Revert "Revert "Revert "Reland "Moved congestion controller to task queue.""""

This reverts commit 65792c5a5c542201f7b9feefded505842692e6ed.

Reason for revert: <INSERT REASONING HERE>

Original change's description:
> Revert "Revert "Reland "Moved congestion controller to task queue."""
> 
> This reverts commit 4e849f6925b2ac44b0957a228d7131fc391fca54.
> 
> Reason for revert: <INSERT REASONING HERE>
> 
> Original change's description:
> > Revert "Reland "Moved congestion controller to task queue.""
> > 
> > This reverts commit 57daeb7ac7f3d80992905b53fea500953fcfd793.
> > 
> > Reason for revert: Cause increased congestion and deadlocks in downstream project
> > 
> > Original change's description:
> > > Reland "Moved congestion controller to task queue."
> > > 
> > > This is a reland of 0cbcba7ea0dced1a7f353c64d6cf91d46ccb29f9.
> > > 
> > > Original change's description:
> > > > Moved congestion controller to task queue.
> > > > 
> > > > The goal of this work is to make it easier to experiment with the
> > > > bandwidth estimation implementation. For this reason network control
> > > > functionality is moved from SendSideCongestionController(SSCC),
> > > > PacedSender and BitrateController to the newly created
> > > > GoogCcNetworkController which implements the newly created
> > > > NetworkControllerInterface. This allows the implementation to be
> > > > replaced at runtime in the future.
> > > > 
> > > > This is the first part of a split of a larger CL, see:
> > > > https://webrtc-review.googlesource.com/c/src/+/39788/8
> > > > For further explanations.
> > > > 
> > > > Bug: webrtc:8415
> > > > Change-Id: I770189c04cc31b313bd4e57821acff55fbcb1ad3
> > > > Reviewed-on: https://webrtc-review.googlesource.com/43840
> > > > Commit-Queue: Sebastian Jansson <srte@webrtc.org>
> > > > Reviewed-by: Björn Terelius <terelius@webrtc.org>
> > > > Reviewed-by: Stefan Holmer <stefan@webrtc.org>
> > > > Cr-Commit-Position: refs/heads/master@{#21868}
> > > 
> > > Bug: webrtc:8415
> > > Change-Id: I1d1756a30deed5b421b1c91c1918a13b6bb455da
> > > Reviewed-on: https://webrtc-review.googlesource.com/48000
> > > Reviewed-by: Stefan Holmer <stefan@webrtc.org>
> > > Commit-Queue: Sebastian Jansson <srte@webrtc.org>
> > > Cr-Commit-Position: refs/heads/master@{#21899}
> > 
> > TBR=terelius@webrtc.org,stefan@webrtc.org,srte@webrtc.org
> > 
> > # Not skipping CQ checks because original CL landed > 1 day ago.
> > 
> > Bug: webrtc:8415
> > Change-Id: Ida8074dcac2cc28b3629228eb22846d8a8e81b83
> > Reviewed-on: https://webrtc-review.googlesource.com/52980
> > Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
> > Commit-Queue: Danil Chapovalov <danilchap@webrtc.org>
> > Cr-Commit-Position: refs/heads/master@{#22017}
> 
> TBR=danilchap@webrtc.org,terelius@webrtc.org,stefan@webrtc.org,srte@webrtc.org
> 
> Change-Id: I3393b74370c4f4d0955f50728005b2b925be169b
> No-Presubmit: true
> No-Tree-Checks: true
> No-Try: true
> Bug: webrtc:8415
> Reviewed-on: https://webrtc-review.googlesource.com/53262
> Reviewed-by: Sebastian Jansson <srte@webrtc.org>
> Commit-Queue: Sebastian Jansson <srte@webrtc.org>
> Cr-Commit-Position: refs/heads/master@{#22023}

TBR=danilchap@webrtc.org,terelius@webrtc.org,stefan@webrtc.org,srte@webrtc.org

Change-Id: Id68ad986ee51142b7be3381d0793709b4392fe2c
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: webrtc:8415
Reviewed-on: https://webrtc-review.googlesource.com/53360
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#22024}
This commit is contained in:
Sebastian Jansson
2018-02-14 16:53:38 +00:00
committed by Commit Bot
parent 65792c5a5c
commit ea86bb74fc
57 changed files with 844 additions and 3006 deletions

View File

@ -46,8 +46,7 @@ const RtpKeepAliveConfig& RtpTransportControllerSend::keepalive_config() const {
void RtpTransportControllerSend::SetAllocatedSendBitrateLimits( void RtpTransportControllerSend::SetAllocatedSendBitrateLimits(
int min_send_bitrate_bps, int min_send_bitrate_bps,
int max_padding_bitrate_bps) { int max_padding_bitrate_bps) {
send_side_cc_.SetSendBitrateLimits(min_send_bitrate_bps, pacer_.SetSendBitrateLimits(min_send_bitrate_bps, max_padding_bitrate_bps);
max_padding_bitrate_bps);
} }
void RtpTransportControllerSend::SetKeepAliveConfig( void RtpTransportControllerSend::SetKeepAliveConfig(

View File

@ -340,11 +340,11 @@ TEST_F(BitrateControllerTest, OneBitrateObserverMultipleReportBlocks) {
report_blocks.clear(); report_blocks.clear();
// All packets lost on stream with few packets, no back-off. // All packets lost on stream with few packets, no back-off.
report_blocks.push_back(CreateReportBlock(1, 2, 0, sequence_number[0])); report_blocks.push_back(CreateReportBlock(1, 2, 1, sequence_number[0]));
report_blocks.push_back(CreateReportBlock(1, 3, 255, sequence_number[1])); report_blocks.push_back(CreateReportBlock(1, 3, 255, sequence_number[1]));
bandwidth_observer_->OnReceivedRtcpReceiverReport(report_blocks, 50, time_ms); bandwidth_observer_->OnReceivedRtcpReceiverReport(report_blocks, 50, time_ms);
EXPECT_EQ(bitrate_observer_.last_bitrate_, last_bitrate); EXPECT_EQ(bitrate_observer_.last_bitrate_, last_bitrate);
EXPECT_EQ(WeightedLoss(20, 0, 1, 255), bitrate_observer_.last_fraction_loss_); EXPECT_EQ(WeightedLoss(20, 1, 1, 255), bitrate_observer_.last_fraction_loss_);
EXPECT_EQ(50, bitrate_observer_.last_rtt_); EXPECT_EQ(50, bitrate_observer_.last_rtt_);
last_bitrate = bitrate_observer_.last_bitrate_; last_bitrate = bitrate_observer_.last_bitrate_;
sequence_number[0] += 20; sequence_number[0] += 20;

View File

@ -105,7 +105,7 @@ bool ReadBweLossExperimentParameters(float* low_loss_threshold,
} // namespace } // namespace
SendSideBandwidthEstimation::SendSideBandwidthEstimation(RtcEventLog* event_log) SendSideBandwidthEstimation::SendSideBandwidthEstimation(RtcEventLog* event_log)
: lost_packets_since_last_loss_update_(0), : lost_packets_since_last_loss_update_Q8_(0),
expected_packets_since_last_loss_update_(0), expected_packets_since_last_loss_update_(0),
current_bitrate_bps_(0), current_bitrate_bps_(0),
min_bitrate_configured_(congestion_controller::GetMinBitrateBps()), min_bitrate_configured_(congestion_controller::GetMinBitrateBps()),
@ -125,7 +125,6 @@ SendSideBandwidthEstimation::SendSideBandwidthEstimation(RtcEventLog* event_log)
initially_lost_packets_(0), initially_lost_packets_(0),
bitrate_at_2_seconds_kbps_(0), bitrate_at_2_seconds_kbps_(0),
uma_update_state_(kNoUpdate), uma_update_state_(kNoUpdate),
uma_rtt_state_(kNoUpdate),
rampup_uma_stats_updated_(kNumUmaRampupMetrics, false), rampup_uma_stats_updated_(kNumUmaRampupMetrics, false),
event_log_(event_log), event_log_(event_log),
last_rtc_event_log_ms_(-1), last_rtc_event_log_ms_(-1),
@ -207,28 +206,24 @@ void SendSideBandwidthEstimation::UpdateDelayBasedEstimate(
} }
void SendSideBandwidthEstimation::UpdateReceiverBlock(uint8_t fraction_loss, void SendSideBandwidthEstimation::UpdateReceiverBlock(uint8_t fraction_loss,
int64_t rtt_ms, int64_t rtt,
int number_of_packets, int number_of_packets,
int64_t now_ms) { int64_t now_ms) {
const int kRoundingConstant = 128;
int packets_lost = (static_cast<int>(fraction_loss) * number_of_packets +
kRoundingConstant) >>
8;
UpdatePacketsLost(packets_lost, number_of_packets, now_ms);
UpdateRtt(rtt_ms, now_ms);
}
void SendSideBandwidthEstimation::UpdatePacketsLost(int packets_lost,
int number_of_packets,
int64_t now_ms) {
last_feedback_ms_ = now_ms; last_feedback_ms_ = now_ms;
if (first_report_time_ms_ == -1) if (first_report_time_ms_ == -1)
first_report_time_ms_ = now_ms; first_report_time_ms_ = now_ms;
// Update RTT if we were able to compute an RTT based on this RTCP.
// FlexFEC doesn't send RTCP SR, which means we won't be able to compute RTT.
if (rtt > 0)
last_round_trip_time_ms_ = rtt;
// Check sequence number diff and weight loss report // Check sequence number diff and weight loss report
if (number_of_packets > 0) { if (number_of_packets > 0) {
// Calculate number of lost packets.
const int num_lost_packets_Q8 = fraction_loss * number_of_packets;
// Accumulate reports. // Accumulate reports.
lost_packets_since_last_loss_update_ += packets_lost; lost_packets_since_last_loss_update_Q8_ += num_lost_packets_Q8;
expected_packets_since_last_loss_update_ += number_of_packets; expected_packets_since_last_loss_update_ += number_of_packets;
// Don't generate a loss rate until it can be based on enough packets. // Don't generate a loss rate until it can be based on enough packets.
@ -236,22 +231,21 @@ void SendSideBandwidthEstimation::UpdatePacketsLost(int packets_lost,
return; return;
has_decreased_since_last_fraction_loss_ = false; has_decreased_since_last_fraction_loss_ = false;
int64_t lost_q8 = lost_packets_since_last_loss_update_ << 8; last_fraction_loss_ = lost_packets_since_last_loss_update_Q8_ /
int64_t expected = expected_packets_since_last_loss_update_; expected_packets_since_last_loss_update_;
last_fraction_loss_ = std::min<int>(lost_q8 / expected, 255);
// Reset accumulators. // Reset accumulators.
lost_packets_since_last_loss_update_Q8_ = 0;
lost_packets_since_last_loss_update_ = 0;
expected_packets_since_last_loss_update_ = 0; expected_packets_since_last_loss_update_ = 0;
last_packet_report_ms_ = now_ms; last_packet_report_ms_ = now_ms;
UpdateEstimate(now_ms); UpdateEstimate(now_ms);
} }
UpdateUmaStatsPacketsLost(now_ms, packets_lost); UpdateUmaStats(now_ms, rtt, (fraction_loss * number_of_packets) >> 8);
} }
void SendSideBandwidthEstimation::UpdateUmaStatsPacketsLost(int64_t now_ms, void SendSideBandwidthEstimation::UpdateUmaStats(int64_t now_ms,
int packets_lost) { int64_t rtt,
int lost_packets) {
int bitrate_kbps = static_cast<int>((current_bitrate_bps_ + 500) / 1000); int bitrate_kbps = static_cast<int>((current_bitrate_bps_ + 500) / 1000);
for (size_t i = 0; i < kNumUmaRampupMetrics; ++i) { for (size_t i = 0; i < kNumUmaRampupMetrics; ++i) {
if (!rampup_uma_stats_updated_[i] && if (!rampup_uma_stats_updated_[i] &&
@ -262,12 +256,14 @@ void SendSideBandwidthEstimation::UpdateUmaStatsPacketsLost(int64_t now_ms,
} }
} }
if (IsInStartPhase(now_ms)) { if (IsInStartPhase(now_ms)) {
initially_lost_packets_ += packets_lost; initially_lost_packets_ += lost_packets;
} else if (uma_update_state_ == kNoUpdate) { } else if (uma_update_state_ == kNoUpdate) {
uma_update_state_ = kFirstDone; uma_update_state_ = kFirstDone;
bitrate_at_2_seconds_kbps_ = bitrate_kbps; bitrate_at_2_seconds_kbps_ = bitrate_kbps;
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitiallyLostPackets", RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitiallyLostPackets",
initially_lost_packets_, 0, 100, 50); initially_lost_packets_, 0, 100, 50);
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialRtt", static_cast<int>(rtt), 0,
2000, 50);
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialBandwidthEstimate", RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialBandwidthEstimate",
bitrate_at_2_seconds_kbps_, 0, 2000, 50); bitrate_at_2_seconds_kbps_, 0, 2000, 50);
} else if (uma_update_state_ == kFirstDone && } else if (uma_update_state_ == kFirstDone &&
@ -280,19 +276,6 @@ void SendSideBandwidthEstimation::UpdateUmaStatsPacketsLost(int64_t now_ms,
} }
} }
void SendSideBandwidthEstimation::UpdateRtt(int64_t rtt_ms, int64_t now_ms) {
// Update RTT if we were able to compute an RTT based on this RTCP.
// FlexFEC doesn't send RTCP SR, which means we won't be able to compute RTT.
if (rtt_ms > 0)
last_round_trip_time_ms_ = rtt_ms;
if (!IsInStartPhase(now_ms) && uma_rtt_state_ == kNoUpdate) {
uma_rtt_state_ = kDone;
RTC_HISTOGRAM_COUNTS("WebRTC.BWE.InitialRtt", static_cast<int>(rtt_ms), 0,
2000, 50);
}
}
void SendSideBandwidthEstimation::UpdateEstimate(int64_t now_ms) { void SendSideBandwidthEstimation::UpdateEstimate(int64_t now_ms) {
uint32_t new_bitrate = current_bitrate_bps_; uint32_t new_bitrate = current_bitrate_bps_;
// We trust the REMB and/or delay-based estimate during the first 2 seconds if // We trust the REMB and/or delay-based estimate during the first 2 seconds if
@ -374,7 +357,7 @@ void SendSideBandwidthEstimation::UpdateEstimate(int64_t now_ms) {
new_bitrate *= 0.8; new_bitrate *= 0.8;
// Reset accumulators since we've already acted on missing feedback and // Reset accumulators since we've already acted on missing feedback and
// shouldn't to act again on these old lost packets. // shouldn't to act again on these old lost packets.
lost_packets_since_last_loss_update_ = 0; lost_packets_since_last_loss_update_Q8_ = 0;
expected_packets_since_last_loss_update_ = 0; expected_packets_since_last_loss_update_ = 0;
last_timeout_ms_ = now_ms; last_timeout_ms_ = now_ms;
} }

