Add support for stable bitrate target in SvcRateAllocator

Bug: webrtc:10126
Change-Id: I1362d183bb91510db4e2763a779bcdf681d855ef
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/149069
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Erik Språng <sprang@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29066}
This commit is contained in:
Erik Språng
2019-09-04 14:30:57 +02:00
committed by Commit Bot
parent 1067d31022
commit cf9cbf5edb
7 changed files with 429 additions and 136 deletions

View File

@ -444,9 +444,12 @@ rtc_static_library("webrtc_vp9_helpers") {
"../..:webrtc_common", "../..:webrtc_common",
"../../api/video:video_bitrate_allocation", "../../api/video:video_bitrate_allocation",
"../../api/video:video_bitrate_allocator", "../../api/video:video_bitrate_allocator",
"../../api/video:video_codec_constants",
"../../api/video_codecs:video_codecs_api", "../../api/video_codecs:video_codecs_api",
"../../common_video", "../../common_video",
"../../rtc_base:checks", "../../rtc_base:checks",
"../../rtc_base/experiments:stable_target_rate_experiment",
"//third_party/abseil-cpp/absl/container:inlined_vector",
] ]
} }

View File

@ -14,10 +14,13 @@
#include <cmath> #include <cmath>
#include <cstddef> #include <cstddef>
#include <numeric> #include <numeric>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
namespace webrtc { namespace webrtc {
namespace {
const float kSpatialLayeringRateScalingFactor = 0.55f; const float kSpatialLayeringRateScalingFactor = 0.55f;
const float kTemporalLayeringRateScalingFactor = 0.55f; const float kTemporalLayeringRateScalingFactor = 0.55f;
@ -40,40 +43,43 @@ static size_t GetNumActiveSpatialLayers(const VideoCodec& codec) {
return num_spatial_layers; return num_spatial_layers;
} }
static bool AdjustAndVerify(const VideoCodec& codec, std::vector<DataRate> AdjustAndVerify(
std::vector<size_t>* spatial_layer_bitrate_bps) { const VideoCodec& codec,
bool enough_bitrate = true; const std::vector<DataRate>& spatial_layer_rates) {
size_t excess_rate = 0; std::vector<DataRate> adjusted_spatial_layer_rates;
for (size_t sl_idx = 0; // Keep track of rate that couldn't be applied to the previous layer due to
sl_idx < spatial_layer_bitrate_bps->size() && enough_bitrate; ++sl_idx) { // max bitrate constraint, try to pass it forward to the next one.
RTC_DCHECK_GT(codec.spatialLayers[sl_idx].maxBitrate, 0); DataRate excess_rate = DataRate::Zero();
RTC_DCHECK_GE(codec.spatialLayers[sl_idx].maxBitrate, for (size_t sl_idx = 0; sl_idx < spatial_layer_rates.size(); ++sl_idx) {
codec.spatialLayers[sl_idx].minBitrate); DataRate min_rate = DataRate::kbps(codec.spatialLayers[sl_idx].minBitrate);
DataRate max_rate = DataRate::kbps(codec.spatialLayers[sl_idx].maxBitrate);
const size_t min_bitrate_bps = DataRate layer_rate = spatial_layer_rates[sl_idx] + excess_rate;
codec.spatialLayers[sl_idx].minBitrate * 1000; if (layer_rate < min_rate) {
const size_t max_bitrate_bps = // Not enough rate to reach min bitrate for desired number of layers,
codec.spatialLayers[sl_idx].maxBitrate * 1000; // abort allocation.
if (spatial_layer_rates.size() == 1) {
spatial_layer_bitrate_bps->at(sl_idx) += excess_rate; return spatial_layer_rates;
if (spatial_layer_bitrate_bps->at(sl_idx) < max_bitrate_bps) { }
excess_rate = 0; return adjusted_spatial_layer_rates;
} else {
excess_rate = spatial_layer_bitrate_bps->at(sl_idx) - max_bitrate_bps;
spatial_layer_bitrate_bps->at(sl_idx) = max_bitrate_bps;
} }
size_t bitrate_bps = spatial_layer_bitrate_bps->at(sl_idx); if (layer_rate <= max_rate) {
enough_bitrate = (bitrate_bps >= min_bitrate_bps); excess_rate = DataRate::Zero();
adjusted_spatial_layer_rates.push_back(layer_rate);
} else {
excess_rate = layer_rate - max_rate;
adjusted_spatial_layer_rates.push_back(max_rate);
}
} }
return enough_bitrate; return adjusted_spatial_layer_rates;
} }
static std::vector<size_t> SplitBitrate(size_t num_layers, static std::vector<DataRate> SplitBitrate(size_t num_layers,
size_t total_bitrate, DataRate total_bitrate,
float rate_scaling_factor) { float rate_scaling_factor) {
std::vector<size_t> bitrates; std::vector<DataRate> bitrates;
double denominator = 0.0; double denominator = 0.0;
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) { for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
@ -86,21 +92,89 @@ static std::vector<size_t> SplitBitrate(size_t num_layers,
numerator /= rate_scaling_factor; numerator /= rate_scaling_factor;
} }
const size_t sum = std::accumulate(bitrates.begin(), bitrates.end(), 0); const DataRate sum =
// Ensure the sum of split bitrates doesn't exceed the total bitrate. std::accumulate(bitrates.begin(), bitrates.end(), DataRate::Zero());
RTC_DCHECK_LE(sum, total_bitrate);
// Keep the sum of split bitrates equal to the total bitrate by adding bits, // Keep the sum of split bitrates equal to the total bitrate by adding or
