external
// objects (BaseChannels) reference each channel.
struct RefCountedChannel {
RefCountedChannel() : impl_(nullptr), ref_(0) {}
explicit RefCountedChannel(TransportChannelImpl* impl)
: impl_(impl), ref_(0) {}
void AddRef() { ++ref_; }
void DecRef() {
ASSERT(ref_ > 0);
--ref_;
}
int ref() const { return ref_; }
TransportChannelImpl* get() const { return impl_; }
TransportChannelImpl* operator->() const { return impl_; }
private:
TransportChannelImpl* impl_;
int ref_;
};
std::vector<RefCountedChannel>::iterator FindChannel_w(
const std::string& transport_name,
int component);
Transport* GetOrCreateTransport_w(const std::string& transport_name);
void DestroyTransport_w(const std::string& transport_name);
void DestroyAllTransports_w();
@ -152,29 +184,27 @@ class TransportController : public sigslot::has_slots<>,
bool GetStats_w(const std::string& transport_name, TransportStats* stats);
// Handlers for signals from Transport.
void OnTransportConnecting_w(Transport* transport);
void OnTransportWritableState_w(Transport* transport);
void OnTransportReceivingState_w(Transport* transport);
void OnTransportCompleted_w(Transport* transport);
void OnTransportFailed_w(Transport* transport);
void OnTransportGatheringState_w(Transport* transport);
void OnTransportCandidatesGathered_w(
Transport* transport,
const std::vector<Candidate>& candidates);
void OnTransportRoleConflict_w();
void OnChannelWritableState_w(TransportChannel* channel);
void OnChannelReceivingState_w(TransportChannel* channel);
void OnChannelGatheringState_w(TransportChannelImpl* channel);
void OnChannelCandidateGathered_w(TransportChannelImpl* channel,
const Candidate& candidate);
void OnChannelRoleConflict_w(TransportChannelImpl* channel);
void OnChannelConnectionRemoved_w(TransportChannelImpl* channel);
void UpdateAggregateStates_w();
bool HasChannels_w();
rtc::Thread* const signaling_thread_ = nullptr;
rtc::Thread* const worker_thread_ = nullptr;
typedef std::map<std::string, Transport*> TransportMap;
TransportMap transports_;
std::vector<RefCountedChannel> channels_;
PortAllocator* const port_allocator_ = nullptr;
rtc::SSLProtocolVersion ssl_max_version_ = rtc::SSL_PROTOCOL_DTLS_10;
// Aggregate state for Transports
// Aggregate state for TransportChannelImpls.
IceConnectionState connection_state_ = kIceConnectionConnecting;
bool receiving_ = false;
IceGatheringState gathering_state_ = kIceGatheringNew;