Update a ton of audio code to use size_t more correctly and in general reduce
use of int16_t/uint16_t. This is the upshot of a recommendation by henrik.lundin and kwiberg on an original small change ( https://webrtc-codereview.appspot.com/42569004/#ps1 ) to stop using int16_t just because values could fit in it, and is similar in nature to a previous "mass change to use size_t more" ( https://webrtc-codereview.appspot.com/23129004/ ) which also needed to be split up for review but to land all at once, since, like adding "const", such changes tend to cause a lot of transitive effects. This was be reviewed and approved in pieces: https://codereview.webrtc.org/1224093003 https://codereview.webrtc.org/1224123002 https://codereview.webrtc.org/1224163002 https://codereview.webrtc.org/1225133003 https://codereview.webrtc.org/1225173002 https://codereview.webrtc.org/1227163003 https://codereview.webrtc.org/1227203003 https://codereview.webrtc.org/1227213002 https://codereview.webrtc.org/1227893002 https://codereview.webrtc.org/1228793004 https://codereview.webrtc.org/1228803003 https://codereview.webrtc.org/1228823002 https://codereview.webrtc.org/1228823003 https://codereview.webrtc.org/1228843002 https://codereview.webrtc.org/1230693002 https://codereview.webrtc.org/1231713002 The change is being landed as TBR to all the folks who reviewed the above. BUG=chromium:81439 TEST=none R=andrew@webrtc.org, pbos@webrtc.org TBR=aluebs, andrew, asapersson, henrika, hlundin, jan.skoglund, kwiberg, minyue, pbos, pthatcher Review URL: https://codereview.webrtc.org/1230503003 . Cr-Commit-Position: refs/heads/master@{#9768}
This commit is contained in:
@ -40,20 +40,20 @@ complex<float> zerofudge(complex<float> c) {
|
||||
return complex<float>(AddDitherIfZero(c.real()), AddDitherIfZero(c.imag()));
|
||||
}
|
||||
|
||||
complex<float> NewMean(complex<float> mean, complex<float> data, int count) {
|
||||
complex<float> NewMean(complex<float> mean, complex<float> data, size_t count) {
|
||||
return mean + (data - mean) / static_cast<float>(count);
|
||||
}
|
||||
|
||||
void AddToMean(complex<float> data, int count, complex<float>* mean) {
|
||||
void AddToMean(complex<float> data, size_t count, complex<float>* mean) {
|
||||
(*mean) = NewMean(*mean, data, count);
|
||||
}
|
||||
|
||||
|
||||
static const int kWindowBlockSize = 10;
|
||||
static const size_t kWindowBlockSize = 10;
|
||||
|
||||
VarianceArray::VarianceArray(int num_freqs,
|
||||
VarianceArray::VarianceArray(size_t num_freqs,
|
||||
StepType type,
|
||||
int window_size,
|
||||
size_t window_size,
|
||||
float decay)
|
||||
: running_mean_(new complex<float>[num_freqs]()),
|
||||
running_mean_sq_(new complex<float>[num_freqs]()),
|
||||
@ -69,15 +69,15 @@ VarianceArray::VarianceArray(int num_freqs,
|
||||
array_mean_(0.0f),
|
||||
buffer_full_(false) {
|
||||
history_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
history_[i].reset(new complex<float>[window_size_]());
|
||||
}
|
||||
subhistory_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
subhistory_[i].reset(new complex<float>[window_size_]());
|
||||
}
|
||||
subhistory_sq_.reset(new rtc::scoped_ptr<complex<float>[]>[num_freqs_]());
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
subhistory_sq_[i].reset(new complex<float>[window_size_]());
|
||||
}
|
||||
switch (type) {
|
||||
@ -104,7 +104,7 @@ VarianceArray::VarianceArray(int num_freqs,
|
||||
void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
||||
array_mean_ = 0.0f;
|
||||
++count_;
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
complex<float> sample = data[i];
|
||||
if (!skip_fudge) {
|
||||
sample = zerofudge(sample);
|
||||
@ -132,7 +132,7 @@ void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
|
||||
void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
||||
array_mean_ = 0.0f;
|
||||
++count_;
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
complex<float> sample = data[i];
|
||||
sample = zerofudge(sample);
|
||||
|
||||
@ -157,9 +157,9 @@ void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
|
||||
// Windowed variance computation. On each step, the variances for the
|
||||
// window are recomputed from scratch, using Welford's algorithm.
