diff --git a/modules/audio_processing/agc2/rnn_vad/rnn_unittest.cc b/modules/audio_processing/agc2/rnn_vad/rnn_unittest.cc index 2e920e8d80..c311b55edc 100644 --- a/modules/audio_processing/agc2/rnn_vad/rnn_unittest.cc +++ b/modules/audio_processing/agc2/rnn_vad/rnn_unittest.cc @@ -30,6 +30,21 @@ namespace rnn_vad { namespace test { namespace { +constexpr std::array kFeatures = { + -1.00131f, -0.627069f, -7.81097f, 7.86285f, -2.87145f, 3.32365f, + -0.653161f, 0.529839f, -0.425307f, 0.25583f, 0.235094f, 0.230527f, + -0.144687f, 0.182785f, 0.57102f, 0.125039f, 0.479482f, -0.0255439f, + -0.0073141f, -0.147346f, -0.217106f, -0.0846906f, -8.34943f, 3.09065f, + 1.42628f, -0.85235f, -0.220207f, -0.811163f, 2.09032f, -2.01425f, + -0.690268f, -0.925327f, -0.541354f, 0.58455f, -0.606726f, -0.0372358f, + 0.565991f, 0.435854f, 0.420812f, 0.162198f, -2.13f, 10.0089f}; + +void WarmUpRnnVad(RnnBasedVad& rnn_vad) { + for (int i = 0; i < 10; ++i) { + rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false); + } +} + void TestFullyConnectedLayer(FullyConnectedLayer* fc, rtc::ArrayView input_vector, rtc::ArrayView expected_output) { @@ -220,6 +235,37 @@ INSTANTIATE_TEST_SUITE_P( return info.param.ToString(); }); +// Checks that the speech probability is zero with silence. +TEST(RnnVadTest, CheckZeroProbabilityWithSilence) { + RnnBasedVad rnn_vad(GetAvailableCpuFeatures()); + WarmUpRnnVad(rnn_vad); + EXPECT_EQ(rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/true), 0.f); +} + +// Checks that the same output is produced after reset given the same input +// sequence. +TEST(RnnVadTest, CheckRnnVadReset) { + RnnBasedVad rnn_vad(GetAvailableCpuFeatures()); + WarmUpRnnVad(rnn_vad); + float pre = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false); + rnn_vad.Reset(); + WarmUpRnnVad(rnn_vad); + float post = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false); + EXPECT_EQ(pre, post); +} + +// Checks that the same output is produced after silence is observed given the +// same input sequence. +TEST(RnnVadTest, CheckRnnVadSilence) { + RnnBasedVad rnn_vad(GetAvailableCpuFeatures()); + WarmUpRnnVad(rnn_vad); + float pre = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false); + rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/true); + WarmUpRnnVad(rnn_vad); + float post = rnn_vad.ComputeVadProbability(kFeatures, /*is_silence=*/false); + EXPECT_EQ(pre, post); +} + } // namespace } // namespace test } // namespace rnn_vad