// which were lost due to rounding, to the latest layer. // subtracting bits, which were lost due to rounding, to the latest layer.
bitrates.back() += total_bitrate - sum; if (total_bitrate > sum) {
bitrates.back() += total_bitrate - sum;
} else if (total_bitrate < sum) {
bitrates.back() -= sum - total_bitrate;
}
return bitrates; return bitrates;
} }
SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec) : codec_(codec) { // Returns the minimum bitrate needed for |num_active_layers| spatial layers to
// become active using the configuration specified by |codec|.
DataRate FindLayerTogglingThreshold(const VideoCodec& codec,
size_t num_active_layers) {
if (num_active_layers == 1) {
return DataRate::kbps(codec.spatialLayers[0].minBitrate);
}
if (codec.mode == VideoCodecMode::kRealtimeVideo) {
DataRate lower_bound = DataRate::Zero();
DataRate upper_bound = DataRate::Zero();
if (num_active_layers > 1) {
for (size_t i = 0; i < num_active_layers - 1; ++i) {
lower_bound += DataRate::kbps(codec.spatialLayers[i].minBitrate);
upper_bound += DataRate::kbps(codec.spatialLayers[i].maxBitrate);
}
}
upper_bound +=
DataRate::kbps(codec.spatialLayers[num_active_layers - 1].minBitrate);
// Do a binary search until upper and lower bound is the highest bitrate for
// |num_active_layers| - 1 layers and lowest bitrate for |num_active_layers|
// layers respectively.
while (upper_bound - lower_bound > DataRate::bps(1)) {
DataRate try_rate = (lower_bound + upper_bound) / 2;
if (AdjustAndVerify(codec,
SplitBitrate(num_active_layers, try_rate,
kSpatialLayeringRateScalingFactor))
.size() == num_active_layers) {
upper_bound = try_rate;
} else {
lower_bound = try_rate;
}
}
return upper_bound;
} else {
DataRate toggling_rate = DataRate::Zero();
for (size_t i = 0; i < num_active_layers - 1; ++i) {
toggling_rate += DataRate::kbps(codec.spatialLayers[i].targetBitrate);
}
toggling_rate +=
DataRate::kbps(codec.spatialLayers[num_active_layers - 1].minBitrate);
return toggling_rate;
}
}
} // namespace
SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec)
: codec_(codec),
experiment_settings_(StableTargetRateExperiment::ParseFromFieldTrials()),
cumulative_layer_start_bitrates_(GetLayerStartBitrates(codec)),
last_active_layer_count_(0) {
RTC_DCHECK_EQ(codec.codecType, kVideoCodecVP9); RTC_DCHECK_EQ(codec.codecType, kVideoCodecVP9);
RTC_DCHECK_GT(codec.VP9().numberOfSpatialLayers, 0u); RTC_DCHECK_GT(codec.VP9().numberOfSpatialLayers, 0u);
RTC_DCHECK_GT(codec.VP9().numberOfTemporalLayers, 0u); RTC_DCHECK_GT(codec.VP9().numberOfTemporalLayers, 0u);
for (size_t layer_idx = 0; layer_idx < codec.VP9().numberOfSpatialLayers;
++layer_idx) {
// Verify min <= target <= max.
if (codec.spatialLayers[layer_idx].active) {
RTC_DCHECK_GT(codec.spatialLayers[layer_idx].maxBitrate, 0);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
codec.spatialLayers[layer_idx].minBitrate);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].targetBitrate,
codec.spatialLayers[layer_idx].minBitrate);
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
codec.spatialLayers[layer_idx].targetBitrate);
}
}
} }
VideoBitrateAllocation SvcRateAllocator::Allocate( VideoBitrateAllocation SvcRateAllocator::Allocate(
@ -123,50 +197,76 @@ VideoBitrateAllocation SvcRateAllocator::Allocate(
return VideoBitrateAllocation(); // All layers are deactivated. return VideoBitrateAllocation(); // All layers are deactivated.
} }
if (codec_.mode == VideoCodecMode::kRealtimeVideo) { // Figure out how many spatial layers should be active.
return GetAllocationNormalVideo(total_bitrate.bps(), num_spatial_layers); if (experiment_settings_.IsEnabled() &&
parameters.stable_bitrate > DataRate::Zero()) {
double hysteresis_factor = 1.0;
if (codec_.mode == VideoCodecMode::kScreensharing) {
hysteresis_factor =
experiment_settings_.GetScreenshareHysteresisFactor().value_or(
hysteresis_factor);
} else {
hysteresis_factor =
experiment_settings_.GetVideoHysteresisFactor().value_or(
hysteresis_factor);
}
DataRate stable_rate =
std::min(parameters.total_bitrate, parameters.stable_bitrate);
// First check if bitrate has grown large enough to enable new layers.
size_t num_enabled_with_hysteresis =
FindNumEnabledLayers(stable_rate / hysteresis_factor);
if (num_enabled_with_hysteresis >= last_active_layer_count_) {
num_spatial_layers = num_enabled_with_hysteresis;
} else {
// We could not enable new layers, check if any should be disabled.
num_spatial_layers =
std::min(last_active_layer_count_, FindNumEnabledLayers(stable_rate));
}
} else { } else {
return GetAllocationScreenSharing(total_bitrate.bps(), num_spatial_layers); num_spatial_layers = FindNumEnabledLayers(parameters.total_bitrate);
}
last_active_layer_count_ = num_spatial_layers;
if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
return GetAllocationNormalVideo(total_bitrate, num_spatial_layers);
} else {
return GetAllocationScreenSharing(total_bitrate, num_spatial_layers);