View File

@ -42,18 +42,10 @@ class SendSideBandwidthEstimation {
// Call when we receive a RTCP message with a ReceiveBlock. // Call when we receive a RTCP message with a ReceiveBlock.
void UpdateReceiverBlock(uint8_t fraction_loss, void UpdateReceiverBlock(uint8_t fraction_loss,
int64_t rtt_ms, int64_t rtt,
int number_of_packets, int number_of_packets,
int64_t now_ms); int64_t now_ms);
// Call when we receive a RTCP message with a ReceiveBlock.
void UpdatePacketsLost(int packets_lost,
int number_of_packets,
int64_t now_ms);
// Call when we receive a RTCP message with a ReceiveBlock.
void UpdateRtt(int64_t rtt, int64_t now_ms);
void SetBitrates(int send_bitrate, void SetBitrates(int send_bitrate,
int min_bitrate, int min_bitrate,
int max_bitrate); int max_bitrate);
@ -66,7 +58,7 @@ class SendSideBandwidthEstimation {
bool IsInStartPhase(int64_t now_ms) const; bool IsInStartPhase(int64_t now_ms) const;
void UpdateUmaStatsPacketsLost(int64_t now_ms, int packets_lost); void UpdateUmaStats(int64_t now_ms, int64_t rtt, int lost_packets);
// Updates history of min bitrates. // Updates history of min bitrates.
// After this method returns min_bitrate_history_.front().second contains the // After this method returns min_bitrate_history_.front().second contains the
@ -80,7 +72,7 @@ class SendSideBandwidthEstimation {
std::deque<std::pair<int64_t, uint32_t> > min_bitrate_history_; std::deque<std::pair<int64_t, uint32_t> > min_bitrate_history_;
// incoming filters // incoming filters
int lost_packets_since_last_loss_update_; int lost_packets_since_last_loss_update_Q8_;
int expected_packets_since_last_loss_update_; int expected_packets_since_last_loss_update_;
uint32_t current_bitrate_bps_; uint32_t current_bitrate_bps_;
@ -103,7 +95,6 @@ class SendSideBandwidthEstimation {
int initially_lost_packets_; int initially_lost_packets_;
int bitrate_at_2_seconds_kbps_; int bitrate_at_2_seconds_kbps_;
UmaState uma_update_state_; UmaState uma_update_state_;
UmaState uma_rtt_state_;
std::vector<bool> rampup_uma_stats_updated_; std::vector<bool> rampup_uma_stats_updated_;
RtcEventLog* event_log_; RtcEventLog* event_log_;
int64_t last_rtc_event_log_ms_; int64_t last_rtc_event_log_ms_;

View File

@ -22,8 +22,8 @@ rtc_static_library("congestion_controller") {
sources = [ sources = [
"include/receive_side_congestion_controller.h", "include/receive_side_congestion_controller.h",
"include/send_side_congestion_controller.h", "include/send_side_congestion_controller.h",
"pacer_controller.cc", "probe_controller.cc",
"pacer_controller.h", "probe_controller.h",
"receive_side_congestion_controller.cc", "receive_side_congestion_controller.cc",
"send_side_congestion_controller.cc", "send_side_congestion_controller.cc",
] ]
@ -37,14 +37,13 @@ rtc_static_library("congestion_controller") {
} }
deps = [ deps = [
":goog_cc", ":delay_based_bwe",
":estimators",
":transport_feedback", ":transport_feedback",
"..:module_api", "..:module_api",
"../..:webrtc_common", "../..:webrtc_common",
"../../rtc_base:checks", "../../rtc_base:checks",
"../../rtc_base:rate_limiter", "../../rtc_base:rate_limiter",
"../../rtc_base:rtc_task_queue_api",
"../../rtc_base:sequenced_task_checker",
"../../system_wrappers", "../../system_wrappers",
"../../system_wrappers:field_trial_api", "../../system_wrappers:field_trial_api",
"../../system_wrappers:metrics_api", "../../system_wrappers:metrics_api",
@ -53,7 +52,6 @@ rtc_static_library("congestion_controller") {
"../pacing", "../pacing",
"../remote_bitrate_estimator", "../remote_bitrate_estimator",
"../rtp_rtcp:rtp_rtcp_format", "../rtp_rtcp:rtp_rtcp_format",
"./network_control",
] ]
if (!build_with_mozilla) { if (!build_with_mozilla) {
@ -71,57 +69,14 @@ rtc_static_library("transport_feedback") {
] ]
deps = [ deps = [
"..:module_api", "../../modules:module_api",
"../../rtc_base:checks", "../../rtc_base:checks",
"../../rtc_base:rtc_base_approved", "../../rtc_base:rtc_base_approved",
"../../system_wrappers", "../../system_wrappers:system_wrappers",
"../rtp_rtcp:rtp_rtcp_format", "../rtp_rtcp:rtp_rtcp_format",
] ]
} }
rtc_static_library("goog_cc") {
configs += [ ":bwe_test_logging" ]
sources = [
"alr_detector.cc",
"alr_detector.h",
"goog_cc_network_control.cc",
"goog_cc_network_control.h",
"include/goog_cc_factory.h",
"probe_controller.cc",
"probe_controller.h",
]
# TODO(jschuh): Bug 1348: fix this warning.
configs += [ "//build/config/compiler:no_size_t_to_int_warning" ]
if (!build_with_chromium && is_clang) {
# Suppress warnings from the Chromium Clang plugin (bugs.webrtc.org/163).
suppressed_configs += [ "//build/config/clang:find_bad_constructs" ]
}
deps = [
":delay_based_bwe",
":estimators",
"..:module_api",
"../..:webrtc_common",
"../../:typedefs",
"../../api:optional",
"../../logging:rtc_event_log_api",
"../../logging:rtc_event_pacing",
"../../rtc_base:checks",
"../../rtc_base:rtc_base_approved",
"../../rtc_base/experiments:alr_experiment",
"../../system_wrappers",
"../../system_wrappers:field_trial_api",
"../../system_wrappers:metrics_api",
"../bitrate_controller",
"../pacing",
"../remote_bitrate_estimator",
"../rtp_rtcp:rtp_rtcp_format",
"./network_control",
]
}
rtc_source_set("estimators") { rtc_source_set("estimators") {
configs += [ ":bwe_test_logging" ] configs += [ ":bwe_test_logging" ]
sources = [ sources = [
@ -155,7 +110,7 @@ rtc_source_set("estimators") {
"../../rtc_base:rtc_numerics", "../../rtc_base:rtc_numerics",
"../../system_wrappers:field_trial_api", "../../system_wrappers:field_trial_api",
"../../system_wrappers:metrics_api", "../../system_wrappers:metrics_api",
"../remote_bitrate_estimator", "../remote_bitrate_estimator:remote_bitrate_estimator",
"../rtp_rtcp:rtp_rtcp_format", "../rtp_rtcp:rtp_rtcp_format",
] ]
} }
@ -190,16 +145,25 @@ if (rtc_include_tests) {
testonly = true testonly = true
sources = [ sources = [
"acknowledged_bitrate_estimator_unittest.cc",
"congestion_controller_unittests_helper.cc", "congestion_controller_unittests_helper.cc",
"congestion_controller_unittests_helper.h", "congestion_controller_unittests_helper.h",
"delay_based_bwe_unittest.cc",
"delay_based_bwe_unittest_helper.cc",
"delay_based_bwe_unittest_helper.h",
"median_slope_estimator_unittest.cc",
"probe_bitrate_estimator_unittest.cc",
"probe_controller_unittest.cc",
"receive_side_congestion_controller_unittest.cc", "receive_side_congestion_controller_unittest.cc",
"send_side_congestion_controller_unittest.cc", "send_side_congestion_controller_unittest.cc",
"send_time_history_unittest.cc", "send_time_history_unittest.cc",
"transport_feedback_adapter_unittest.cc", "transport_feedback_adapter_unittest.cc",
"trendline_estimator_unittest.cc",
] ]
deps = [ deps = [
":congestion_controller", ":congestion_controller",
":goog_cc_unittests", ":delay_based_bwe",
":estimators",
":mock_congestion_controller", ":mock_congestion_controller",
":transport_feedback", ":transport_feedback",
"../../logging:mocks", "../../logging:mocks",
@ -210,51 +174,12 @@ if (rtc_include_tests) {
"../../system_wrappers", "../../system_wrappers",
"../../test:field_trial", "../../test:field_trial",
"../../test:test_support", "../../test:test_support",
"../bitrate_controller:bitrate_controller",
"../bitrate_controller:mocks", "../bitrate_controller:mocks",
"../pacing:mock_paced_sender", "../pacing:mock_paced_sender",
"../pacing:pacing", "../pacing:pacing",
"../remote_bitrate_estimator:remote_bitrate_estimator", "../remote_bitrate_estimator:remote_bitrate_estimator",
"../rtp_rtcp:rtp_rtcp_format", "../rtp_rtcp:rtp_rtcp_format",
"./network_control",
"//testing/gmock",
]
if (!build_with_chromium && is_clang) {
# Suppress warnings from the Chromium Clang plugin (bugs.webrtc.org/163).
suppressed_configs += [ "//build/config/clang:find_bad_constructs" ]
}
}
rtc_source_set("goog_cc_unittests") {
testonly = true
sources = [
"acknowledged_bitrate_estimator_unittest.cc",
"alr_detector_unittest.cc",
"delay_based_bwe_unittest.cc",
"delay_based_bwe_unittest_helper.cc",
"delay_based_bwe_unittest_helper.h",
"median_slope_estimator_unittest.cc",
"probe_bitrate_estimator_unittest.cc",
"probe_controller_unittest.cc",
"trendline_estimator_unittest.cc",
]
deps = [
":delay_based_bwe",
":estimators",
":goog_cc",
"../../rtc_base:checks",
"../../rtc_base:rtc_base_approved",
"../../rtc_base:rtc_base_tests_utils",
"../../rtc_base/experiments:alr_experiment",
"../../system_wrappers",
"../../test:field_trial",
"../../test:test_support",
"../pacing",
"../remote_bitrate_estimator",
"../rtp_rtcp:rtp_rtcp_format",
"./network_control",
"./network_control:network_control_unittests",
"//testing/gmock",
] ]
if (!build_with_chromium && is_clang) { if (!build_with_chromium && is_clang) {
# Suppress warnings from the Chromium Clang plugin (bugs.webrtc.org/163). # Suppress warnings from the Chromium Clang plugin (bugs.webrtc.org/163).

