Use Timestamp and TimeDelta in VCMTiming
* Switches TimestampExtrapolator to use Timestamp as well. Bug: webrtc:13589 Change-Id: I042be5d693068553d2e8eb92fa532092d77bd7ef Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/249993 Reviewed-by: Tomas Gunnarsson <tommi@webrtc.org> Commit-Queue: Evan Shrubsole <eshr@webrtc.org> Cr-Commit-Position: refs/heads/main@{#36112}
This commit is contained in:
committed by
WebRTC LUCI CQ
parent
9558ab41eb
commit
d6cdf80072
@ -10,13 +10,18 @@
|
||||
|
||||
#include "modules/video_coding/timing.h"
|
||||
|
||||
#include "api/units/frequency.h"
|
||||
#include "api/units/time_delta.h"
|
||||
#include "system_wrappers/include/clock.h"
|
||||
#include "test/field_trial.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
const int kFps = 25;
|
||||
|
||||
constexpr Frequency k25Fps = Frequency::Hertz(25);
|
||||
constexpr Frequency k90kHz = Frequency::KiloHertz(90);
|
||||
|
||||
} // namespace
|
||||
|
||||
TEST(ReceiverTimingTest, JitterDelay) {
|
||||
@ -29,102 +34,105 @@ TEST(ReceiverTimingTest, JitterDelay) {
|
||||
|
||||
timing.Reset();
|
||||
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
uint32_t jitter_delay_ms = 20;
|
||||
timing.SetJitterDelay(jitter_delay_ms);
|
||||
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
|
||||
TimeDelta jitter_delay = TimeDelta::Millis(20);
|
||||
timing.SetJitterDelay(jitter_delay);
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
timing.set_render_delay(0);
|
||||
uint32_t wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
timing.set_render_delay(TimeDelta::Zero());
|
||||
auto wait_time = timing.MaxWaitingTime(
|
||||
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
|
||||
/*too_many_frames_queued=*/false);
|
||||
// First update initializes the render time. Since we have no decode delay
|
||||
// we get wait_time_ms = renderTime - now - renderDelay = jitter.
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
// we get wait_time = renderTime - now - renderDelay = jitter.
|
||||
EXPECT_EQ(jitter_delay, wait_time);
|
||||
|
||||
jitter_delay_ms += VCMTiming::kDelayMaxChangeMsPerS + 10;
|
||||
jitter_delay += TimeDelta::Millis(VCMTiming::kDelayMaxChangeMsPerS + 10);
|
||||
timestamp += 90000;
|
||||
clock.AdvanceTimeMilliseconds(1000);
|
||||
timing.SetJitterDelay(jitter_delay_ms);
|
||||
timing.SetJitterDelay(jitter_delay);
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
wait_time = timing.MaxWaitingTime(
|
||||
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
|
||||
/*too_many_frames_queued=*/false);
|
||||
// Since we gradually increase the delay we only get 100 ms every second.
|
||||
EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms);
|
||||
EXPECT_EQ(jitter_delay - TimeDelta::Millis(10), wait_time);
|
||||
|
||||
timestamp += 90000;
|
||||
clock.AdvanceTimeMilliseconds(1000);
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
wait_time = timing.MaxWaitingTime(
|
||||
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
|
||||
/*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay, wait_time);
|
||||
|
||||
// Insert frames without jitter, verify that this gives the exact wait time.
|
||||
const int kNumFrames = 300;
|
||||
for (int i = 0; i < kNumFrames; i++) {
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFps);
|
||||
timestamp += 90000 / kFps;
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
clock.AdvanceTime(1 / k25Fps);
|
||||
timestamp += k90kHz / k25Fps;
|
||||
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
|
||||
}
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
wait_time = timing.MaxWaitingTime(
|
||||
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
|
||||
/*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay, wait_time);
|
||||
|
||||
// Add decode time estimates for 1 second.
