Change echo detector to scoped_refptr
The echo detector is currently stored as a unique_ptr, but when injecting an echo detector, a scoped_refptr makes more sense since the ownership will be shared. Bug: webrtc:8732 Change-Id: I2180014acb84f1cd5c361864a444b7b6574520f5 Reviewed-on: https://webrtc-review.googlesource.com/83325 Commit-Queue: Ivo Creusen <ivoc@webrtc.org> Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org> Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org> Cr-Commit-Position: refs/heads/master@{#23610}
This commit is contained in:
@ -285,7 +285,7 @@ struct AudioProcessingImpl::ApmPrivateSubmodules {
|
||||
ApmPrivateSubmodules(NonlinearBeamformer* beamformer,
|
||||
std::unique_ptr<CustomProcessing> capture_post_processor,
|
||||
std::unique_ptr<CustomProcessing> render_pre_processor,
|
||||
std::unique_ptr<EchoDetector> echo_detector)
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector)
|
||||
: beamformer(beamformer),
|
||||
echo_detector(std::move(echo_detector)),
|
||||
capture_post_processor(std::move(capture_post_processor)),
|
||||
@ -295,7 +295,7 @@ struct AudioProcessingImpl::ApmPrivateSubmodules {
|
||||
std::unique_ptr<AgcManagerDirect> agc_manager;
|
||||
std::unique_ptr<GainController2> gain_controller2;
|
||||
std::unique_ptr<LowCutFilter> low_cut_filter;
|
||||
std::unique_ptr<EchoDetector> echo_detector;
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector;
|
||||
std::unique_ptr<EchoControl> echo_controller;
|
||||
std::unique_ptr<CustomProcessing> capture_post_processor;
|
||||
std::unique_ptr<CustomProcessing> render_pre_processor;
|
||||
@ -330,7 +330,7 @@ AudioProcessingBuilder& AudioProcessingBuilder::SetNonlinearBeamformer(
|
||||
}
|
||||
|
||||
AudioProcessingBuilder& AudioProcessingBuilder::SetEchoDetector(
|
||||
std::unique_ptr<EchoDetector> echo_detector) {
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector) {
|
||||
echo_detector_ = std::move(echo_detector);
|
||||
return *this;
|
||||
}
|
||||
@ -363,7 +363,7 @@ AudioProcessingImpl::AudioProcessingImpl(
|
||||
std::unique_ptr<CustomProcessing> capture_post_processor,
|
||||
std::unique_ptr<CustomProcessing> render_pre_processor,
|
||||
std::unique_ptr<EchoControlFactory> echo_control_factory,
|
||||
std::unique_ptr<EchoDetector> echo_detector,
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector,
|
||||
NonlinearBeamformer* beamformer)
|
||||
: data_dumper_(
|
||||
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
||||
@ -422,7 +422,8 @@ AudioProcessingImpl::AudioProcessingImpl(
|
||||
|
||||
// If no echo detector is injected, use the ResidualEchoDetector.
|
||||
if (!private_submodules_->echo_detector) {
|
||||
private_submodules_->echo_detector.reset(new ResidualEchoDetector());
|
||||
private_submodules_->echo_detector =
|
||||
new rtc::RefCountedObject<ResidualEchoDetector>();
|
||||
}
|
||||
|
||||
// TODO(alessiob): Move the injected gain controller once injection is
|
||||
|
@ -44,7 +44,7 @@ class AudioProcessingImpl : public AudioProcessing {
|
||||
std::unique_ptr<CustomProcessing> capture_post_processor,
|
||||
std::unique_ptr<CustomProcessing> render_pre_processor,
|
||||
std::unique_ptr<EchoControlFactory> echo_control_factory,
|
||||
std::unique_ptr<EchoDetector> echo_detector,
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector,
|
||||
NonlinearBeamformer* beamformer);
|
||||
~AudioProcessingImpl() override;
|
||||
int Initialize() override;
|
||||
|
@ -678,7 +678,7 @@ class AudioProcessingBuilder {
|
||||
std::unique_ptr<NonlinearBeamformer> nonlinear_beamformer);
|
||||
// The AudioProcessingBuilder takes ownership of the echo_detector.
|
||||
AudioProcessingBuilder& SetEchoDetector(
|
||||
std::unique_ptr<EchoDetector> echo_detector);
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector);
|
||||
// This creates an APM instance using the previously set components. Calling
|
||||
// the Create function resets the AudioProcessingBuilder to its initial state.