View File

@ -27,8 +27,6 @@ bool IsInSendTimeHistory(const PacketFeedback& packet) {
AcknowledgedBitrateEstimator::AcknowledgedBitrateEstimator() AcknowledgedBitrateEstimator::AcknowledgedBitrateEstimator()
: AcknowledgedBitrateEstimator(rtc::MakeUnique<BitrateEstimator>()) {} : AcknowledgedBitrateEstimator(rtc::MakeUnique<BitrateEstimator>()) {}
AcknowledgedBitrateEstimator::~AcknowledgedBitrateEstimator() {}
AcknowledgedBitrateEstimator::AcknowledgedBitrateEstimator( AcknowledgedBitrateEstimator::AcknowledgedBitrateEstimator(
std::unique_ptr<BitrateEstimator> bitrate_estimator) std::unique_ptr<BitrateEstimator> bitrate_estimator)
: bitrate_estimator_(std::move(bitrate_estimator)) {} : bitrate_estimator_(std::move(bitrate_estimator)) {}

View File

@ -27,7 +27,6 @@ class AcknowledgedBitrateEstimator {
std::unique_ptr<BitrateEstimator> bitrate_estimator); std::unique_ptr<BitrateEstimator> bitrate_estimator);
AcknowledgedBitrateEstimator(); AcknowledgedBitrateEstimator();
~AcknowledgedBitrateEstimator();
void IncomingPacketFeedbackVector( void IncomingPacketFeedbackVector(
const std::vector<PacketFeedback>& packet_feedback_vector); const std::vector<PacketFeedback>& packet_feedback_vector);

View File

@ -85,8 +85,9 @@ DelayBasedBwe::Result::Result(bool probe, uint32_t target_bitrate_bps)
DelayBasedBwe::Result::~Result() {} DelayBasedBwe::Result::~Result() {}
DelayBasedBwe::DelayBasedBwe(RtcEventLog* event_log) DelayBasedBwe::DelayBasedBwe(RtcEventLog* event_log, const Clock* clock)
: event_log_(event_log), : event_log_(event_log),
clock_(clock),
inter_arrival_(), inter_arrival_(),
delay_detector_(), delay_detector_(),
last_seen_packet_ms_(-1), last_seen_packet_ms_(-1),
@ -113,8 +114,7 @@ DelayBasedBwe::~DelayBasedBwe() {}
DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedbackVector( DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedbackVector(
const std::vector<PacketFeedback>& packet_feedback_vector, const std::vector<PacketFeedback>& packet_feedback_vector,
rtc::Optional<uint32_t> acked_bitrate_bps, rtc::Optional<uint32_t> acked_bitrate_bps) {
int64_t at_time_ms) {
RTC_DCHECK(std::is_sorted(packet_feedback_vector.begin(), RTC_DCHECK(std::is_sorted(packet_feedback_vector.begin(),
packet_feedback_vector.end(), packet_feedback_vector.end(),
PacketFeedbackComparator())); PacketFeedbackComparator()));
@ -141,7 +141,7 @@ DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedbackVector(
if (packet_feedback.send_time_ms < 0) if (packet_feedback.send_time_ms < 0)
continue; continue;
delayed_feedback = false; delayed_feedback = false;
IncomingPacketFeedback(packet_feedback, at_time_ms); IncomingPacketFeedback(packet_feedback);
if (prev_detector_state == BandwidthUsage::kBwUnderusing && if (prev_detector_state == BandwidthUsage::kBwUnderusing &&
delay_detector_->State() == BandwidthUsage::kBwNormal) { delay_detector_->State() == BandwidthUsage::kBwNormal) {
recovered_from_overuse = true; recovered_from_overuse = true;
@ -157,8 +157,7 @@ DelayBasedBwe::Result DelayBasedBwe::IncomingPacketFeedbackVector(
} }
} else { } else {
consecutive_delayed_feedbacks_ = 0; consecutive_delayed_feedbacks_ = 0;
return MaybeUpdateEstimate(acked_bitrate_bps, recovered_from_overuse, return MaybeUpdateEstimate(acked_bitrate_bps, recovered_from_overuse);
at_time_ms);
} }
return Result(); return Result();
} }
@ -181,9 +180,8 @@ DelayBasedBwe::Result DelayBasedBwe::OnLongFeedbackDelay(
} }
void DelayBasedBwe::IncomingPacketFeedback( void DelayBasedBwe::IncomingPacketFeedback(
const PacketFeedback& packet_feedback, const PacketFeedback& packet_feedback) {
int64_t at_time_ms) { int64_t now_ms = clock_->TimeInMilliseconds();
int64_t now_ms = at_time_ms;
// Reset if the stream has timed out. // Reset if the stream has timed out.
if (last_seen_packet_ms_ == -1 || if (last_seen_packet_ms_ == -1 ||
now_ms - last_seen_packet_ms_ > kStreamTimeOutMs) { now_ms - last_seen_packet_ms_ > kStreamTimeOutMs) {
@ -225,10 +223,9 @@ void DelayBasedBwe::IncomingPacketFeedback(
DelayBasedBwe::Result DelayBasedBwe::MaybeUpdateEstimate( DelayBasedBwe::Result DelayBasedBwe::MaybeUpdateEstimate(
rtc::Optional<uint32_t> acked_bitrate_bps, rtc::Optional<uint32_t> acked_bitrate_bps,
bool recovered_from_overuse, bool recovered_from_overuse) {
int64_t at_time_ms) {
Result result; Result result;
int64_t now_ms = at_time_ms; int64_t now_ms = clock_->TimeInMilliseconds();
rtc::Optional<int> probe_bitrate_bps = rtc::Optional<int> probe_bitrate_bps =
probe_bitrate_estimator_.FetchAndResetLastEstimatedBitrateBps(); probe_bitrate_estimator_.FetchAndResetLastEstimatedBitrateBps();
@ -292,7 +289,7 @@ bool DelayBasedBwe::UpdateEstimate(int64_t now_ms,
return rate_control_.ValidEstimate(); return rate_control_.ValidEstimate();
} }
void DelayBasedBwe::OnRttUpdate(int64_t avg_rtt_ms) { void DelayBasedBwe::OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) {
rate_control_.SetRtt(avg_rtt_ms); rate_control_.SetRtt(avg_rtt_ms);
} }

View File

@ -42,14 +42,13 @@ class DelayBasedBwe {
bool recovered_from_overuse; bool recovered_from_overuse;
}; };
explicit DelayBasedBwe(RtcEventLog* event_log); DelayBasedBwe(RtcEventLog* event_log, const Clock* clock);
virtual ~DelayBasedBwe(); virtual ~DelayBasedBwe();
Result IncomingPacketFeedbackVector( Result IncomingPacketFeedbackVector(
const std::vector<PacketFeedback>& packet_feedback_vector, const std::vector<PacketFeedback>& packet_feedback_vector,
rtc::Optional<uint32_t> acked_bitrate_bps, rtc::Optional<uint32_t> acked_bitrate_bps);
int64_t at_time_ms); void OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms);
void OnRttUpdate(int64_t avg_rtt_ms);
bool LatestEstimate(std::vector<uint32_t>* ssrcs, bool LatestEstimate(std::vector<uint32_t>* ssrcs,
uint32_t* bitrate_bps) const; uint32_t* bitrate_bps) const;
void SetStartBitrate(int start_bitrate_bps); void SetStartBitrate(int start_bitrate_bps);
@ -57,12 +56,10 @@ class DelayBasedBwe {
int64_t GetExpectedBwePeriodMs() const; int64_t GetExpectedBwePeriodMs() const;
private: private:
void IncomingPacketFeedback(const PacketFeedback& packet_feedback, void IncomingPacketFeedback(const PacketFeedback& packet_feedback);
int64_t at_time_ms);
Result OnLongFeedbackDelay(int64_t arrival_time_ms); Result OnLongFeedbackDelay(int64_t arrival_time_ms);
Result MaybeUpdateEstimate(rtc::Optional<uint32_t> acked_bitrate_bps, Result MaybeUpdateEstimate(rtc::Optional<uint32_t> acked_bitrate_bps,
bool request_probe, bool request_probe);
int64_t at_time_ms);
// Updates the current remote rate estimate and returns true if a valid // Updates the current remote rate estimate and returns true if a valid
// estimate exists. // estimate exists.
bool UpdateEstimate(int64_t now_ms, bool UpdateEstimate(int64_t now_ms,
@ -71,6 +68,7 @@ class DelayBasedBwe {
rtc::RaceChecker network_race_; rtc::RaceChecker network_race_;
RtcEventLog* const event_log_; RtcEventLog* const event_log_;
const Clock* const clock_;
std::unique_ptr<InterArrival> inter_arrival_; std::unique_ptr<InterArrival> inter_arrival_;
std::unique_ptr<DelayIncreaseDetectorInterface> delay_detector_; std::unique_ptr<DelayIncreaseDetectorInterface> delay_detector_;
int64_t last_seen_packet_ms_; int64_t last_seen_packet_ms_;