|
||||
const uint32_t kDecodeTimeMs = 10;
|
||||
for (int i = 0; i < kFps; i++) {
|
||||
clock.AdvanceTimeMilliseconds(kDecodeTimeMs);
|
||||
timing.StopDecodeTimer(kDecodeTimeMs, clock.TimeInMilliseconds());
|
||||
timestamp += 90000 / kFps;
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFps - kDecodeTimeMs);
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
const TimeDelta kDecodeTime = TimeDelta::Millis(10);
|
||||
for (int i = 0; i < k25Fps.hertz(); i++) {
|
||||
clock.AdvanceTime(kDecodeTime);
|
||||
timing.StopDecodeTimer(kDecodeTime, clock.CurrentTime());
|
||||
timestamp += k90kHz / k25Fps;
|
||||
clock.AdvanceTime(1 / k25Fps - kDecodeTime);
|
||||
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
|
||||
}
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay_ms, wait_time_ms);
|
||||
wait_time = timing.MaxWaitingTime(
|
||||
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
|
||||
/*too_many_frames_queued=*/false);
|
||||
EXPECT_EQ(jitter_delay, wait_time);
|
||||
|
||||
const int kMinTotalDelayMs = 200;
|
||||
timing.set_min_playout_delay(kMinTotalDelayMs);
|
||||
const TimeDelta kMinTotalDelay = TimeDelta::Millis(200);
|
||||
timing.set_min_playout_delay(kMinTotalDelay);
|
||||
clock.AdvanceTimeMilliseconds(5000);
|
||||
timestamp += 5 * 90000;
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
const int kRenderDelayMs = 10;
|
||||
timing.set_render_delay(kRenderDelayMs);
|
||||
wait_time_ms = timing.MaxWaitingTime(
|
||||
timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
|
||||
clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
|
||||
const TimeDelta kRenderDelay = TimeDelta::Millis(10);
|
||||
timing.set_render_delay(kRenderDelay);
|
||||
wait_time = timing.MaxWaitingTime(
|
||||
timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(),
|
||||
/*too_many_frames_queued=*/false);
|
||||
// We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
|
||||
// (10) to wait.
|
||||
EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms);
|
||||
EXPECT_EQ(kMinTotalDelay - kDecodeTime - kRenderDelay, wait_time);
|
||||
// The total video delay should be equal to the min total delay.
|
||||
EXPECT_EQ(kMinTotalDelayMs, timing.TargetVideoDelay());
|
||||
EXPECT_EQ(kMinTotalDelay, timing.TargetVideoDelay());
|
||||
|
||||
// Reset playout delay.
|
||||
timing.set_min_playout_delay(0);
|
||||
timing.set_min_playout_delay(TimeDelta::Zero());
|
||||
clock.AdvanceTimeMilliseconds(5000);
|
||||
timestamp += 5 * 90000;
|
||||
timing.UpdateCurrentDelay(timestamp);
|
||||
}
|
||||
|
||||
TEST(ReceiverTimingTest, TimestampWrapAround) {
|
||||
SimulatedClock clock(0);
|
||||
constexpr auto kStartTime = Timestamp::Millis(1337);
|
||||
SimulatedClock clock(kStartTime);
|
||||
VCMTiming timing(&clock);
|
||||
|
||||
// Provoke a wrap-around. The fifth frame will have wrapped at 25 fps.
|
||||
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFps;
|
||||
constexpr uint32_t kRtpTicksPerFrame = k90kHz / k25Fps;
|
||||
uint32_t timestamp = 0xFFFFFFFFu - 3 * kRtpTicksPerFrame;
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
|
||||
clock.AdvanceTimeMilliseconds(1000 / kFps);
|
||||
timestamp += 90000 / kFps;
|
||||
EXPECT_EQ(3 * 1000 / kFps,
|
||||
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds()));
|
||||
EXPECT_EQ(3 * 1000 / kFps + 1,
|
||||
timing.RenderTimeMs(89u, // One ms later in 90 kHz.