} }
} }
VideoBitrateAllocation SvcRateAllocator::GetAllocationNormalVideo( VideoBitrateAllocation SvcRateAllocator::GetAllocationNormalVideo(
uint32_t total_bitrate_bps, DataRate total_bitrate,
size_t num_spatial_layers) const { size_t num_spatial_layers) const {
std::vector<size_t> spatial_layer_bitrate_bps; std::vector<DataRate> spatial_layer_rates;
if (num_spatial_layers == 0) {
// Distribute total bitrate across spatial layers. If there is not enough // Not enough rate for even the base layer. Force allocation at the total
// bitrate to provide all layers with at least minimum required bitrate // bitrate anyway.
// then number of layers is reduced by one and distribution is repeated num_spatial_layers = 1;
// until that condition is met or if number of layers is reduced to one. spatial_layer_rates.push_back(total_bitrate);
for (;; --num_spatial_layers) { } else {
spatial_layer_bitrate_bps = spatial_layer_rates = AdjustAndVerify(
SplitBitrate(num_spatial_layers, total_bitrate_bps, codec_, SplitBitrate(num_spatial_layers, total_bitrate,
kSpatialLayeringRateScalingFactor); kSpatialLayeringRateScalingFactor));
RTC_DCHECK_EQ(spatial_layer_rates.size(), num_spatial_layers);
const bool enough_bitrate =
AdjustAndVerify(codec_, &spatial_layer_bitrate_bps);
if (enough_bitrate || num_spatial_layers == 1) {
break;
}
} }
VideoBitrateAllocation bitrate_allocation; VideoBitrateAllocation bitrate_allocation;
const size_t num_temporal_layers = codec_.VP9().numberOfTemporalLayers; const size_t num_temporal_layers = codec_.VP9().numberOfTemporalLayers;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) { for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
std::vector<size_t> temporal_layer_bitrate_bps = std::vector<DataRate> temporal_layer_rates =
SplitBitrate(num_temporal_layers, spatial_layer_bitrate_bps[sl_idx], SplitBitrate(num_temporal_layers, spatial_layer_rates[sl_idx],
kTemporalLayeringRateScalingFactor); kTemporalLayeringRateScalingFactor);
// Distribute rate across temporal layers. Allocate more bits to lower // Distribute rate across temporal layers. Allocate more bits to lower
// layers since they are used for prediction of higher layers and their // layers since they are used for prediction of higher layers and their
// references are far apart. // references are far apart.
if (num_temporal_layers == 1) { if (num_temporal_layers == 1) {
bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[0]); bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_rates[0].bps());
} else if (num_temporal_layers == 2) { } else if (num_temporal_layers == 2) {
bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[1]); bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_rates[1].bps());
bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_bitrate_bps[0]); bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_rates[0].bps());
} else { } else {
RTC_CHECK_EQ(num_temporal_layers, 3); RTC_CHECK_EQ(num_temporal_layers, 3);
// In case of three temporal layers the high layer has two frames and the // In case of three temporal layers the high layer has two frames and the
@ -174,9 +274,9 @@ VideoBitrateAllocation SvcRateAllocator::GetAllocationNormalVideo(
// layer frames). Thus high layer requires more bits (comparing pure // layer frames). Thus high layer requires more bits (comparing pure
// bitrate of layer, excluding bitrate of base layers) to keep quality on // bitrate of layer, excluding bitrate of base layers) to keep quality on
// par with lower layers. // par with lower layers.
bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[2]); bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_rates[2].bps());
bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_bitrate_bps[0]); bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_rates[0].bps());
bitrate_allocation.SetBitrate(sl_idx, 2, temporal_layer_bitrate_bps[1]); bitrate_allocation.SetBitrate(sl_idx, 2, temporal_layer_rates[1].bps());
} }
} }
@ -187,87 +287,98 @@ VideoBitrateAllocation SvcRateAllocator::GetAllocationNormalVideo(
// between min and max bitrate, and all others will have exactly target // between min and max bitrate, and all others will have exactly target
// bit-rate allocated. // bit-rate allocated.
VideoBitrateAllocation SvcRateAllocator::GetAllocationScreenSharing( VideoBitrateAllocation SvcRateAllocator::GetAllocationScreenSharing(
uint32_t total_bitrate_bps, DataRate total_bitrate,
size_t num_spatial_layers) const { size_t num_spatial_layers) const {
if (num_spatial_layers == 0 || if (num_spatial_layers == 0 ||
total_bitrate_bps < codec_.spatialLayers[0].minBitrate * 1000) { total_bitrate < DataRate::kbps(codec_.spatialLayers[0].minBitrate)) {
return VideoBitrateAllocation(); return VideoBitrateAllocation();
} }
VideoBitrateAllocation bitrate_allocation; VideoBitrateAllocation bitrate_allocation;