|
||||
void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
||||
int num = min(count_ + 1, window_size_);
|
||||
size_t num = min(count_ + 1, window_size_);
|
||||
array_mean_ = 0.0f;
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
complex<float> mean;
|
||||
float conj_sum = 0.0f;
|
||||
|
||||
@ -167,7 +167,7 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
||||
|
||||
mean = history_[i][history_cursor_];
|
||||
variance_[i] = 0.0f;
|
||||
for (int j = 1; j < num; ++j) {
|
||||
for (size_t j = 1; j < num; ++j) {
|
||||
complex<float> sample =
|
||||
zerofudge(history_[i][(history_cursor_ + j) % window_size_]);
|
||||
sample = history_[i][(history_cursor_ + j) % window_size_];
|
||||
@ -191,8 +191,8 @@ void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
|
||||
// history window and a new block is started. The variances for the window
|
||||
// are recomputed from scratch at each of these transitions.
|
||||
void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
||||
int blocks = min(window_size_, history_cursor_ + 1);
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
size_t blocks = min(window_size_, history_cursor_ + 1);
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
|
||||
AddToMean(data[i] * std::conj(data[i]), count_ + 1,
|
||||
&sub_running_mean_sq_[i]);
|
||||
@ -209,7 +209,7 @@ void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
|
||||
sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
||||
running_mean_[i] = complex<float>(0.0f, 0.0f);
|
||||
running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
|
||||
for (int j = 0; j < min(window_size_, history_cursor_); ++j) {
|
||||
for (size_t j = 0; j < min(window_size_, history_cursor_); ++j) {
|
||||
AddToMean(subhistory_[i][j], j + 1, &running_mean_[i]);
|
||||
AddToMean(subhistory_sq_[i][j], j + 1, &running_mean_sq_[i]);
|
||||
}
|
||||
@ -228,7 +228,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
||||
// TODO(ekmeyerson) To mitigate potential divergence, add counter so that
|
||||
// after every so often sums are computed scratch by summing over all
|
||||
// elements instead of subtracting oldest and adding newest.
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
sub_running_mean_[i] += data[i];
|
||||
sub_running_mean_sq_[i] += data[i] * std::conj(data[i]);
|
||||
}
|
||||
@ -239,7 +239,7 @@ void VarianceArray::BlockBasedMovingAverage(const std::complex<float>* data,
|
||||
if (count_ >= kWindowBlockSize) {
|
||||
count_ = 0;
|
||||
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
running_mean_[i] -= subhistory_[i][history_cursor_];
|
||||
running_mean_sq_[i] -= subhistory_sq_[i][history_cursor_];
|
||||
|
||||
@ -280,18 +280,18 @@ void VarianceArray::Clear() {
|
||||
|
||||
void VarianceArray::ApplyScale(float scale) {
|
||||
array_mean_ = 0.0f;
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
variance_[i] *= scale * scale;
|
||||
array_mean_ += (variance_[i] - array_mean_) / (i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
GainApplier::GainApplier(int freqs, float change_limit)
|
||||
GainApplier::GainApplier(size_t freqs, float change_limit)
|
||||
: num_freqs_(freqs),
|
||||
change_limit_(change_limit),
|
||||
target_(new float[freqs]()),
|
||||
current_(new float[freqs]()) {
|
||||
for (int i = 0; i < freqs; ++i) {
|
||||
for (size_t i = 0; i < freqs; ++i) {
|
||||
target_[i] = 1.0f;
|
||||
current_[i] = 1.0f;
|
||||
}
|
||||
@ -299,7 +299,7 @@ GainApplier::GainApplier(int freqs, float change_limit)
|
||||
|
||||
void GainApplier::Apply(const complex<float>* in_block,
|
||||
complex<float>* out_block) {
|
||||
for (int i = 0; i < num_freqs_; ++i) {
|
||||
for (size_t i = 0; i < num_freqs_; ++i) {
|
||||
float factor = sqrtf(fabsf(current_[i]));
|
||||
if (!std::isnormal(factor)) {
|
||||
factor = 1.0f;
|
||||
|
||||
Reference in New Issue
Block a user