|
||||
AudioProcessing* Create();
|
||||
@ -689,7 +689,7 @@ class AudioProcessingBuilder {
|
||||
std::unique_ptr<CustomProcessing> capture_post_processing_;
|
||||
std::unique_ptr<CustomProcessing> render_pre_processing_;
|
||||
std::unique_ptr<NonlinearBeamformer> nonlinear_beamformer_;
|
||||
std::unique_ptr<EchoDetector> echo_detector_;
|
||||
rtc::scoped_refptr<EchoDetector> echo_detector_;
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(AudioProcessingBuilder);
|
||||
};
|
||||
|
||||
@ -1135,7 +1135,7 @@ class CustomProcessing {
|
||||
};
|
||||
|
||||
// Interface for an echo detector submodule.
|
||||
class EchoDetector {
|
||||
class EchoDetector : public rtc::RefCountInterface {
|
||||
public:
|
||||
// (Re-)Initializes the submodule.
|
||||
virtual void Initialize(int capture_sample_rate_hz,
|
||||
@ -1161,8 +1161,6 @@ class EchoDetector {
|
||||
|
||||
// Collect current metrics from the echo detector.
|
||||
virtual Metrics GetMetrics() const = 0;
|
||||
|
||||
virtual ~EchoDetector() {}
|
||||
};
|
||||
|
||||
// The voice activity detection (VAD) component analyzes the stream to
|
||||
|
@ -11,13 +11,15 @@
|
||||
#include <vector>
|
||||
|
||||
#include "modules/audio_processing/residual_echo_detector.h"
|
||||
#include "rtc_base/refcountedobject.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
TEST(ResidualEchoDetectorTests, Echo) {
|
||||
ResidualEchoDetector echo_detector;
|
||||
echo_detector.SetReliabilityForTest(1.0f);
|
||||
rtc::scoped_refptr<ResidualEchoDetector> echo_detector =
|
||||
new rtc::RefCountedObject<ResidualEchoDetector>();
|
||||
echo_detector->SetReliabilityForTest(1.0f);
|
||||
std::vector<float> ones(160, 1.f);
|
||||
std::vector<float> zeros(160, 0.f);
|
||||
|
||||
@ -26,24 +28,25 @@ TEST(ResidualEchoDetectorTests, Echo) {
|
||||
// frame interval.
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
if (i % 20 == 0) {
|
||||
echo_detector.AnalyzeRenderAudio(ones);
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(ones);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
} else if (i % 20 == 10) {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector.AnalyzeCaptureAudio(ones);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(ones);
|
||||
} else {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
}
|
||||
}
|
||||
// We expect to detect echo with near certain likelihood.
|
||||
auto ed_metrics = echo_detector.GetMetrics();
|
||||
auto ed_metrics = echo_detector->GetMetrics();
|
||||
EXPECT_NEAR(1.f, ed_metrics.echo_likelihood, 0.01f);
|
||||
}
|
||||
|
||||
TEST(ResidualEchoDetectorTests, NoEcho) {
|
||||
ResidualEchoDetector echo_detector;
|
||||
echo_detector.SetReliabilityForTest(1.0f);
|
||||
rtc::scoped_refptr<ResidualEchoDetector> echo_detector =
|
||||
new rtc::RefCountedObject<ResidualEchoDetector>();
|
||||
echo_detector->SetReliabilityForTest(1.0f);
|
||||
std::vector<float> ones(160, 1.f);
|
||||
std::vector<float> zeros(160, 0.f);
|
||||
|
||||
@ -51,20 +54,21 @@ TEST(ResidualEchoDetectorTests, NoEcho) {
|
||||
// detected.
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
if (i % 20 == 0) {
|
||||
echo_detector.AnalyzeRenderAudio(ones);
|
||||
echo_detector->AnalyzeRenderAudio(ones);
|
||||
} else {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
}
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
}
|
||||
// We expect to not detect any echo.
|
||||
auto ed_metrics = echo_detector.GetMetrics();
|
||||
auto ed_metrics = echo_detector->GetMetrics();
|
||||
EXPECT_NEAR(0.f, ed_metrics.echo_likelihood, 0.01f);
|
||||
}
|
||||
|
||||
TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) {
|
||||
ResidualEchoDetector echo_detector;
|
||||
echo_detector.SetReliabilityForTest(1.0f);
|
||||
rtc::scoped_refptr<ResidualEchoDetector> echo_detector =
|
||||
new rtc::RefCountedObject<ResidualEchoDetector>();
|
||||
echo_detector->SetReliabilityForTest(1.0f);
|
||||
std::vector<float> ones(160, 1.f);
|
||||
std::vector<float> zeros(160, 0.f);
|
||||
|
||||
@ -74,18 +78,18 @@ TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) {
|
||||
// the render side producing data slightly faster.