View File

@ -24,13 +24,12 @@ constexpr int kNumProbesCluster1 = 8;
const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000); const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000);
const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000); const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000);
constexpr float kTargetUtilizationFraction = 0.95f; constexpr float kTargetUtilizationFraction = 0.95f;
constexpr int64_t kDummyTimestamp = 1000;
} // namespace } // namespace
TEST_F(DelayBasedBweTest, NoCrashEmptyFeedback) { TEST_F(DelayBasedBweTest, NoCrashEmptyFeedback) {
std::vector<PacketFeedback> packet_feedback_vector; std::vector<PacketFeedback> packet_feedback_vector;
bitrate_estimator_->IncomingPacketFeedbackVector( bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
packet_feedback_vector, rtc::nullopt, kDummyTimestamp); rtc::nullopt);
} }
TEST_F(DelayBasedBweTest, NoCrashOnlyLostFeedback) { TEST_F(DelayBasedBweTest, NoCrashOnlyLostFeedback) {
@ -41,8 +40,8 @@ TEST_F(DelayBasedBweTest, NoCrashOnlyLostFeedback) {
packet_feedback_vector.push_back(PacketFeedback(PacketFeedback::kNotReceived, packet_feedback_vector.push_back(PacketFeedback(PacketFeedback::kNotReceived,
PacketFeedback::kNoSendTime, PacketFeedback::kNoSendTime,
1, 1500, PacedPacketInfo())); 1, 1500, PacedPacketInfo()));
bitrate_estimator_->IncomingPacketFeedbackVector( bitrate_estimator_->IncomingPacketFeedbackVector(packet_feedback_vector,
packet_feedback_vector, rtc::nullopt, kDummyTimestamp); rtc::nullopt);
} }
TEST_F(DelayBasedBweTest, ProbeDetection) { TEST_F(DelayBasedBweTest, ProbeDetection) {

View File

@ -152,7 +152,7 @@ DelayBasedBweTest::DelayBasedBweTest()
: clock_(100000000), : clock_(100000000),
acknowledged_bitrate_estimator_( acknowledged_bitrate_estimator_(
rtc::MakeUnique<AcknowledgedBitrateEstimator>()), rtc::MakeUnique<AcknowledgedBitrateEstimator>()),
bitrate_estimator_(new DelayBasedBwe(nullptr)), bitrate_estimator_(new DelayBasedBwe(nullptr, &clock_)),
stream_generator_(new test::StreamGenerator(1e6, // Capacity. stream_generator_(new test::StreamGenerator(1e6, // Capacity.
clock_.TimeInMicroseconds())), clock_.TimeInMicroseconds())),
arrival_time_offset_ms_(0), arrival_time_offset_ms_(0),
@ -187,8 +187,7 @@ void DelayBasedBweTest::IncomingFeedback(int64_t arrival_time_ms,
acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(packets); acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(packets);
DelayBasedBwe::Result result = DelayBasedBwe::Result result =
bitrate_estimator_->IncomingPacketFeedbackVector( bitrate_estimator_->IncomingPacketFeedbackVector(
packets, acknowledged_bitrate_estimator_->bitrate_bps(), packets, acknowledged_bitrate_estimator_->bitrate_bps());
clock_.TimeInMilliseconds());
const uint32_t kDummySsrc = 0; const uint32_t kDummySsrc = 0;
if (result.updated) { if (result.updated) {
bitrate_observer_.OnReceiveBitrateChanged({kDummySsrc}, bitrate_observer_.OnReceiveBitrateChanged({kDummySsrc},
@ -223,8 +222,7 @@ bool DelayBasedBweTest::GenerateAndProcessFrame(uint32_t ssrc,
acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(packets); acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(packets);
DelayBasedBwe::Result result = DelayBasedBwe::Result result =
bitrate_estimator_->IncomingPacketFeedbackVector( bitrate_estimator_->IncomingPacketFeedbackVector(
packets, acknowledged_bitrate_estimator_->bitrate_bps(), packets, acknowledged_bitrate_estimator_->bitrate_bps());
clock_.TimeInMilliseconds());
const uint32_t kDummySsrc = 0; const uint32_t kDummySsrc = 0;
if (result.updated) { if (result.updated) {
bitrate_observer_.OnReceiveBitrateChanged({kDummySsrc}, bitrate_observer_.OnReceiveBitrateChanged({kDummySsrc},