size_t left_bitrate_bps = total_bitrate_bps; DataRate allocated_rate = DataRate::Zero();
DataRate top_layer_rate = DataRate::Zero();
size_t sl_idx; size_t sl_idx;
for (sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) { for (sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
const size_t min_bitrate_bps = const DataRate min_rate =
codec_.spatialLayers[sl_idx].minBitrate * 1000; DataRate::kbps(codec_.spatialLayers[sl_idx].minBitrate);
const size_t target_bitrate_bps = const DataRate target_rate =
codec_.spatialLayers[sl_idx].targetBitrate * 1000; DataRate::kbps(codec_.spatialLayers[sl_idx].targetBitrate);
RTC_DCHECK_LE(min_bitrate_bps, target_bitrate_bps);
const size_t bitrate_bps = std::min(left_bitrate_bps, target_bitrate_bps); if (allocated_rate + min_rate > total_bitrate) {
if (bitrate_bps >= min_bitrate_bps) { // Use stable rate to determine if layer should be enabled.
bitrate_allocation.SetBitrate(sl_idx, 0, bitrate_bps);
} else {
break; break;
} }
left_bitrate_bps -= bitrate_bps; top_layer_rate = std::min(target_rate, total_bitrate - allocated_rate);
bitrate_allocation.SetBitrate(sl_idx, 0, top_layer_rate.bps());
allocated_rate += top_layer_rate;
} }
if (left_bitrate_bps > 0 && sl_idx > 0) { if (sl_idx > 0 && total_bitrate - allocated_rate > DataRate::Zero()) {
// Add leftover to the last allocated layer. // Add leftover to the last allocated layer.
const size_t max_bitrate_bps = top_layer_rate =
codec_.spatialLayers[sl_idx - 1].maxBitrate * 1000; std::min(top_layer_rate + (total_bitrate - allocated_rate),
DataRate::kbps(codec_.spatialLayers[sl_idx - 1].maxBitrate));
const size_t bitrate_bps = std::min( bitrate_allocation.SetBitrate(sl_idx - 1, 0, top_layer_rate.bps());
bitrate_allocation.GetBitrate(sl_idx - 1, 0) + left_bitrate_bps,
max_bitrate_bps);
bitrate_allocation.SetBitrate(sl_idx - 1, 0, bitrate_bps);
} }
return bitrate_allocation; return bitrate_allocation;
} }
uint32_t SvcRateAllocator::GetMaxBitrateBps(const VideoCodec& codec) { size_t SvcRateAllocator::FindNumEnabledLayers(DataRate target_rate) const {
if (cumulative_layer_start_bitrates_.empty()) {
return 0;
}
size_t num_enabled_layers = 0;
for (DataRate start_rate : cumulative_layer_start_bitrates_) {
// First layer is always enabled.
if (num_enabled_layers == 0 || start_rate <= target_rate) {
++num_enabled_layers;
} else {
break;
}
}
return num_enabled_layers;
}
DataRate SvcRateAllocator::GetMaxBitrate(const VideoCodec& codec) {
const size_t num_spatial_layers = GetNumActiveSpatialLayers(codec); const size_t num_spatial_layers = GetNumActiveSpatialLayers(codec);
uint32_t max_bitrate_kbps = 0; DataRate max_bitrate = DataRate::Zero();
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) { for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
max_bitrate_kbps += codec.spatialLayers[sl_idx].maxBitrate; max_bitrate += DataRate::kbps(codec.spatialLayers[sl_idx].maxBitrate);
} }
if (codec.maxBitrate != 0) { if (codec.maxBitrate != 0) {
max_bitrate_kbps = std::min(max_bitrate_kbps, codec.maxBitrate); max_bitrate = std::min(max_bitrate, DataRate::kbps(codec.maxBitrate));
} }
return max_bitrate_kbps * 1000; return max_bitrate;
} }
uint32_t SvcRateAllocator::GetPaddingBitrateBps(const VideoCodec& codec) { DataRate SvcRateAllocator::GetPaddingBitrate(const VideoCodec& codec) {
const size_t num_spatial_layers = GetNumActiveSpatialLayers(codec); auto start_bitrate = GetLayerStartBitrates(codec);
if (num_spatial_layers == 0) { if (start_bitrate.empty()) {
return 0; // All layers are deactivated. return DataRate::Zero(); // All layers are deactivated.
} }
if (codec.mode == VideoCodecMode::kRealtimeVideo) { return start_bitrate.back();
float scale_factor = 0.0; }
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
scale_factor += std::pow(kSpatialLayeringRateScalingFactor, sl_idx); absl::InlinedVector<DataRate, kMaxSpatialLayers>
} SvcRateAllocator::GetLayerStartBitrates(const VideoCodec& codec) {
uint32_t min_bitrate_bps = absl::InlinedVector<DataRate, kMaxSpatialLayers> start_bitrates;
codec.spatialLayers[num_spatial_layers - 1].minBitrate * 1000; size_t num_layers = GetNumActiveSpatialLayers(codec);
return static_cast<uint32_t>(min_bitrate_bps * scale_factor); DataRate last_rate = DataRate::Zero();
for (size_t i = 1; i <= num_layers; ++i) {
DataRate layer_toggling_rate = FindLayerTogglingThreshold(codec, i);
start_bitrates.push_back(layer_toggling_rate);
RTC_DCHECK_LE(last_rate, layer_toggling_rate);
last_rate = layer_toggling_rate;
} }
return start_bitrates;
RTC_DCHECK(codec.mode == VideoCodecMode::kScreensharing);
uint32_t min_bitrate_kbps = 0;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers - 1; ++sl_idx) {
min_bitrate_kbps += codec.spatialLayers[sl_idx].targetBitrate;
}
min_bitrate_kbps += codec.spatialLayers[num_spatial_layers - 1].minBitrate;
return min_bitrate_kbps * 1000;
} }
} // namespace webrtc } // namespace webrtc

