Add DataSize and DataRate factories

Bug: webrtc:9709
Change-Id: I8a3af8c62f7ed52de84efb8b1306701fa2e40278
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168606
Commit-Queue: Danil Chapovalov <danilchap@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30533}
This commit is contained in:
Danil Chapovalov
2020-02-17 15:00:07 +01:00
committed by Commit Bot
parent e209fe6c68
commit e638ada5c9
4 changed files with 84 additions and 55 deletions

View File

@ -31,8 +31,26 @@ namespace webrtc {
// second (bps).
class DataRate final : public rtc_units_impl::RelativeUnit<DataRate> {
public:
DataRate() = delete;
template <typename T>
static constexpr DataRate BitsPerSec(T value) {
static_assert(std::is_arithmetic<T>::value, "");
return FromValue(value);
}
template <typename T>
static constexpr DataRate BytesPerSec(T value) {
static_assert(std::is_arithmetic<T>::value, "");
return FromFraction(8, value);
}
template <typename T>
static constexpr DataRate KilobitsPerSec(T value) {
static_assert(std::is_arithmetic<T>::value, "");
return FromFraction(1000, value);
}
static constexpr DataRate Infinity() { return PlusInfinity(); }
DataRate() = delete;
// TODO(danilchap): Migrate all code to the 3 factories above and delete the
// 5 factories below.
template <int64_t bps>
static constexpr DataRate BitsPerSec() {
return FromValue(bps);
@ -103,7 +121,7 @@ inline constexpr int64_t MillibytePerSec(const DataRate& size) {
inline constexpr DataRate operator/(const DataSize size,
const TimeDelta duration) {
return DataRate::bps(data_rate_impl::Microbits(size) / duration.us());
return DataRate::BitsPerSec(data_rate_impl::Microbits(size) / duration.us());
}
inline constexpr TimeDelta operator/(const DataSize size, const DataRate rate) {
return TimeDelta::Micros(data_rate_impl::Microbits(size) / rate.bps());
@ -111,7 +129,7 @@ inline constexpr TimeDelta operator/(const DataSize size, const DataRate rate) {
inline constexpr DataSize operator*(const DataRate rate,
const TimeDelta duration) {
int64_t microbits = rate.bps() * duration.us();
return DataSize::bytes((microbits + 4000000) / 8000000);
return DataSize::Bytes((microbits + 4000000) / 8000000);
}
inline constexpr DataSize operator*(const TimeDelta duration,
const DataRate rate) {
@ -123,7 +141,7 @@ inline constexpr DataSize operator/(const DataRate rate,
int64_t millihertz = frequency.millihertz<int64_t>();
// Note that the value is truncated here reather than rounded, potentially
// introducing an error of .5 bytes if rounding were expected.
return DataSize::bytes(data_rate_impl::MillibytePerSec(rate) / millihertz);
return DataSize::Bytes(data_rate_impl::MillibytePerSec(rate) / millihertz);
}
inline constexpr Frequency operator/(const DataRate rate, const DataSize size) {
return Frequency::MilliHertz(data_rate_impl::MillibytePerSec(rate) /
@ -136,7 +154,7 @@ inline constexpr DataRate operator*(const DataSize size,
frequency.millihertz<int64_t>());
int64_t millibits_per_second =
size.bytes() * 8 * frequency.millihertz<int64_t>();
return DataRate::bps((millibits_per_second + 500) / 1000);
return DataRate::BitsPerSec((millibits_per_second + 500) / 1000);
}
inline constexpr DataRate operator*(const Frequency frequency,
const DataSize size) {