View File

@ -1,425 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc_network_control.h"
#include <algorithm>
#include <functional>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "modules/congestion_controller/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/alr_detector.h"
#include "modules/congestion_controller/include/goog_cc_factory.h"
#include "modules/congestion_controller/probe_controller.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "rtc_base/checks.h"
#include "rtc_base/format_macros.h"
#include "rtc_base/logging.h"
#include "rtc_base/ptr_util.h"
#include "rtc_base/timeutils.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
const char kCwndExperiment[] = "WebRTC-CwndExperiment";
const int64_t kDefaultAcceptedQueueMs = 250;
// Pacing-rate relative to our target send rate.
// Multiplicative factor that is applied to the target bitrate to calculate
// the number of bytes that can be transmitted per interval.
// Increasing this factor will result in lower delays in cases of bitrate
// overshoots from the encoder.
const float kDefaultPaceMultiplier = 2.5f;
bool CwndExperimentEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kCwndExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool ReadCwndExperimentParameter(int64_t* accepted_queue_ms) {
RTC_DCHECK(accepted_queue_ms);
std::string experiment_string =
webrtc::field_trial::FindFullName(kCwndExperiment);
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%" PRId64, accepted_queue_ms);
if (parsed_values == 1) {
RTC_CHECK_GE(*accepted_queue_ms, 0)
<< "Accepted must be greater than or equal to 0.";
return true;
}
return false;
}
// Makes sure that the bitrate and the min, max values are in valid range.
static void ClampBitrates(int64_t* bitrate_bps,
int64_t* min_bitrate_bps,
int64_t* max_bitrate_bps) {
// TODO(holmer): We should make sure the default bitrates are set to 10 kbps,
// and that we don't try to set the min bitrate to 0 from any applications.
// The congestion controller should allow a min bitrate of 0.
if (*min_bitrate_bps < congestion_controller::GetMinBitrateBps())
*min_bitrate_bps = congestion_controller::GetMinBitrateBps();
if (*max_bitrate_bps > 0)
*max_bitrate_bps = std::max(*min_bitrate_bps, *max_bitrate_bps);
if (*bitrate_bps > 0)
*bitrate_bps = std::max(*min_bitrate_bps, *bitrate_bps);
}
std::vector<PacketFeedback> ReceivedPacketsFeedbackAsRtp(
const TransportPacketsFeedback report) {
std::vector<PacketFeedback> packet_feedback_vector;
for (auto& fb : report.PacketsWithFeedback()) {
if (fb.receive_time.IsFinite()) {
PacketFeedback pf(fb.receive_time.ms(), 0);
pf.creation_time_ms = report.feedback_time.ms();
if (fb.sent_packet.has_value()) {
pf.payload_size = fb.sent_packet->size.bytes();
pf.pacing_info = fb.sent_packet->pacing_info;
pf.send_time_ms = fb.sent_packet->send_time.ms();
} else {
pf.send_time_ms = PacketFeedback::kNoSendTime;
}
packet_feedback_vector.push_back(pf);
}
}
return packet_feedback_vector;
}
} // namespace
GoogCcNetworkControllerFactory::GoogCcNetworkControllerFactory(
RtcEventLog* event_log)
: event_log_(event_log) {}
NetworkControllerInterface::uptr GoogCcNetworkControllerFactory::Create(
NetworkControllerObserver* observer) {
return rtc::MakeUnique<GoogCcNetworkController>(event_log_, observer);
}
TimeDelta GoogCcNetworkControllerFactory::GetProcessInterval() const {
const int64_t kUpdateIntervalMs = 25;
return TimeDelta::ms(kUpdateIntervalMs);
}
GoogCcNetworkController::GoogCcNetworkController(
RtcEventLog* event_log,
NetworkControllerObserver* observer)
: event_log_(event_log),
observer_(observer),
probe_controller_(new ProbeController(observer_)),
bandwidth_estimation_(
rtc::MakeUnique<SendSideBandwidthEstimation>(event_log_)),
alr_detector_(rtc::MakeUnique<AlrDetector>()),
delay_based_bwe_(new DelayBasedBwe(event_log_)),
acknowledged_bitrate_estimator_(
rtc::MakeUnique<AcknowledgedBitrateEstimator>()),
pacing_factor_(kDefaultPaceMultiplier),
min_pacing_rate_(DataRate::Zero()),
max_padding_rate_(DataRate::Zero()),
in_cwnd_experiment_(CwndExperimentEnabled()),
accepted_queue_ms_(kDefaultAcceptedQueueMs) {
delay_based_bwe_->SetMinBitrate(congestion_controller::GetMinBitrateBps());
if (in_cwnd_experiment_ &&
!ReadCwndExperimentParameter(&accepted_queue_ms_)) {
RTC_LOG(LS_WARNING) << "Failed to parse parameters for CwndExperiment "
"from field trial string. Experiment disabled.";
in_cwnd_experiment_ = false;
}
}
GoogCcNetworkController::~GoogCcNetworkController() {}
void GoogCcNetworkController::OnNetworkAvailability(NetworkAvailability msg) {
probe_controller_->OnNetworkAvailability(msg);
}
void GoogCcNetworkController::OnNetworkRouteChange(NetworkRouteChange msg) {
int64_t min_bitrate_bps = msg.constraints.min_data_rate.bps();
int64_t max_bitrate_bps = -1;
int64_t start_bitrate_bps = -1;
if (msg.constraints.max_data_rate.IsFinite())
max_bitrate_bps = msg.constraints.max_data_rate.bps();
if (msg.constraints.starting_rate.IsFinite())
start_bitrate_bps = msg.constraints.starting_rate.bps();
ClampBitrates(&start_bitrate_bps, &min_bitrate_bps, &max_bitrate_bps);
bandwidth_estimation_ =
rtc::MakeUnique<SendSideBandwidthEstimation>(event_log_);
bandwidth_estimation_->SetBitrates(start_bitrate_bps, min_bitrate_bps,
max_bitrate_bps);
delay_based_bwe_.reset(new DelayBasedBwe(event_log_));
acknowledged_bitrate_estimator_.reset(new AcknowledgedBitrateEstimator());
delay_based_bwe_->SetStartBitrate(start_bitrate_bps);
delay_based_bwe_->SetMinBitrate(min_bitrate_bps);
probe_controller_->Reset(msg.at_time.ms());
probe_controller_->SetBitrates(min_bitrate_bps, start_bitrate_bps,
max_bitrate_bps, msg.at_time.ms());
MaybeTriggerOnNetworkChanged(msg.at_time);
}
void GoogCcNetworkController::OnProcessInterval(ProcessInterval msg) {
bandwidth_estimation_->UpdateEstimate(msg.at_time.ms());
rtc::Optional<int64_t> start_time_ms =
alr_detector_->GetApplicationLimitedRegionStartTime();
probe_controller_->SetAlrStartTimeMs(start_time_ms);
probe_controller_->Process(msg.at_time.ms());
MaybeTriggerOnNetworkChanged(msg.at_time);
}
void GoogCcNetworkController::OnRemoteBitrateReport(RemoteBitrateReport msg) {
bandwidth_estimation_->UpdateReceiverEstimate(msg.receive_time.ms(),
msg.bandwidth.bps());
BWE_TEST_LOGGING_PLOT(1, "REMB_kbps", msg.receive_time.ms(),
msg.bandwidth.bps() / 1000);
}
void GoogCcNetworkController::OnRoundTripTimeUpdate(RoundTripTimeUpdate msg) {
if (msg.smoothed) {
delay_based_bwe_->OnRttUpdate(msg.round_trip_time.ms());
} else {
bandwidth_estimation_->UpdateRtt(msg.round_trip_time.ms(),
msg.receive_time.ms());
}
}
void GoogCcNetworkController::OnSentPacket(SentPacket sent_packet) {
alr_detector_->OnBytesSent(sent_packet.size.bytes(),
sent_packet.send_time.ms());
}
void GoogCcNetworkController::OnStreamsConfig(StreamsConfig msg) {
probe_controller_->EnablePeriodicAlrProbing(msg.requests_alr_probing);
bool pacing_changed = false;
if (msg.pacing_factor && *msg.pacing_factor != pacing_factor_) {
pacing_factor_ = *msg.pacing_factor;
pacing_changed = true;
}
if (msg.min_pacing_rate && *msg.min_pacing_rate != min_pacing_rate_) {
min_pacing_rate_ = *msg.min_pacing_rate;
pacing_changed = true;
}
if (msg.max_padding_rate && *msg.max_padding_rate != max_padding_rate_) {
max_padding_rate_ = *msg.max_padding_rate;
pacing_changed = true;
}
if (pacing_changed)
UpdatePacingRates(msg.at_time);
}
void GoogCcNetworkController::OnTargetRateConstraints(
TargetRateConstraints constraints) {
int64_t min_bitrate_bps = constraints.min_data_rate.bps();
int64_t max_bitrate_bps = -1;
int64_t start_bitrate_bps = -1;
if (constraints.max_data_rate.IsFinite())
max_bitrate_bps = constraints.max_data_rate.bps();
if (constraints.starting_rate.IsFinite())
start_bitrate_bps = constraints.starting_rate.bps();
ClampBitrates(&start_bitrate_bps, &min_bitrate_bps, &max_bitrate_bps);
probe_controller_->SetBitrates(min_bitrate_bps, start_bitrate_bps,
max_bitrate_bps, constraints.at_time.ms());
bandwidth_estimation_->SetBitrates(start_bitrate_bps, min_bitrate_bps,
max_bitrate_bps);
if (start_bitrate_bps > 0)
delay_based_bwe_->SetStartBitrate(start_bitrate_bps);
delay_based_bwe_->SetMinBitrate(min_bitrate_bps);
MaybeTriggerOnNetworkChanged(constraints.at_time);
}
void GoogCcNetworkController::OnTransportLossReport(TransportLossReport msg) {
int64_t total_packets_delta =
msg.packets_received_delta + msg.packets_lost_delta;
bandwidth_estimation_->UpdatePacketsLost(
msg.packets_lost_delta, total_packets_delta, msg.receive_time.ms());
}
void GoogCcNetworkController::OnTransportPacketsFeedback(
TransportPacketsFeedback report) {
int64_t feedback_rtt = -1;
for (const auto& packet_feedback : report.PacketsWithFeedback()) {
if (packet_feedback.sent_packet.has_value() &&
packet_feedback.receive_time.IsFinite()) {
int64_t rtt = report.feedback_time.ms() -
packet_feedback.sent_packet->send_time.ms();
// max() is used to account for feedback being delayed by the
// receiver.
feedback_rtt = std::max(rtt, feedback_rtt);
}
}
if (feedback_rtt > -1) {
feedback_rtts_.push_back(feedback_rtt);
const size_t kFeedbackRttWindow = 32;
if (feedback_rtts_.size() > kFeedbackRttWindow)
feedback_rtts_.pop_front();
min_feedback_rtt_ms_.emplace(
*std::min_element(feedback_rtts_.begin(), feedback_rtts_.end()));
}
std::vector<PacketFeedback> received_feedback_vector =
ReceivedPacketsFeedbackAsRtp(report);
rtc::Optional<int64_t> alr_start_time =
alr_detector_->GetApplicationLimitedRegionStartTime();
if (previously_in_alr && !alr_start_time.has_value()) {
int64_t now_ms = report.feedback_time.ms();
acknowledged_bitrate_estimator_->SetAlrEndedTimeMs(now_ms);
probe_controller_->SetAlrEndedTimeMs(now_ms);
}
previously_in_alr = alr_start_time.has_value();
acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(
received_feedback_vector);
DelayBasedBwe::Result result;
result = delay_based_bwe_->IncomingPacketFeedbackVector(
received_feedback_vector, acknowledged_bitrate_estimator_->bitrate_bps(),
report.feedback_time.ms());
if (result.updated) {
if (result.probe) {
bandwidth_estimation_->SetSendBitrate(result.target_bitrate_bps);
}
// Since SetSendBitrate now resets the delay-based estimate, we have to call
// UpdateDelayBasedEstimate after SetSendBitrate.
bandwidth_estimation_->UpdateDelayBasedEstimate(report.feedback_time.ms(),
result.target_bitrate_bps);
// Update the estimate in the ProbeController, in case we want to probe.
MaybeTriggerOnNetworkChanged(report.feedback_time);
}
if (result.recovered_from_overuse) {
probe_controller_->SetAlrStartTimeMs(alr_start_time);
probe_controller_->RequestProbe(report.feedback_time.ms());
}
MaybeUpdateCongestionWindow();
}
void GoogCcNetworkController::MaybeUpdateCongestionWindow() {
if (!in_cwnd_experiment_)
return;
// No valid RTT. Could be because send-side BWE isn't used, in which case
// we don't try to limit the outstanding packets.
if (!min_feedback_rtt_ms_)
return;
if (!last_estimate_.has_value())
return;
const DataSize kMinCwnd = DataSize::bytes(2 * 1500);
TimeDelta time_window =
TimeDelta::ms(*min_feedback_rtt_ms_ + accepted_queue_ms_);
DataSize data_window = last_estimate_->bandwidth * time_window;
CongestionWindow msg;
msg.enabled = true;
msg.data_window = std::max(kMinCwnd, data_window);
observer_->OnCongestionWindow(msg);
RTC_LOG(LS_INFO) << "Feedback rtt: " << *min_feedback_rtt_ms_
<< " Bitrate: " << last_estimate_->bandwidth.bps();
}
void GoogCcNetworkController::MaybeTriggerOnNetworkChanged(Timestamp at_time) {
int32_t estimated_bitrate_bps;
uint8_t fraction_loss;
int64_t rtt_ms;
bool estimate_changed = GetNetworkParameters(
&estimated_bitrate_bps, &fraction_loss, &rtt_ms, at_time);
if (estimate_changed) {
TimeDelta bwe_period =
TimeDelta::ms(delay_based_bwe_->GetExpectedBwePeriodMs());
NetworkEstimate new_estimate;
new_estimate.at_time = at_time;
new_estimate.round_trip_time = TimeDelta::ms(rtt_ms);
new_estimate.bandwidth = DataRate::bps(estimated_bitrate_bps);
new_estimate.loss_rate_ratio = fraction_loss / 255.0f;
new_estimate.bwe_period = bwe_period;
new_estimate.changed = true;
last_estimate_ = new_estimate;
OnNetworkEstimate(new_estimate);
}
}
bool GoogCcNetworkController::GetNetworkParameters(
int32_t* estimated_bitrate_bps,
uint8_t* fraction_loss,
int64_t* rtt_ms,
Timestamp at_time) {
bandwidth_estimation_->CurrentEstimate(estimated_bitrate_bps, fraction_loss,
rtt_ms);
*estimated_bitrate_bps = std::max<int32_t>(
*estimated_bitrate_bps, bandwidth_estimation_->GetMinBitrate());
bool estimate_changed = false;
if ((*estimated_bitrate_bps != last_estimated_bitrate_bps_) ||
(*fraction_loss != last_estimated_fraction_loss_) ||
(*rtt_ms != last_estimated_rtt_ms_)) {
last_estimated_bitrate_bps_ = *estimated_bitrate_bps;
last_estimated_fraction_loss_ = *fraction_loss;
last_estimated_rtt_ms_ = *rtt_ms;
estimate_changed = true;
}
BWE_TEST_LOGGING_PLOT(1, "fraction_loss_%", at_time.ms(),
(*fraction_loss * 100) / 256);
BWE_TEST_LOGGING_PLOT(1, "rtt_ms", at_time.ms(), *rtt_ms);
BWE_TEST_LOGGING_PLOT(1, "Target_bitrate_kbps", at_time.ms(),
*estimated_bitrate_bps / 1000);
return estimate_changed;
}
void GoogCcNetworkController::OnNetworkEstimate(NetworkEstimate estimate) {
if (!estimate.changed)
return;
UpdatePacingRates(estimate.at_time);
alr_detector_->SetEstimatedBitrate(estimate.bandwidth.bps());
probe_controller_->SetEstimatedBitrate(estimate.bandwidth.bps(),
estimate.at_time.ms());
TargetTransferRate target_rate;
target_rate.at_time = estimate.at_time;
// Set the target rate to the full estimated bandwidth since the estimation
// for legacy reasons includes target rate constraints.
target_rate.target_rate = estimate.bandwidth;
target_rate.network_estimate = estimate;
observer_->OnTargetTransferRate(target_rate);
}
void GoogCcNetworkController::UpdatePacingRates(Timestamp at_time) {
if (!last_estimate_)
return;
DataRate pacing_rate =
std::max(min_pacing_rate_, last_estimate_->bandwidth) * pacing_factor_;
DataRate padding_rate =
std::min(max_padding_rate_, last_estimate_->bandwidth);
PacerConfig msg;
msg.at_time = at_time;
msg.time_window = TimeDelta::s(1);
msg.data_window = pacing_rate * msg.time_window;
msg.pad_window = padding_rate * msg.time_window;
observer_->OnPacerConfig(msg);
}
} // namespace webrtc

View File

@ -1,92 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_GOOG_CC_NETWORK_CONTROL_H_
#define MODULES_CONGESTION_CONTROLLER_GOOG_CC_NETWORK_CONTROL_H_
#include <stdint.h>
#include <deque>
#include <memory>
#include <vector>
#include "api/optional.h"
#include "logging/rtc_event_log/rtc_event_log.h"
#include "modules/bitrate_controller/send_side_bandwidth_estimation.h"
#include "modules/congestion_controller/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/alr_detector.h"
#include "modules/congestion_controller/delay_based_bwe.h"
#include "modules/congestion_controller/network_control/include/network_control.h"
#include "modules/congestion_controller/probe_controller.h"
#include "rtc_base/constructormagic.h"
namespace webrtc {
class GoogCcNetworkController : public NetworkControllerInterface {
public:
GoogCcNetworkController(RtcEventLog* event_log,
NetworkControllerObserver* observer);
~GoogCcNetworkController() override;
// NetworkControllerInterface
void OnNetworkAvailability(NetworkAvailability msg) override;
void OnNetworkRouteChange(NetworkRouteChange msg) override;
void OnProcessInterval(ProcessInterval msg) override;
void OnRemoteBitrateReport(RemoteBitrateReport msg) override;
void OnRoundTripTimeUpdate(RoundTripTimeUpdate msg) override;
void OnSentPacket(SentPacket msg) override;
void OnStreamsConfig(StreamsConfig msg) override;
void OnTargetRateConstraints(TargetRateConstraints msg) override;
void OnTransportLossReport(TransportLossReport msg) override;
void OnTransportPacketsFeedback(TransportPacketsFeedback msg) override;
private:
void MaybeUpdateCongestionWindow();
void MaybeTriggerOnNetworkChanged(Timestamp at_time);
bool GetNetworkParameters(int32_t* estimated_bitrate_bps,
uint8_t* fraction_loss,
int64_t* rtt_ms,
Timestamp at_time);
void OnNetworkEstimate(NetworkEstimate msg);
void UpdatePacingRates(Timestamp at_time);
RtcEventLog* const event_log_;
NetworkControllerObserver* const observer_;
const std::unique_ptr<ProbeController> probe_controller_;
std::unique_ptr<SendSideBandwidthEstimation> bandwidth_estimation_;
std::unique_ptr<AlrDetector> alr_detector_;
std::unique_ptr<DelayBasedBwe> delay_based_bwe_;
std::unique_ptr<AcknowledgedBitrateEstimator> acknowledged_bitrate_estimator_;
std::deque<int64_t> feedback_rtts_;
rtc::Optional<int64_t> min_feedback_rtt_ms_;
rtc::Optional<NetworkEstimate> last_estimate_;
rtc::Optional<TargetTransferRate> last_target_rate_;
int32_t last_estimated_bitrate_bps_ = 0;
uint8_t last_estimated_fraction_loss_ = 0;
int64_t last_estimated_rtt_ms_ = 0;
double pacing_factor_;
DataRate min_pacing_rate_;
DataRate max_padding_rate_;
bool in_cwnd_experiment_;
int64_t accepted_queue_ms_;
bool previously_in_alr = false;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(GoogCcNetworkController);
};
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_GOOG_CC_NETWORK_CONTROL_H_