View File

@ -14,11 +14,12 @@
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <vector> #include "absl/container/inlined_vector.h"
#include "api/video/video_bitrate_allocation.h" #include "api/video/video_bitrate_allocation.h"
#include "api/video/video_bitrate_allocator.h" #include "api/video/video_bitrate_allocator.h"
#include "api/video/video_codec_constants.h"
#include "api/video_codecs/video_codec.h" #include "api/video_codecs/video_codec.h"
#include "rtc_base/experiments/stable_target_rate_experiment.h"
namespace webrtc { namespace webrtc {
@ -29,19 +30,29 @@ class SvcRateAllocator : public VideoBitrateAllocator {
VideoBitrateAllocation Allocate( VideoBitrateAllocation Allocate(
VideoBitrateAllocationParameters parameters) override; VideoBitrateAllocationParameters parameters) override;
static uint32_t GetMaxBitrateBps(const VideoCodec& codec); static DataRate GetMaxBitrate(const VideoCodec& codec);
static uint32_t GetPaddingBitrateBps(const VideoCodec& codec); static DataRate GetPaddingBitrate(const VideoCodec& codec);
static absl::InlinedVector<DataRate, kMaxSpatialLayers> GetLayerStartBitrates(
const VideoCodec& codec);
private: private:
VideoBitrateAllocation GetAllocationNormalVideo( VideoBitrateAllocation GetAllocationNormalVideo(
uint32_t total_bitrate_bps, DataRate total_bitrate,
size_t num_spatial_layers) const; size_t num_spatial_layers) const;
VideoBitrateAllocation GetAllocationScreenSharing( VideoBitrateAllocation GetAllocationScreenSharing(
uint32_t total_bitrate_bps, DataRate total_bitrate,
size_t num_spatial_layers) const; size_t num_spatial_layers) const;
// Returns the number of layers that are active and have enough bitrate to
// actually be enabled.
size_t FindNumEnabledLayers(DataRate target_rate) const;
const VideoCodec codec_; const VideoCodec codec_;
const StableTargetRateExperiment experiment_settings_;
const absl::InlinedVector<DataRate, kMaxSpatialLayers>
cumulative_layer_start_bitrates_;
size_t last_active_layer_count_;
}; };
} // namespace webrtc } // namespace webrtc