View File

@ -17,8 +17,8 @@ namespace webrtc {
namespace test {
TEST(DataRateTest, CompilesWithChecksAndLogs) {
DataRate a = DataRate::kbps(300);
DataRate b = DataRate::kbps(210);
DataRate a = DataRate::KilobitsPerSec(300);
DataRate b = DataRate::KilobitsPerSec(210);
RTC_CHECK_GT(a, b);
RTC_LOG(LS_INFO) << a;
}
@ -32,8 +32,8 @@ TEST(DataRateTest, ConstExpr) {
static_assert(kDataRateInf.bps_or(-1) == -1, "");
static_assert(kDataRateInf > kDataRateZero, "");
constexpr DataRate kDataRateBps = DataRate::BitsPerSec<kValue>();
constexpr DataRate kDataRateKbps = DataRate::KilobitsPerSec<kValue>();
constexpr DataRate kDataRateBps = DataRate::BitsPerSec(kValue);
constexpr DataRate kDataRateKbps = DataRate::KilobitsPerSec(kValue);
static_assert(kDataRateBps.bps<double>() == kValue, "");
static_assert(kDataRateBps.bps_or(0) == kValue, "");
static_assert(kDataRateKbps.kbps_or(0) == kValue, "");
@ -41,36 +41,36 @@ TEST(DataRateTest, ConstExpr) {
TEST(DataRateTest, GetBackSameValues) {
const int64_t kValue = 123 * 8;
EXPECT_EQ(DataRate::bps(kValue).bps(), kValue);
EXPECT_EQ(DataRate::kbps(kValue).kbps(), kValue);
EXPECT_EQ(DataRate::BitsPerSec(kValue).bps(), kValue);
EXPECT_EQ(DataRate::KilobitsPerSec(kValue).kbps(), kValue);
}
TEST(DataRateTest, GetDifferentPrefix) {
const int64_t kValue = 123 * 8000;
EXPECT_EQ(DataRate::bps(kValue).kbps(), kValue / 1000);
EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps(), kValue / 1000);
}
TEST(DataRateTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(DataRate::Zero().IsZero());
EXPECT_FALSE(DataRate::bps(kValue).IsZero());
EXPECT_FALSE(DataRate::BitsPerSec(kValue).IsZero());
EXPECT_TRUE(DataRate::Infinity().IsInfinite());
EXPECT_FALSE(DataRate::Zero().IsInfinite());
EXPECT_FALSE(DataRate::bps(kValue).IsInfinite());
EXPECT_FALSE(DataRate::BitsPerSec(kValue).IsInfinite());
EXPECT_FALSE(DataRate::Infinity().IsFinite());
EXPECT_TRUE(DataRate::bps(kValue).IsFinite());
EXPECT_TRUE(DataRate::BitsPerSec(kValue).IsFinite());
EXPECT_TRUE(DataRate::Zero().IsFinite());
}
TEST(DataRateTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const DataRate small = DataRate::bps(kSmall);
const DataRate large = DataRate::bps(kLarge);
const DataRate small = DataRate::BitsPerSec(kSmall);
const DataRate large = DataRate::BitsPerSec(kLarge);
EXPECT_EQ(DataRate::Zero(), DataRate::bps(0));
EXPECT_EQ(DataRate::Zero(), DataRate::BitsPerSec(0));
EXPECT_EQ(DataRate::Infinity(), DataRate::Infinity());
EXPECT_EQ(small, small);
EXPECT_LE(small, small);
@ -90,23 +90,23 @@ TEST(DataRateTest, ConvertsToAndFromDouble) {
const double kDoubleKbps = kValue * 1e-3;
const double kFloatKbps = static_cast<float>(kDoubleKbps);
EXPECT_EQ(DataRate::bps(kValue).bps<double>(), kDoubleValue);
EXPECT_EQ(DataRate::bps(kValue).kbps<double>(), kDoubleKbps);
EXPECT_EQ(DataRate::bps(kValue).kbps<float>(), kFloatKbps);
EXPECT_EQ(DataRate::bps(kDoubleValue).bps(), kValue);
EXPECT_EQ(DataRate::kbps(kDoubleKbps).bps(), kValue);
EXPECT_EQ(DataRate::BitsPerSec(kValue).bps<double>(), kDoubleValue);
EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps<double>(), kDoubleKbps);
EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps<float>(), kFloatKbps);
EXPECT_EQ(DataRate::BitsPerSec(kDoubleValue).bps(), kValue);
EXPECT_EQ(DataRate::KilobitsPerSec(kDoubleKbps).bps(), kValue);
const double kInfinity = std::numeric_limits<double>::infinity();
EXPECT_EQ(DataRate::Infinity().bps<double>(), kInfinity);
EXPECT_TRUE(DataRate::bps(kInfinity).IsInfinite());
EXPECT_TRUE(DataRate::kbps(kInfinity).IsInfinite());
EXPECT_TRUE(DataRate::BitsPerSec(kInfinity).IsInfinite());
EXPECT_TRUE(DataRate::KilobitsPerSec(kInfinity).IsInfinite());
}
TEST(DataRateTest, Clamping) {