View File

@ -1,32 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_INCLUDE_GOOG_CC_FACTORY_H_
#define MODULES_CONGESTION_CONTROLLER_INCLUDE_GOOG_CC_FACTORY_H_
#include "modules/congestion_controller/network_control/include/network_control.h"
namespace webrtc {
class Clock;
class RtcEventLog;
class GoogCcNetworkControllerFactory
: public NetworkControllerFactoryInterface {
public:
explicit GoogCcNetworkControllerFactory(RtcEventLog*);
NetworkControllerInterface::uptr Create(
NetworkControllerObserver* observer) override;
TimeDelta GetProcessInterval() const override;
private:
RtcEventLog* const event_log_;
};
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_INCLUDE_GOOG_CC_FACTORY_H_

View File

@ -11,26 +11,19 @@
#ifndef MODULES_CONGESTION_CONTROLLER_INCLUDE_SEND_SIDE_CONGESTION_CONTROLLER_H_ #ifndef MODULES_CONGESTION_CONTROLLER_INCLUDE_SEND_SIDE_CONGESTION_CONTROLLER_H_
#define MODULES_CONGESTION_CONTROLLER_INCLUDE_SEND_SIDE_CONGESTION_CONTROLLER_H_ #define MODULES_CONGESTION_CONTROLLER_INCLUDE_SEND_SIDE_CONGESTION_CONTROLLER_H_
#include <atomic>
#include <functional>
#include <map>
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "common_types.h" // NOLINT(build/include) #include "common_types.h" // NOLINT(build/include)
#include "modules/congestion_controller/network_control/include/network_control.h" #include "modules/congestion_controller/delay_based_bwe.h"
#include "modules/congestion_controller/network_control/include/network_types.h"
#include "modules/congestion_controller/pacer_controller.h"
#include "modules/congestion_controller/transport_feedback_adapter.h" #include "modules/congestion_controller/transport_feedback_adapter.h"
#include "modules/include/module.h" #include "modules/include/module.h"
#include "modules/include/module_common_types.h" #include "modules/include/module_common_types.h"
#include "modules/pacing/paced_sender.h" #include "modules/pacing/paced_sender.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "rtc_base/constructormagic.h" #include "rtc_base/constructormagic.h"
#include "rtc_base/criticalsection.h" #include "rtc_base/criticalsection.h"
#include "rtc_base/networkroute.h" #include "rtc_base/networkroute.h"
#include "rtc_base/race_checker.h" #include "rtc_base/race_checker.h"
#include "rtc_base/task_queue.h"
namespace rtc { namespace rtc {
struct SentPacket; struct SentPacket;
@ -38,23 +31,16 @@ struct SentPacket;
namespace webrtc { namespace webrtc {
class BitrateController;
class Clock; class Clock;
class AcknowledgedBitrateEstimator;
class ProbeController;
class RateLimiter; class RateLimiter;
class RtcEventLog; class RtcEventLog;
namespace send_side_cc_internal {
// This is used to observe the network controller state and route calls to
// the proper handler. It also keeps cached values for safe asynchronous use.
// This makes sure that things running on the worker queue can't access state
// in SendSideCongestionController, which would risk causing data race on
// destruction unless members are properly ordered.
class ControlHandler;
} // namespace send_side_cc_internal
class SendSideCongestionController : public CallStatsObserver, class SendSideCongestionController : public CallStatsObserver,
public Module, public Module,
public TransportFeedbackObserver, public TransportFeedbackObserver {
public RtcpBandwidthObserver {
public: public:
// Observer class for bitrate changes announced due to change in bandwidth // Observer class for bitrate changes announced due to change in bandwidth
// estimate or due to that the send pacer is full. Fraction loss and rtt is // estimate or due to that the send pacer is full. Fraction loss and rtt is
@ -100,7 +86,10 @@ class SendSideCongestionController : public CallStatsObserver,
virtual void SignalNetworkState(NetworkState state); virtual void SignalNetworkState(NetworkState state);
virtual void SetTransportOverhead(size_t transport_overhead_bytes_per_packet); virtual void SetTransportOverhead(size_t transport_overhead_bytes_per_packet);
virtual RtcpBandwidthObserver* GetBandwidthObserver(); // Deprecated: Use GetBandwidthObserver instead.
RTC_DEPRECATED virtual BitrateController* GetBitrateController() const;
virtual RtcpBandwidthObserver* GetBandwidthObserver() const;
virtual bool AvailableBandwidth(uint32_t* bandwidth) const; virtual bool AvailableBandwidth(uint32_t* bandwidth) const;
virtual int64_t GetPacerQueuingDelayMs() const; virtual int64_t GetPacerQueuingDelayMs() const;
@ -113,11 +102,6 @@ class SendSideCongestionController : public CallStatsObserver,
virtual void OnSentPacket(const rtc::SentPacket& sent_packet); virtual void OnSentPacket(const rtc::SentPacket& sent_packet);
// Implements RtcpBandwidthObserver
void OnReceivedEstimatedBitrate(uint32_t bitrate) override;
void OnReceivedRtcpReceiverReport(const ReportBlockList& report_blocks,
int64_t rtt,
int64_t now_ms) override;
// Implements CallStatsObserver. // Implements CallStatsObserver.
void OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) override; void OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) override;
@ -133,64 +117,52 @@ class SendSideCongestionController : public CallStatsObserver,
void OnTransportFeedback(const rtcp::TransportFeedback& feedback) override; void OnTransportFeedback(const rtcp::TransportFeedback& feedback) override;
std::vector<PacketFeedback> GetTransportFeedbackVector() const override; std::vector<PacketFeedback> GetTransportFeedbackVector() const override;
// Sets the minimum send bitrate and maximum padding bitrate requested by send
// streams.
// |min_send_bitrate_bps| might be higher that the estimated available network
// bitrate and if so, the pacer will send with |min_send_bitrate_bps|.
// |max_padding_bitrate_bps| might be higher than the estimate available
// network bitrate and if so, the pacer will send padding packets to reach
// the min of the estimated available bitrate and |max_padding_bitrate_bps|.
void SetSendBitrateLimits(int64_t min_send_bitrate_bps,
int64_t max_padding_bitrate_bps);
void SetPacingFactor(float pacing_factor);
protected:
// Waits long enough that any outstanding tasks should be finished.
void WaitOnTasks();
private: private:
SendSideCongestionController( void MaybeTriggerOnNetworkChanged();
const Clock* clock,
RtcEventLog* event_log,
PacedSender* pacer,
NetworkControllerFactoryInterface::uptr controller_factory);
void UpdateStreamsConfig();
void WaitOnTask(std::function<void()> closure);
void MaybeUpdateOutstandingData();
void OnReceivedRtcpReceiverReportBlocks(const ReportBlockList& report_blocks,
int64_t now_ms);
bool IsSendQueueFull() const;
bool IsNetworkDown() const;
bool HasNetworkParametersToReportChanged(uint32_t bitrate_bps,
uint8_t fraction_loss,
int64_t rtt);
void LimitOutstandingBytes(size_t num_outstanding_bytes);
const Clock* const clock_; const Clock* const clock_;
rtc::CriticalSection observer_lock_;
Observer* observer_ RTC_GUARDED_BY(observer_lock_);
RtcEventLog* const event_log_;
PacedSender* const pacer_; PacedSender* const pacer_;
const std::unique_ptr<BitrateController> bitrate_controller_;
std::unique_ptr<AcknowledgedBitrateEstimator> acknowledged_bitrate_estimator_;
const std::unique_ptr<ProbeController> probe_controller_;
const std::unique_ptr<RateLimiter> retransmission_rate_limiter_;
TransportFeedbackAdapter transport_feedback_adapter_; TransportFeedbackAdapter transport_feedback_adapter_;
rtc::CriticalSection network_state_lock_;
const std::unique_ptr<PacerController> pacer_controller_; uint32_t last_reported_bitrate_bps_ RTC_GUARDED_BY(network_state_lock_);
const std::unique_ptr<send_side_cc_internal::ControlHandler> control_handler; uint8_t last_reported_fraction_loss_ RTC_GUARDED_BY(network_state_lock_);
const std::unique_ptr<NetworkControllerInterface> controller_; int64_t last_reported_rtt_ RTC_GUARDED_BY(network_state_lock_);
NetworkState network_state_ RTC_GUARDED_BY(network_state_lock_);
TimeDelta process_interval_; bool pause_pacer_ RTC_GUARDED_BY(network_state_lock_);
int64_t last_process_update_ms_ = 0; // Duplicate the pacer paused state to avoid grabbing a lock when
// pausing the pacer. This can be removed when we move this class
std::map<uint32_t, RTCPReportBlock> last_report_blocks_; // over to the task queue.
Timestamp last_report_block_time_; bool pacer_paused_;
rtc::CriticalSection bwe_lock_;
StreamsConfig streams_config_; int min_bitrate_bps_ RTC_GUARDED_BY(bwe_lock_);
std::unique_ptr<DelayBasedBwe> delay_based_bwe_ RTC_GUARDED_BY(bwe_lock_);
bool in_cwnd_experiment_;
int64_t accepted_queue_ms_;
bool was_in_alr_;
const bool send_side_bwe_with_overhead_; const bool send_side_bwe_with_overhead_;
std::atomic<size_t> transport_overhead_bytes_per_packet_; size_t transport_overhead_bytes_per_packet_ RTC_GUARDED_BY(bwe_lock_);
std::atomic<bool> network_available_;
rtc::RaceChecker worker_race_; rtc::RaceChecker worker_race_;
// Note that moving ownership of the task queue makes it neccessary to make bool pacer_pushback_experiment_ = false;
// sure that there is no outstanding tasks on it using destructed objects. float encoding_rate_ = 1.0;
// This is currently guranteed by using explicit reset in the destructor of
// this class. It is declared last to indicate that it's lifetime is shorter
// than all other members.
std::unique_ptr<rtc::TaskQueue> task_queue_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(SendSideCongestionController); RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(SendSideCongestionController);
}; };
} // namespace webrtc } // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_INCLUDE_SEND_SIDE_CONGESTION_CONTROLLER_H_ #endif // MODULES_CONGESTION_CONTROLLER_INCLUDE_SEND_SIDE_CONGESTION_CONTROLLER_H_