View File

@ -11,12 +11,15 @@
#include "modules/video_coding/codecs/vp9/svc_rate_allocator.h" #include "modules/video_coding/codecs/vp9/svc_rate_allocator.h"
#include <algorithm> #include <algorithm>
#include <vector>
#include "modules/video_coding/codecs/vp9/svc_config.h" #include "modules/video_coding/codecs/vp9/svc_config.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
#include "test/field_trial.h"
#include "test/gtest.h" #include "test/gtest.h"
namespace webrtc { namespace webrtc {
namespace test {
namespace { namespace {
static VideoCodec Configure(size_t width, static VideoCodec Configure(size_t width,
size_t height, size_t height,
@ -46,6 +49,7 @@ static VideoCodec Configure(size_t width,
return codec; return codec;
} }
} // namespace } // namespace
TEST(SvcRateAllocatorTest, SingleLayerFor320x180Input) { TEST(SvcRateAllocatorTest, SingleLayerFor320x180Input) {
@ -198,8 +202,25 @@ TEST(SvcRateAllocatorTest, NoPaddingIfAllLayersAreDeactivated) {
EXPECT_EQ(codec.VP9()->numberOfSpatialLayers, 3U); EXPECT_EQ(codec.VP9()->numberOfSpatialLayers, 3U);
// Deactivation of base layer deactivates all layers. // Deactivation of base layer deactivates all layers.
codec.spatialLayers[0].active = false; codec.spatialLayers[0].active = false;
uint32_t padding_bps = SvcRateAllocator::GetPaddingBitrateBps(codec); DataRate padding_rate = SvcRateAllocator::GetPaddingBitrate(codec);
EXPECT_EQ(padding_bps, 0U); EXPECT_EQ(padding_rate, DataRate::Zero());
}
TEST(SvcRateAllocatorTest, FindLayerTogglingThreshold) {
// Let's unit test a utility method of the unit test...
// Predetermined constants indicating the min bitrate needed for two and three
// layers to be enabled respectively, using the config from Configure() with
// 1280x720 resolution and three spatial layers.
const DataRate kTwoLayerMinRate = DataRate::bps(299150);
const DataRate kThreeLayerMinRate = DataRate::bps(891052);
VideoCodec codec = Configure(1280, 720, 3, 1, false);
absl::InlinedVector<DataRate, kMaxSpatialLayers> layer_start_bitrates =
SvcRateAllocator::GetLayerStartBitrates(codec);
ASSERT_EQ(layer_start_bitrates.size(), 3u);
EXPECT_EQ(layer_start_bitrates[1], kTwoLayerMinRate);
EXPECT_EQ(layer_start_bitrates[2], kThreeLayerMinRate);
} }
class SvcRateAllocatorTestParametrizedContentType class SvcRateAllocatorTestParametrizedContentType
@ -214,33 +235,32 @@ class SvcRateAllocatorTestParametrizedContentType
TEST_P(SvcRateAllocatorTestParametrizedContentType, MaxBitrate) { TEST_P(SvcRateAllocatorTestParametrizedContentType, MaxBitrate) {
VideoCodec codec = Configure(1280, 720, 3, 1, is_screen_sharing_); VideoCodec codec = Configure(1280, 720, 3, 1, is_screen_sharing_);
EXPECT_EQ( EXPECT_EQ(SvcRateAllocator::GetMaxBitrate(codec),
SvcRateAllocator::GetMaxBitrateBps(codec), DataRate::kbps(codec.spatialLayers[0].maxBitrate +
(codec.spatialLayers[0].maxBitrate + codec.spatialLayers[1].maxBitrate + codec.spatialLayers[1].maxBitrate +
codec.spatialLayers[2].maxBitrate) * codec.spatialLayers[2].maxBitrate));
1000);
// Deactivate middle layer. This causes deactivation of top layer as well. // Deactivate middle layer. This causes deactivation of top layer as well.
codec.spatialLayers[1].active = false; codec.spatialLayers[1].active = false;
EXPECT_EQ(SvcRateAllocator::GetMaxBitrateBps(codec), EXPECT_EQ(SvcRateAllocator::GetMaxBitrate(codec),
codec.spatialLayers[0].maxBitrate * 1000); DataRate::kbps(codec.spatialLayers[0].maxBitrate));
} }
TEST_P(SvcRateAllocatorTestParametrizedContentType, PaddingBitrate) { TEST_P(SvcRateAllocatorTestParametrizedContentType, PaddingBitrate) {
VideoCodec codec = Configure(1280, 720, 3, 1, is_screen_sharing_); VideoCodec codec = Configure(1280, 720, 3, 1, is_screen_sharing_);
SvcRateAllocator allocator = SvcRateAllocator(codec); SvcRateAllocator allocator = SvcRateAllocator(codec);
uint32_t padding_bitrate_bps = SvcRateAllocator::GetPaddingBitrateBps(codec); DataRate padding_bitrate = SvcRateAllocator::GetPaddingBitrate(codec);
VideoBitrateAllocation allocation = allocator.Allocate( VideoBitrateAllocation allocation =
VideoBitrateAllocationParameters(padding_bitrate_bps, 30)); allocator.Allocate(VideoBitrateAllocationParameters(padding_bitrate, 30));
EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL);
EXPECT_GT(allocation.GetSpatialLayerSum(1), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(1), 0UL);
EXPECT_GT(allocation.GetSpatialLayerSum(2), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(2), 0UL);
// Allocate 90% of padding bitrate. Top layer should be disabled. // Allocate 90% of padding bitrate. Top layer should be disabled.
allocation = allocator.Allocate( allocation = allocator.Allocate(
VideoBitrateAllocationParameters(9 * padding_bitrate_bps / 10, 30)); VideoBitrateAllocationParameters(9 * padding_bitrate / 10, 30));
EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL);
EXPECT_GT(allocation.GetSpatialLayerSum(1), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(1), 0UL);
EXPECT_EQ(allocation.GetSpatialLayerSum(2), 0UL); EXPECT_EQ(allocation.GetSpatialLayerSum(2), 0UL);
@ -248,22 +268,166 @@ TEST_P(SvcRateAllocatorTestParametrizedContentType, PaddingBitrate) {
// Deactivate top layer. // Deactivate top layer.
codec.spatialLayers[2].active = false; codec.spatialLayers[2].active = false;
padding_bitrate_bps = SvcRateAllocator::GetPaddingBitrateBps(codec); padding_bitrate = SvcRateAllocator::GetPaddingBitrate(codec);
allocation = allocator.Allocate( allocation =
VideoBitrateAllocationParameters(padding_bitrate_bps, 30)); allocator.Allocate(VideoBitrateAllocationParameters(padding_bitrate, 30));
EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL);