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
if (i % 20 == 0) {
|
||||
echo_detector.AnalyzeRenderAudio(ones);
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(ones);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
} else if (i % 20 == 10) {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector.AnalyzeCaptureAudio(ones);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(ones);
|
||||
} else {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
}
|
||||
if (i % 100 == 0) {
|
||||
// This is causing the simulated clock drift.
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
}
|
||||
}
|
||||
// We expect to detect echo with high likelihood. Clock drift is harder to
|
||||
@ -94,13 +98,14 @@ TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) {
|
||||
// A growing buffer can be caused by jitter or clock drift and it's not
|
||||
// possible to make this decision right away. For this reason we only expect
|
||||
// an echo likelihood of 75% in this test.
|
||||
auto ed_metrics = echo_detector.GetMetrics();
|
||||
auto ed_metrics = echo_detector->GetMetrics();
|
||||
EXPECT_GT(ed_metrics.echo_likelihood, 0.75f);
|
||||
}
|
||||
|
||||
TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) {
|
||||
ResidualEchoDetector echo_detector;
|
||||
echo_detector.SetReliabilityForTest(1.0f);
|
||||
rtc::scoped_refptr<ResidualEchoDetector> echo_detector =
|
||||
new rtc::RefCountedObject<ResidualEchoDetector>();
|
||||
echo_detector->SetReliabilityForTest(1.0f);
|
||||
std::vector<float> ones(160, 1.f);
|
||||
std::vector<float> zeros(160, 0.f);
|
||||
|
||||
@ -110,22 +115,22 @@ TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) {
|
||||
// the capture side producing data slightly faster.
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
if (i % 20 == 0) {
|
||||
echo_detector.AnalyzeRenderAudio(ones);
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(ones);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
} else if (i % 20 == 10) {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector.AnalyzeCaptureAudio(ones);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(ones);
|
||||
} else {
|
||||
echo_detector.AnalyzeRenderAudio(zeros);
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeRenderAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
}
|
||||
if (i % 100 == 0) {
|
||||
// This is causing the simulated clock drift.
|
||||
echo_detector.AnalyzeCaptureAudio(zeros);
|
||||
echo_detector->AnalyzeCaptureAudio(zeros);
|
||||
}
|
||||
}
|
||||
// We expect to detect echo with near certain likelihood.
|
||||
auto ed_metrics = echo_detector.GetMetrics();
|
||||
auto ed_metrics = echo_detector->GetMetrics();
|
||||
EXPECT_NEAR(1.f, ed_metrics.echo_likelihood, 0.01f);
|
||||
}
|
||||
|
||||
|
@ -17,6 +17,7 @@
|
||||
|
||||
#include "modules/audio_processing/residual_echo_detector.h"
|
||||
#include "rtc_base/checks.h"
|
||||
#include "rtc_base/refcountedobject.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
@ -42,10 +43,11 @@ void FuzzOneInput(const uint8_t* data, size_t size) {
|
||||
read_idx += 2;
|
||||
std::bitset<16> call_order(call_order_int);
|
||||
|
||||
ResidualEchoDetector echo_detector;
|
||||
rtc::scoped_refptr<ResidualEchoDetector> echo_detector =
|
||||
new rtc::RefCountedObject<ResidualEchoDetector>();
|
||||
std::vector<float> input(1);
|
||||
// Call AnalyzeCaptureAudio once to prevent the flushing of the buffer.
|
||||
echo_detector.AnalyzeCaptureAudio(input);
|
||||
echo_detector->AnalyzeCaptureAudio(input);
|
||||
for (size_t i = 0; i < 2 * kNrOfUpdates; ++i) {
|
||||
// Convert 4 input bytes to a float.
|
||||
RTC_DCHECK_LE(read_idx + sizeof(float), size);
|
||||
@ -56,9 +58,9 @@ void FuzzOneInput(const uint8_t* data, size_t size) {
|
||||
continue;
|
||||
}
|
||||
if (call_order[i]) {
|
||||
echo_detector.AnalyzeRenderAudio(input);
|
||||
echo_detector->AnalyzeRenderAudio(input);
|
||||
} else {
|
||||
echo_detector.AnalyzeCaptureAudio(input);
|
||||
echo_detector->AnalyzeCaptureAudio(input);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user