View File

@ -1,40 +0,0 @@
# Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
import("../../../webrtc.gni")
rtc_static_library("network_control") {
sources = [
"include/network_control.h",
"include/network_types.h",
"include/network_units.h",
"network_types.cc",
"network_units.cc",
]
deps = [
"../../:module_api",
"../../../api:optional",
"../../../rtc_base:checks",
"../../../rtc_base:rtc_base_approved",
]
}
if (rtc_include_tests) {
rtc_source_set("network_control_unittests") {
testonly = true
sources = [
"network_units_unittest.cc",
]
deps = [
":network_control",
"../../../test:test_support",
]
}
}

View File

@ -1,89 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_CONTROL_H_
#define MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_CONTROL_H_
#include <stdint.h>
#include <memory>
#include "modules/congestion_controller/network_control/include/network_types.h"
#include "modules/congestion_controller/network_control/include/network_units.h"
namespace webrtc {
// NetworkControllerObserver is an interface implemented by observers of network
// controllers. It contains declarations of the possible configuration messages
// that can be sent from a network controller implementation.
class NetworkControllerObserver {
public:
// Called when congestion window configutation is changed.
virtual void OnCongestionWindow(CongestionWindow) = 0;
// Called when pacer configuration has changed.
virtual void OnPacerConfig(PacerConfig) = 0;
// Called to indicate that a new probe should be sent.
virtual void OnProbeClusterConfig(ProbeClusterConfig) = 0;
// Called to indicate target transfer rate as well as giving information about
// the current estimate of network parameters.
virtual void OnTargetTransferRate(TargetTransferRate) = 0;
protected:
virtual ~NetworkControllerObserver() = default;
};
// NetworkControllerInterface is implemented by network controllers. A network
// controller is a class that uses information about network state and traffic
// to estimate network parameters such as round trip time and bandwidth. Network
// controllers does not guarantee thread safety, the interface must be used in a
// non-concurrent fashion.
class NetworkControllerInterface {
public:
using uptr = std::unique_ptr<NetworkControllerInterface>;
virtual ~NetworkControllerInterface() = default;
// Called when network availabilty changes.
virtual void OnNetworkAvailability(NetworkAvailability) = 0;
// Called when the receiving or sending endpoint changes address.
virtual void OnNetworkRouteChange(NetworkRouteChange) = 0;
// Called periodically with a periodicy as specified by
// NetworkControllerFactoryInterface::GetProcessInterval.
virtual void OnProcessInterval(ProcessInterval) = 0;
// Called when remotely calculated bitrate is received.
virtual void OnRemoteBitrateReport(RemoteBitrateReport) = 0;
// Called round trip time has been calculated by protocol specific mechanisms.
virtual void OnRoundTripTimeUpdate(RoundTripTimeUpdate) = 0;
// Called when a packet is sent on the network.
virtual void OnSentPacket(SentPacket) = 0;
// Called when the stream specific configuration has been updated.
virtual void OnStreamsConfig(StreamsConfig) = 0;
// Called when target transfer rate constraints has been changed.
virtual void OnTargetRateConstraints(TargetRateConstraints) = 0;
// Called when a protocol specific calculation of packet loss has been made.
virtual void OnTransportLossReport(TransportLossReport) = 0;
// Called with per packet feedback regarding receive time.
virtual void OnTransportPacketsFeedback(TransportPacketsFeedback) = 0;
};
// NetworkControllerFactoryInterface is an interface for creating a network
// controller.
class NetworkControllerFactoryInterface {
public:
using uptr = std::unique_ptr<NetworkControllerFactoryInterface>;
// Used to create a new network controller, requires an observer to be
// provided to handle callbacks.
virtual NetworkControllerInterface::uptr Create(
NetworkControllerObserver* observer) = 0;
// Returns the interval by which the network controller expects
// OnProcessInterval calls.
virtual TimeDelta GetProcessInterval() const = 0;
virtual ~NetworkControllerFactoryInterface() = default;
};
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_CONTROL_H_

View File

@ -1,172 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_TYPES_H_
#define MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_TYPES_H_
#include <stdint.h>
#include <ostream>
#include <vector>
#include "modules/congestion_controller/network_control/include/network_units.h"
#include "modules/include/module_common_types.h"
#include "rtc_base/constructormagic.h"
namespace webrtc {
// Configuration
// Use StreamsConfig for information about streams that is required for specific
// adjustments to the algorithms in network controllers. Especially useful
// for experiments.
struct StreamsConfig {
StreamsConfig();
StreamsConfig(const StreamsConfig&);
~StreamsConfig();
Timestamp at_time;
bool requests_alr_probing = false;
rtc::Optional<double> pacing_factor;
rtc::Optional<DataRate> min_pacing_rate;
rtc::Optional<DataRate> max_padding_rate;
};
struct TargetRateConstraints {
Timestamp at_time;
DataRate starting_rate;
DataRate min_data_rate;
DataRate max_data_rate;
};
// Send side information
struct NetworkAvailability {
Timestamp at_time;
bool network_available = false;
};
struct NetworkRouteChange {
Timestamp at_time;
// The TargetRateConstraints are set here so they can be changed synchronously
// when network route changes.
TargetRateConstraints constraints;
};
struct SentPacket {
Timestamp send_time;
DataSize size;
PacedPacketInfo pacing_info;
};
struct PacerQueueUpdate {
TimeDelta expected_queue_time;
};
// Transport level feedback
struct RemoteBitrateReport {
Timestamp receive_time;
DataRate bandwidth;
};
struct RoundTripTimeUpdate {
Timestamp receive_time;
TimeDelta round_trip_time;
bool smoothed = false;
};
struct TransportLossReport {
Timestamp receive_time;
Timestamp start_time;
Timestamp end_time;
uint64_t packets_lost_delta = 0;
uint64_t packets_received_delta = 0;
};
struct OutstandingData {
DataSize in_flight_data;
};
// Packet level feedback
struct PacketResult {
PacketResult();
PacketResult(const PacketResult&);
~PacketResult();
rtc::Optional<SentPacket> sent_packet;
Timestamp receive_time;
};
struct TransportPacketsFeedback {
TransportPacketsFeedback();
TransportPacketsFeedback(const TransportPacketsFeedback& other);
~TransportPacketsFeedback();
Timestamp feedback_time;
DataSize data_in_flight;
DataSize prior_in_flight;
std::vector<PacketResult> packet_feedbacks;
std::vector<PacketResult> ReceivedWithSendInfo() const;
std::vector<PacketResult> LostWithSendInfo() const;
std::vector<PacketResult> PacketsWithFeedback() const;
};
// Network estimation
struct NetworkEstimate {
Timestamp at_time;
DataRate bandwidth;
TimeDelta round_trip_time;
TimeDelta bwe_period;
float loss_rate_ratio = 0;
bool changed = true;
};
// Network control
struct CongestionWindow {
bool enabled = true;
DataSize data_window;
};
struct PacerConfig {
Timestamp at_time;
// Pacer should send at most data_window data over time_window duration.
DataSize data_window;
TimeDelta time_window;
// Pacer should send at least pad_window data over time_window duration.
DataSize pad_window;
DataRate data_rate() const { return data_window / time_window; }
};
struct ProbeClusterConfig {
Timestamp at_time;
DataRate target_data_rate;
TimeDelta target_duration;
uint32_t target_probe_count;
};
struct TargetTransferRate {
Timestamp at_time;
DataRate target_rate;
// The estimate on which the target rate is based on.
NetworkEstimate network_estimate;
};
// Process control
struct ProcessInterval {
Timestamp at_time;
};
::std::ostream& operator<<(::std::ostream& os,
const ProbeClusterConfig& config);
::std::ostream& operator<<(::std::ostream& os, const PacerConfig& config);
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_TYPES_H_