EXPECT_GT(allocation.GetSpatialLayerSum(1), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(1), 0UL);
EXPECT_EQ(allocation.GetSpatialLayerSum(2), 0UL); EXPECT_EQ(allocation.GetSpatialLayerSum(2), 0UL);
allocation = allocator.Allocate( allocation = allocator.Allocate(
VideoBitrateAllocationParameters(9 * padding_bitrate_bps / 10, 30)); VideoBitrateAllocationParameters(9 * padding_bitrate / 10, 30));
EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL); EXPECT_GT(allocation.GetSpatialLayerSum(0), 0UL);
EXPECT_EQ(allocation.GetSpatialLayerSum(1), 0UL); EXPECT_EQ(allocation.GetSpatialLayerSum(1), 0UL);
EXPECT_EQ(allocation.GetSpatialLayerSum(2), 0UL); EXPECT_EQ(allocation.GetSpatialLayerSum(2), 0UL);
} }
TEST_P(SvcRateAllocatorTestParametrizedContentType, StableBitrate) {
ScopedFieldTrials field_trial("WebRTC-StableTargetRate/enabled:true/");
const VideoCodec codec = Configure(1280, 720, 3, 1, is_screen_sharing_);
const auto start_rates = SvcRateAllocator::GetLayerStartBitrates(codec);
const DataRate min_rate_two_layers = start_rates[1];
const DataRate min_rate_three_layers = start_rates[2];
const DataRate max_rate_one_layer =
DataRate::kbps(codec.spatialLayers[0].maxBitrate);
const DataRate max_rate_two_layers =
is_screen_sharing_ ? DataRate::kbps(codec.spatialLayers[0].targetBitrate +
codec.spatialLayers[1].maxBitrate)
: DataRate::kbps(codec.spatialLayers[0].maxBitrate +
codec.spatialLayers[1].maxBitrate);
SvcRateAllocator allocator = SvcRateAllocator(codec);
// Two layers, stable and target equal.
auto allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/min_rate_two_layers,
/*stable_bitrate=*/min_rate_two_layers, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_EQ(allocation.get_sum_bps(), min_rate_two_layers.bps());
// Two layers, stable bitrate too low for two layers.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/min_rate_two_layers,
/*stable_bitrate=*/min_rate_two_layers - DataRate::bps(1),
/*fps=*/30.0));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(1));
EXPECT_EQ(
DataRate::bps(allocation.get_sum_bps()),
std::min(min_rate_two_layers - DataRate::bps(1), max_rate_one_layer));
// Three layers, stable and target equal.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/min_rate_three_layers,
/*stable_bitrate=*/min_rate_three_layers, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(2));
EXPECT_EQ(allocation.get_sum_bps(), min_rate_three_layers.bps());
// Three layers, stable bitrate too low for three layers.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/min_rate_three_layers,
/*stable_bitrate=*/min_rate_three_layers - DataRate::bps(1),
/*fps=*/30.0));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
EXPECT_EQ(
DataRate::bps(allocation.get_sum_bps()),
std::min(min_rate_three_layers - DataRate::bps(1), max_rate_two_layers));
}
TEST_P(SvcRateAllocatorTestParametrizedContentType,
StableBitrateWithHysteresis) {
const VideoCodec codec = Configure(1280, 720, 3, 1, is_screen_sharing_);
const auto start_rates = SvcRateAllocator::GetLayerStartBitrates(codec);
const DataRate min_rate_single_layer = start_rates[0];
const DataRate min_rate_two_layers = start_rates[1];
const DataRate min_rate_three_layers = start_rates[2];
ScopedFieldTrials field_trial(
"WebRTC-StableTargetRate/enabled:true,video_hysteresis_factor:1.1,"
"screenshare_hysteresis_factor:1.1/");
SvcRateAllocator allocator = SvcRateAllocator(codec);
// Always use max bitrate as target, verify only stable is used for layer
// count selection.
const DataRate max_bitrate = allocator.GetMaxBitrate(codec);
// Start with a single layer.
auto allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_single_layer, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
// Min bitrate not enough to enable second layer due to 10% hysteresis.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_two_layers, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
// Add hysteresis, second layer should turn on.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_two_layers * 1.1, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
// Remove hysteresis, second layer should stay on.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_two_layers, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
// Going below min for two layers, second layer should turn off again.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_two_layers - DataRate::bps(1), /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
// Min bitrate not enough to enable third layer due to 10% hysteresis.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_three_layers, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
// Add hysteresis, third layer should turn on.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_three_layers * 1.1, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(2));
// Remove hysteresis, third layer should stay on.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_three_layers, /*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(2));
// Going below min for three layers, third layer should turn off again.
allocation = allocator.Allocate(VideoBitrateAllocationParameters(
/*total_bitrate=*/max_bitrate,
/*stable_bitrate=*/min_rate_three_layers - DataRate::bps(1),
/*fps=*/30.0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(0));
EXPECT_TRUE(allocation.IsSpatialLayerUsed(1));
EXPECT_FALSE(allocation.IsSpatialLayerUsed(2));
}
INSTANTIATE_TEST_SUITE_P(_, INSTANTIATE_TEST_SUITE_P(_,
SvcRateAllocatorTestParametrizedContentType, SvcRateAllocatorTestParametrizedContentType,
::testing::Bool()); ::testing::Bool());
} // namespace test
} // namespace webrtc } // namespace webrtc