|
||||
clock.TimeInMilliseconds()));
|
||||
timing.IncomingTimestamp(timestamp, clock.CurrentTime());
|
||||
clock.AdvanceTime(1 / k25Fps);
|
||||
timestamp += kRtpTicksPerFrame;
|
||||
EXPECT_EQ(kStartTime + 3 / k25Fps,
|
||||
timing.RenderTime(0xFFFFFFFFu, clock.CurrentTime()));
|
||||
// One ms later in 90 kHz.
|
||||
EXPECT_EQ(kStartTime + 3 / k25Fps + TimeDelta::Millis(1),
|
||||
timing.RenderTime(89u, clock.CurrentTime()));
|
||||
}
|
||||
}
|
||||
|
||||
@ -132,85 +140,85 @@ TEST(ReceiverTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) {
|
||||
// This is the default path when the RTP playout delay header extension is set
|
||||
// to min==0 and max==0.
|
||||
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
|
||||
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
|
||||
constexpr int64_t kZeroRenderTimeMs = 0;
|
||||
constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
|
||||
constexpr Timestamp kZeroRenderTime = Timestamp::Zero();
|
||||
SimulatedClock clock(kStartTimeUs);
|
||||
VCMTiming timing(&clock);
|
||||
timing.Reset();
|
||||
timing.set_max_playout_delay(0);
|
||||
timing.set_max_playout_delay(TimeDelta::Zero());
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
clock.AdvanceTime(kTimeDelta);
|
||||
Timestamp now = clock.CurrentTime();
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
TimeDelta::Zero());
|
||||
}
|
||||
// Another frame submitted at the same time also returns a negative max
|
||||
// waiting time.
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
Timestamp now = clock.CurrentTime();
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
TimeDelta::Zero());
|
||||
// MaxWaitingTime should be less than zero even if there's a burst of frames.
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
TimeDelta::Zero());
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
TimeDelta::Zero());
|
||||
EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
TimeDelta::Zero());
|
||||
}
|
||||
|
||||
TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
|
||||
// The minimum pacing is enabled by a field trial and active if the RTP
|
||||
// playout delay header extension is set to min==0.
|
||||
constexpr int64_t kMinPacingMs = 3;
|
||||
constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
|
||||
test::ScopedFieldTrials override_field_trials(
|
||||
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
|
||||
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
|
||||
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
|
||||
constexpr int64_t kZeroRenderTimeMs = 0;
|
||||
constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60);
|
||||
constexpr auto kZeroRenderTime = Timestamp::Zero();
|
||||
SimulatedClock clock(kStartTimeUs);
|
||||
VCMTiming timing(&clock);
|
||||
timing.Reset();
|
||||
// MaxWaitingTime() returns zero for evenly spaced video frames.
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
clock.AdvanceTime(kTimeDelta);
|
||||
Timestamp now = clock.CurrentTime();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
timing.SetLastDecodeScheduledTimestamp(now_ms);
|
||||
TimeDelta::Zero());
|
||||
timing.SetLastDecodeScheduledTimestamp(now);
|
||||
}
|
||||
// Another frame submitted at the same time is paced according to the field
|
||||
// trial setting.
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
auto now = clock.CurrentTime();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
kMinPacing);
|
||||
// If there's a burst of frames, the wait time is calculated based on next
|
||||
// decode time.
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
kMinPacing);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
kMinPacing);
|
||||
// Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
|
||||
constexpr int64_t kTwoMs = 2;
|
||||
clock.AdvanceTimeMilliseconds(kTwoMs);
|
||||
now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
constexpr TimeDelta kTwoMs = TimeDelta::Millis(2);
|
||||
clock.AdvanceTime(kTwoMs);
|
||||
now = clock.CurrentTime();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs - kTwoMs);
|
||||
kMinPacing - kTwoMs);
|
||||
// A frame is decoded at the current time, the wait time should be restored to
|
||||
// pacing delay.