const DataRate upper = DataRate::kbps(800);
const DataRate lower = DataRate::kbps(100);
const DataRate under = DataRate::kbps(100);
const DataRate inside = DataRate::kbps(500);
const DataRate over = DataRate::kbps(1000);
const DataRate upper = DataRate::KilobitsPerSec(800);
const DataRate lower = DataRate::KilobitsPerSec(100);
const DataRate under = DataRate::KilobitsPerSec(100);
const DataRate inside = DataRate::KilobitsPerSec(500);
const DataRate over = DataRate::KilobitsPerSec(1000);
EXPECT_EQ(under.Clamped(lower, upper), lower);
EXPECT_EQ(inside.Clamped(lower, upper), inside);
EXPECT_EQ(over.Clamped(lower, upper), upper);
@ -125,8 +125,8 @@ TEST(DataRateTest, Clamping) {
TEST(DataRateTest, MathOperations) {
const int64_t kValueA = 450;
const int64_t kValueB = 267;
const DataRate rate_a = DataRate::bps(kValueA);
const DataRate rate_b = DataRate::bps(kValueB);
const DataRate rate_a = DataRate::BitsPerSec(kValueA);
const DataRate rate_b = DataRate::BitsPerSec(kValueB);
const int32_t kInt32Value = 123;
const double kFloatValue = 123.0;
@ -142,7 +142,7 @@ TEST(DataRateTest, MathOperations) {
EXPECT_EQ((rate_a / 10).bps(), kValueA / 10);
EXPECT_NEAR((rate_a / 0.5).bps(), kValueA * 2, 1);
DataRate mutable_rate = DataRate::bps(kValueA);
DataRate mutable_rate = DataRate::BitsPerSec(kValueA);
mutable_rate += rate_b;
EXPECT_EQ(mutable_rate.bps(), kValueA + kValueB);
mutable_rate -= rate_a;
@ -154,8 +154,8 @@ TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) {
const int64_t kBitsPerSecond = 440;
const int64_t kBytes = 44000;
const TimeDelta delta_a = TimeDelta::Seconds(kSeconds);
const DataRate rate_b = DataRate::bps(kBitsPerSecond);
const DataSize size_c = DataSize::bytes(kBytes);
const DataRate rate_b = DataRate::BitsPerSec(kBitsPerSecond);
const DataSize size_c = DataSize::Bytes(kBytes);
EXPECT_EQ((delta_a * rate_b).bytes(), kSeconds * kBitsPerSecond / 8);
EXPECT_EQ((rate_b * delta_a).bytes(), kSeconds * kBitsPerSecond / 8);
EXPECT_EQ((size_c / delta_a).bps(), kBytes * 8 / kSeconds);
@ -167,8 +167,8 @@ TEST(UnitConversionTest, DataRateAndDataSizeAndFrequency) {
const int64_t kBitsPerSecond = 96000;
const int64_t kBytes = 1200;
const Frequency freq_a = Frequency::Hertz(kHertz);
const DataRate rate_b = DataRate::bps(kBitsPerSecond);
const DataSize size_c = DataSize::bytes(kBytes);
const DataRate rate_b = DataRate::BitsPerSec(kBitsPerSecond);
const DataSize size_c = DataSize::Bytes(kBytes);
EXPECT_EQ((freq_a * size_c).bps(), kHertz * kBytes * 8);
EXPECT_EQ((size_c * freq_a).bps(), kHertz * kBytes * 8);
EXPECT_EQ((rate_b / size_c).hertz<int64_t>(), kBitsPerSecond / kBytes / 8);
@ -181,14 +181,14 @@ TEST(UnitConversionTest, DivisionFailsOnLargeSize) {
// the implementation is changed, this test can safely be removed.
const int64_t kJustSmallEnoughForDivision =
std::numeric_limits<int64_t>::max() / 8000000;
const DataSize large_size = DataSize::bytes(kJustSmallEnoughForDivision);
const DataRate data_rate = DataRate::kbps(100);
const DataSize large_size = DataSize::Bytes(kJustSmallEnoughForDivision);
const DataRate data_rate = DataRate::KilobitsPerSec(100);
const TimeDelta time_delta = TimeDelta::Millis(100);
EXPECT_TRUE((large_size / data_rate).IsFinite());
EXPECT_TRUE((large_size / time_delta).IsFinite());
#if GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON
const int64_t kToolargeForDivision = kJustSmallEnoughForDivision + 1;
const DataSize too_large_size = DataSize::bytes(kToolargeForDivision);
const DataSize too_large_size = DataSize::Bytes(kToolargeForDivision);
EXPECT_DEATH(too_large_size / data_rate, "");
EXPECT_DEATH(too_large_size / time_delta, "");
#endif // GTEST_HAS_DEATH_TEST && !!defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON

View File

@ -24,8 +24,16 @@ namespace webrtc {
// DataSize is a class represeting a count of bytes.
class DataSize final : public rtc_units_impl::RelativeUnit<DataSize> {
public:
DataSize() = delete;
template <typename T>
static constexpr DataSize Bytes(T value) {
static_assert(std::is_arithmetic<T>::value, "");
return FromValue(value);
}
static constexpr DataSize Infinity() { return PlusInfinity(); }
DataSize() = delete;
// TODO(danilchap): Migrate all code to the factory above and delete the
// 2 factories below.
template <int64_t bytes>
static constexpr DataSize Bytes() {
return FromValue(bytes);

View File

@ -9,6 +9,9 @@
*/
#include "api/units/data_size.h"
#include <limits>
#include "test/gtest.h"
namespace webrtc {
@ -23,7 +26,7 @@ TEST(DataSizeTest, ConstExpr) {
static_assert(kDataSizeInf.bytes_or(-1) == -1, "");
static_assert(kDataSizeInf > kDataSizeZero, "");
constexpr DataSize kDataSize = DataSize::Bytes<kValue>();
constexpr DataSize kDataSize = DataSize::Bytes(kValue);
static_assert(kDataSize.bytes_or(-1) == kValue, "");
EXPECT_EQ(kDataSize.bytes(), kValue);
@ -31,30 +34,30 @@ TEST(DataSizeTest, ConstExpr) {
TEST(DataSizeTest, GetBackSameValues) {
const int64_t kValue = 123 * 8;
EXPECT_EQ(DataSize::bytes(kValue).bytes(), kValue);
EXPECT_EQ(DataSize::Bytes(kValue).bytes(), kValue);
}
TEST(DataSizeTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(DataSize::Zero().IsZero());
EXPECT_FALSE(DataSize::bytes(kValue).IsZero());
EXPECT_FALSE(DataSize::Bytes(kValue).IsZero());
EXPECT_TRUE(DataSize::Infinity().IsInfinite());
EXPECT_FALSE(DataSize::Zero().IsInfinite());
EXPECT_FALSE(DataSize::bytes(kValue).IsInfinite());
EXPECT_FALSE(DataSize::Bytes(kValue).IsInfinite());
EXPECT_FALSE(DataSize::Infinity().IsFinite());
EXPECT_TRUE(DataSize::bytes(kValue).IsFinite());
EXPECT_TRUE(DataSize::Bytes(kValue).IsFinite());
EXPECT_TRUE(DataSize::Zero().IsFinite());
}
TEST(DataSizeTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const DataSize small = DataSize::bytes(kSmall);
const DataSize large = DataSize::bytes(kLarge);
const DataSize small = DataSize::Bytes(kSmall);
const DataSize large = DataSize::Bytes(kLarge);
EXPECT_EQ(DataSize::Zero(), DataSize::bytes(0));
EXPECT_EQ(DataSize::Zero(), DataSize::Bytes(0));
EXPECT_EQ(DataSize::Infinity(), DataSize::Infinity());
EXPECT_EQ(small, small);
EXPECT_LE(small, small);
@ -72,19 +75,19 @@ TEST(DataSizeTest, ConvertsToAndFromDouble) {
const int64_t kValue = 128;
const double kDoubleValue = static_cast<double>(kValue);
EXPECT_EQ(DataSize::bytes(kValue).bytes<double>(), kDoubleValue);
EXPECT_EQ(DataSize::bytes(kDoubleValue).bytes(), kValue);
EXPECT_EQ(DataSize::Bytes(kValue).bytes<double>(), kDoubleValue);
EXPECT_EQ(DataSize::Bytes(kDoubleValue).bytes(), kValue);
const double kInfinity = std::numeric_limits<double>::infinity();
EXPECT_EQ(DataSize::Infinity().bytes<double>(), kInfinity);
EXPECT_TRUE(DataSize::bytes(kInfinity).IsInfinite());
EXPECT_TRUE(DataSize::Bytes(kInfinity).IsInfinite());
}
TEST(DataSizeTest, MathOperations) {
const int64_t kValueA = 450;
const int64_t kValueB = 267;
const DataSize size_a = DataSize::bytes(kValueA);
const DataSize size_b = DataSize::bytes(kValueB);
const DataSize size_a = DataSize::Bytes(kValueA);
const DataSize size_b = DataSize::Bytes(kValueB);
EXPECT_EQ((size_a + size_b).bytes(), kValueA + kValueB);
EXPECT_EQ((size_a - size_b).bytes(), kValueA - kValueB);
@ -97,7 +100,7 @@ TEST(DataSizeTest, MathOperations) {
EXPECT_EQ((size_a / 10).bytes(), kValueA / 10);
EXPECT_EQ(size_a / size_b, static_cast<double>(kValueA) / kValueB);
DataSize mutable_size = DataSize::bytes(kValueA);
DataSize mutable_size = DataSize::Bytes(kValueA);
mutable_size += size_b;
EXPECT_EQ(mutable_size.bytes(), kValueA + kValueB);
mutable_size -= size_a;