View File

@ -32,6 +32,8 @@ StableTargetRateExperiment::StableTargetRateExperiment(
key_value_config->Lookup(kFieldTrialName)); key_value_config->Lookup(kFieldTrialName));
} }
StableTargetRateExperiment::StableTargetRateExperiment(
const StableTargetRateExperiment&) = default;
StableTargetRateExperiment::StableTargetRateExperiment( StableTargetRateExperiment::StableTargetRateExperiment(
StableTargetRateExperiment&&) = default; StableTargetRateExperiment&&) = default;

View File

@ -18,6 +18,7 @@ namespace webrtc {
class StableTargetRateExperiment { class StableTargetRateExperiment {
public: public:
StableTargetRateExperiment(const StableTargetRateExperiment&);
StableTargetRateExperiment(StableTargetRateExperiment&&); StableTargetRateExperiment(StableTargetRateExperiment&&);
static StableTargetRateExperiment ParseFromFieldTrials(); static StableTargetRateExperiment ParseFromFieldTrials();
static StableTargetRateExperiment ParseFromKeyValueConfig( static StableTargetRateExperiment ParseFromKeyValueConfig(

View File

@ -781,12 +781,13 @@ void VideoStreamEncoder::ReconfigureEncoder() {
// Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9. // Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9.
if (encoder_config_.codec_type == kVideoCodecVP9) { if (encoder_config_.codec_type == kVideoCodecVP9) {
// Lower max bitrate to the level codec actually can produce. // Lower max bitrate to the level codec actually can produce.
streams[0].max_bitrate_bps = std::min<int>( streams[0].max_bitrate_bps =
streams[0].max_bitrate_bps, SvcRateAllocator::GetMaxBitrateBps(codec)); std::min(streams[0].max_bitrate_bps,
SvcRateAllocator::GetMaxBitrate(codec).bps<int>());
streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000; streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000;
// target_bitrate_bps specifies the maximum padding bitrate. // target_bitrate_bps specifies the maximum padding bitrate.
streams[0].target_bitrate_bps = streams[0].target_bitrate_bps =
SvcRateAllocator::GetPaddingBitrateBps(codec); SvcRateAllocator::GetPaddingBitrate(codec).bps<int>();
} }
codec.startBitrate = codec.startBitrate =