|
||||
timing.SetLastDecodeScheduledTimestamp(now_ms);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
timing.SetLastDecodeScheduledTimestamp(now);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
kMinPacing);
|
||||
}
|
||||
|
||||
TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
|
||||
@ -219,65 +227,65 @@ TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
|
||||
test::ScopedFieldTrials override_field_trials(
|
||||
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
|
||||
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
|
||||
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
|
||||
const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
|
||||
SimulatedClock clock(kStartTimeUs);
|
||||
VCMTiming timing(&clock);
|
||||
timing.Reset();
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
int64_t render_time_ms = now_ms + 30;
|
||||
clock.AdvanceTime(kTimeDelta);
|
||||
auto now = clock.CurrentTime();
|
||||
Timestamp render_time = now + TimeDelta::Millis(30);
|
||||
// Estimate the internal processing delay from the first frame.
|
||||
int64_t estimated_processing_delay =
|
||||
(render_time_ms - now_ms) -
|
||||
timing.MaxWaitingTime(render_time_ms, now_ms,
|
||||
TimeDelta estimated_processing_delay =
|
||||
(render_time - now) -
|
||||
timing.MaxWaitingTime(render_time, now,
|
||||
/*too_many_frames_queued=*/false);
|
||||
EXPECT_GT(estimated_processing_delay, 0);
|
||||
EXPECT_GT(estimated_processing_delay, TimeDelta::Zero());
|
||||
|
||||
// Any other frame submitted at the same time should be scheduled according to
|
||||
// its render time.
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
render_time_ms += kTimeDeltaMs;
|
||||
EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms,
|
||||
render_time += kTimeDelta;
|
||||
EXPECT_EQ(timing.MaxWaitingTime(render_time, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
render_time_ms - now_ms - estimated_processing_delay);
|
||||
render_time - now - estimated_processing_delay);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ReceiverTiminTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
|
||||
TEST(ReceiverTimingTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
|
||||
// The minimum pacing is enabled by a field trial and active if the RTP
|
||||
// playout delay header extension is set to min==0.
|
||||
constexpr int64_t kMinPacingMs = 3;
|
||||
constexpr TimeDelta kMinPacing = TimeDelta::Millis(3);
|
||||
test::ScopedFieldTrials override_field_trials(
|
||||
"WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
|
||||
constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us.
|
||||
constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
|
||||
constexpr int64_t kZeroRenderTimeMs = 0;
|
||||
const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0);
|
||||
constexpr auto kZeroRenderTime = Timestamp::Zero();
|
||||
SimulatedClock clock(kStartTimeUs);
|
||||
VCMTiming timing(&clock);
|
||||
timing.Reset();
|
||||
// MaxWaitingTime() returns zero for evenly spaced video frames.
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
clock.AdvanceTime(kTimeDelta);
|
||||
auto now = clock.CurrentTime();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now,
|
||||
/*too_many_frames_queued=*/false),
|
||||
0);
|
||||
timing.SetLastDecodeScheduledTimestamp(now_ms);
|
||||
TimeDelta::Zero());
|
||||
timing.SetLastDecodeScheduledTimestamp(now);
|
||||
}
|
||||
// Another frame submitted at the same time is paced according to the field
|
||||
// trial setting.
|
||||
int64_t now_ms = clock.TimeInMilliseconds();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
auto now_ms = clock.CurrentTime();
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
|
||||
/*too_many_frames_queued=*/false),
|
||||
kMinPacingMs);
|
||||
kMinPacing);
|
||||
// MaxWaitingTime returns 0 even if there's a burst of frames if
|
||||
// too_many_frames_queued is set to true.
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
|
||||
/*too_many_frames_queued=*/true),
|
||||
0);
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
|
||||
TimeDelta::Zero());
|
||||
EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms,
|
||||
/*too_many_frames_queued=*/true),
|
||||
0);
|
||||
TimeDelta::Zero());
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
Reference in New Issue
Block a user