View File

@ -1,353 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_UNITS_H_
#define MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_UNITS_H_
#include <stdint.h>
#include <limits>
#include <ostream>
#include "rtc_base/checks.h"
namespace webrtc {
namespace units_internal {
inline int64_t DivideAndRound(int64_t numerator, int64_t denominators) {
if (numerator >= 0) {
return (numerator + (denominators / 2)) / denominators;
} else {
return (numerator + (denominators / 2)) / denominators - 1;
}
}
} // namespace units_internal
// TimeDelta represents the difference between two timestamps. Connomly this can
// be a duration. However since two Timestamps are not guaranteed to have the
// same epoch (they might come from different computers, making exact
// synchronisation infeasible), the duration covered by a TimeDelta can be
// undefined. To simplify usage, it can be constructed and converted to
// different units, specifically seconds (s), milliseconds (ms) and
// microseconds (us).
class TimeDelta {
public:
static const TimeDelta kPlusInfinity;
static const TimeDelta kMinusInfinity;
static const TimeDelta kNotInitialized;
static const TimeDelta kZero;
TimeDelta() : TimeDelta(kNotInitialized) {}
static TimeDelta Zero() { return kZero; }
static TimeDelta Infinity() { return kPlusInfinity; }
static TimeDelta seconds(int64_t seconds) { return TimeDelta::s(seconds); }
static TimeDelta s(int64_t seconds) {
return TimeDelta::us(seconds * 1000000);
}
static TimeDelta ms(int64_t milliseconds) {
return TimeDelta::us(milliseconds * 1000);
}
static TimeDelta us(int64_t microseconds) {
// Infinities only allowed via use of explicit constants.
RTC_DCHECK(microseconds > std::numeric_limits<int64_t>::min());
RTC_DCHECK(microseconds < std::numeric_limits<int64_t>::max());
return TimeDelta(microseconds);
}
int64_t s() const { return units_internal::DivideAndRound(us(), 1000000); }
int64_t ms() const { return units_internal::DivideAndRound(us(), 1000); }
int64_t us() const {
RTC_DCHECK(IsFinite());
return microseconds_;
}
TimeDelta Abs() const { return TimeDelta::us(std::abs(us())); }
bool IsZero() const { return microseconds_ == 0; }
bool IsFinite() const { return IsInitialized() && !IsInfinite(); }
bool IsInitialized() const {
return microseconds_ != kNotInitialized.microseconds_;
}
bool IsInfinite() const {
return *this == kPlusInfinity || *this == kMinusInfinity;
}
TimeDelta operator+(const TimeDelta& other) const {
return TimeDelta::us(us() + other.us());
}
TimeDelta operator-(const TimeDelta& other) const {
return TimeDelta::us(us() - other.us());
}
TimeDelta operator*(double scalar) const {
return TimeDelta::us(us() * scalar);
}
TimeDelta operator*(int64_t scalar) const {
return TimeDelta::us(us() * scalar);
}
TimeDelta operator*(int32_t scalar) const {
return TimeDelta::us(us() * scalar);
}
bool operator==(const TimeDelta& other) const {
return microseconds_ == other.microseconds_;
}
bool operator!=(const TimeDelta& other) const {
return microseconds_ != other.microseconds_;
}
bool operator<=(const TimeDelta& other) const {
return microseconds_ <= other.microseconds_;
}
bool operator>=(const TimeDelta& other) const {
return microseconds_ >= other.microseconds_;
}
bool operator>(const TimeDelta& other) const {
return microseconds_ > other.microseconds_;
}
bool operator<(const TimeDelta& other) const {
return microseconds_ < other.microseconds_;
}
private:
explicit TimeDelta(int64_t us) : microseconds_(us) {}
int64_t microseconds_;
};
inline TimeDelta operator*(const double& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator*(const int64_t& scalar, const TimeDelta& delta) {
return delta * scalar;
}
inline TimeDelta operator*(const int32_t& scalar, const TimeDelta& delta) {
return delta * scalar;
}
// Timestamp represents the time that has passed since some unspecified epoch.
// The epoch is assumed to be before any represented timestamps, this means that
// negative values are not valid. The most notable feature is that the
// difference of of two Timestamps results in a TimeDelta.
class Timestamp {
public:
static const Timestamp kPlusInfinity;
static const Timestamp kNotInitialized;
Timestamp() : Timestamp(kNotInitialized) {}
static Timestamp Infinity() { return kPlusInfinity; }
static Timestamp s(int64_t seconds) { return Timestamp(seconds * 1000000); }
static Timestamp ms(int64_t millis) { return Timestamp(millis * 1000); }
static Timestamp us(int64_t micros) { return Timestamp(micros); }
int64_t s() const { return units_internal::DivideAndRound(us(), 1000000); }
int64_t ms() const { return units_internal::DivideAndRound(us(), 1000); }
int64_t us() const {
RTC_DCHECK(IsFinite());
return microseconds_;
}
bool IsInfinite() const {
return microseconds_ == kPlusInfinity.microseconds_;
}
bool IsInitialized() const {
return microseconds_ != kNotInitialized.microseconds_;
}
bool IsFinite() const { return IsInitialized() && !IsInfinite(); }
TimeDelta operator-(const Timestamp& other) const {
return TimeDelta::us(us() - other.us());
}
Timestamp operator-(const TimeDelta& delta) const {
return Timestamp::us(us() - delta.us());
}
Timestamp operator+(const TimeDelta& delta) const {
return Timestamp::us(us() + delta.us());
}
bool operator==(const Timestamp& other) const {
return microseconds_ == other.microseconds_;
}
bool operator!=(const Timestamp& other) const {
return microseconds_ != other.microseconds_;
}
bool operator<=(const Timestamp& other) const { return us() <= other.us(); }
bool operator>=(const Timestamp& other) const { return us() >= other.us(); }
bool operator>(const Timestamp& other) const { return us() > other.us(); }
bool operator<(const Timestamp& other) const { return us() < other.us(); }
private:
explicit Timestamp(int64_t us) : microseconds_(us) {}
int64_t microseconds_;
};
// DataSize is a class represeting a count of bytes. Note that while it can be
// initialized by a number of bits, it does not guarantee that the resolution is
// kept and the internal storage is in bytes. The number of bits will be
// truncated to fit.
class DataSize {
public:
static const DataSize kZero;
static const DataSize kPlusInfinity;
static const DataSize kNotInitialized;
DataSize() : DataSize(kNotInitialized) {}
static DataSize Zero() { return kZero; }
static DataSize Infinity() { return kPlusInfinity; }
static DataSize bytes(int64_t bytes) { return DataSize(bytes); }
static DataSize bits(int64_t bits) { return DataSize(bits / 8); }
int64_t bytes() const {
RTC_DCHECK(IsFinite());
return bytes_;
}
int64_t kilobytes() const {
return units_internal::DivideAndRound(bytes(), 1000);
}
int64_t bits() const { return bytes() * 8; }
int64_t kilobits() const {
return units_internal::DivideAndRound(bits(), 1000);
}
bool IsZero() const { return bytes_ == 0; }
bool IsInfinite() const { return bytes_ == kPlusInfinity.bytes_; }
bool IsInitialized() const { return bytes_ != kNotInitialized.bytes_; }
bool IsFinite() const { return IsInitialized() && !IsInfinite(); }
DataSize operator-(const DataSize& other) const {
return DataSize::bytes(bytes() - other.bytes());
}
DataSize operator+(const DataSize& other) const {
return DataSize::bytes(bytes() + other.bytes());
}
DataSize operator*(double scalar) const {
return DataSize::bytes(bytes() * scalar);
}
DataSize operator*(int64_t scalar) const {
return DataSize::bytes(bytes() * scalar);
}
DataSize operator*(int32_t scalar) const {
return DataSize::bytes(bytes() * scalar);
}
DataSize operator/(int64_t scalar) const {
return DataSize::bytes(bytes() / scalar);
}
DataSize& operator-=(const DataSize& other) {
bytes_ -= other.bytes();
return *this;
}
DataSize& operator+=(const DataSize& other) {
bytes_ += other.bytes();
return *this;
}
bool operator==(const DataSize& other) const {
return bytes_ == other.bytes_;
}
bool operator!=(const DataSize& other) const {
return bytes_ != other.bytes_;
}
bool operator<=(const DataSize& other) const {
return bytes_ <= other.bytes_;
}
bool operator>=(const DataSize& other) const {
return bytes_ >= other.bytes_;
}
bool operator>(const DataSize& other) const { return bytes_ > other.bytes_; }
bool operator<(const DataSize& other) const { return bytes_ < other.bytes_; }
private:
explicit DataSize(int64_t bytes) : bytes_(bytes) {}
int64_t bytes_;
};
inline DataSize operator*(const double& scalar, const DataSize& size) {
return size * scalar;
}
inline DataSize operator*(const int64_t& scalar, const DataSize& size) {
return size * scalar;
}
inline DataSize operator*(const int32_t& scalar, const DataSize& size) {
return size * scalar;
}
// DataRate is a class that represents a given data rate. This can be used to
// represent bandwidth, encoding bitrate, etc. The internal storage is currently
// bits per second (bps) since this makes it easier to intepret the raw value
// when debugging. The promised precision, however is only that it will
// represent bytes per second accurately. Any implementation depending on bps
// resolution should document this by changing this comment.
class DataRate {
public:
static const DataRate kZero;
static const DataRate kPlusInfinity;
static const DataRate kNotInitialized;
DataRate() : DataRate(kNotInitialized) {}
static DataRate Zero() { return kZero; }
static DataRate Infinity() { return kPlusInfinity; }
static DataRate bytes_per_second(int64_t bytes_per_sec) {
return DataRate(bytes_per_sec * 8);
}
static DataRate bits_per_second(int64_t bits_per_sec) {
return DataRate(bits_per_sec);
}
static DataRate bps(int64_t bits_per_sec) {
return DataRate::bits_per_second(bits_per_sec);
}
static DataRate kbps(int64_t kilobits_per_sec) {
return DataRate::bits_per_second(kilobits_per_sec * 1000);
}
int64_t bits_per_second() const {
RTC_DCHECK(IsFinite());
return bits_per_sec_;
}
int64_t bytes_per_second() const { return bits_per_second() / 8; }
int64_t bps() const { return bits_per_second(); }
int64_t kbps() const { return units_internal::DivideAndRound(bps(), 1000); }
bool IsZero() const { return bits_per_sec_ == 0; }
bool IsInfinite() const {
return bits_per_sec_ == kPlusInfinity.bits_per_sec_;
}
bool IsInitialized() const {
return bits_per_sec_ != kNotInitialized.bits_per_sec_;
}
bool IsFinite() const { return IsInitialized() && !IsInfinite(); }
DataRate operator*(double scalar) const {
return DataRate::bytes_per_second(bytes_per_second() * scalar);
}
DataRate operator*(int64_t scalar) const {
return DataRate::bytes_per_second(bytes_per_second() * scalar);
}
DataRate operator*(int32_t scalar) const {
return DataRate::bytes_per_second(bytes_per_second() * scalar);
}
bool operator==(const DataRate& other) const {
return bits_per_sec_ == other.bits_per_sec_;
}
bool operator!=(const DataRate& other) const {
return bits_per_sec_ != other.bits_per_sec_;
}
bool operator<=(const DataRate& other) const {
return bits_per_sec_ <= other.bits_per_sec_;
}
bool operator>=(const DataRate& other) const {
return bits_per_sec_ >= other.bits_per_sec_;
}
bool operator>(const DataRate& other) const {
return bits_per_sec_ > other.bits_per_sec_;
}
bool operator<(const DataRate& other) const {
return bits_per_sec_ < other.bits_per_sec_;
}
private:
// Bits per second used internally to simplify debugging by making the value
// more recognizable.
explicit DataRate(int64_t bits_per_second) : bits_per_sec_(bits_per_second) {}
int64_t bits_per_sec_;
};
inline DataRate operator*(const double& scalar, const DataRate& rate) {
return rate * scalar;
}
inline DataRate operator*(const int64_t& scalar, const DataRate& rate) {
return rate * scalar;
}
inline DataRate operator*(const int32_t& scalar, const DataRate& rate) {
return rate * scalar;
}
DataRate operator/(const DataSize& size, const TimeDelta& duration);
TimeDelta operator/(const DataSize& size, const DataRate& rate);
DataSize operator*(const DataRate& rate, const TimeDelta& duration);
DataSize operator*(const TimeDelta& duration, const DataRate& rate);
::std::ostream& operator<<(::std::ostream& os, const DataRate& datarate);
::std::ostream& operator<<(::std::ostream& os, const DataSize& datasize);
::std::ostream& operator<<(::std::ostream& os, const Timestamp& timestamp);
::std::ostream& operator<<(::std::ostream& os, const TimeDelta& delta);
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_NETWORK_CONTROL_INCLUDE_NETWORK_UNITS_H_

View File

@ -1,63 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/network_control/include/network_types.h"
namespace webrtc {
StreamsConfig::StreamsConfig() = default;
StreamsConfig::StreamsConfig(const StreamsConfig&) = default;
StreamsConfig::~StreamsConfig() = default;
PacketResult::PacketResult() = default;
PacketResult::PacketResult(const PacketResult& other) = default;
PacketResult::~PacketResult() = default;
TransportPacketsFeedback::TransportPacketsFeedback() = default;
TransportPacketsFeedback::TransportPacketsFeedback(
const TransportPacketsFeedback& other) = default;
TransportPacketsFeedback::~TransportPacketsFeedback() = default;
std::vector<PacketResult> TransportPacketsFeedback::ReceivedWithSendInfo()
const {
std::vector<PacketResult> res;
for (const PacketResult& fb : packet_feedbacks) {
if (fb.receive_time.IsFinite() && fb.sent_packet.has_value()) {
res.push_back(fb);
}
}
return res;
}
std::vector<PacketResult> TransportPacketsFeedback::LostWithSendInfo() const {
std::vector<PacketResult> res;
for (const PacketResult& fb : packet_feedbacks) {
if (fb.receive_time.IsInfinite() && fb.sent_packet.has_value()) {
res.push_back(fb);
}
}
return res;
}
std::vector<PacketResult> TransportPacketsFeedback::PacketsWithFeedback()
const {
return packet_feedbacks;
}
::std::ostream& operator<<(::std::ostream& os,
const ProbeClusterConfig& config) {
return os << "ProbeClusterConfig(...)";
}
::std::ostream& operator<<(::std::ostream& os, const PacerConfig& config) {
return os << "PacerConfig(...)";
}
} // namespace webrtc

View File

@ -1,101 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/network_control/include/network_units.h"
namespace webrtc {
namespace {
int64_t kPlusInfinityVal = std::numeric_limits<int64_t>::max();
int64_t kMinusInfinityVal = std::numeric_limits<int64_t>::min();
int64_t kSignedNotInitializedVal = kMinusInfinityVal + 1;
int64_t kNotInitializedVal = -1;
} // namespace
const TimeDelta TimeDelta::kZero = TimeDelta(0);
const TimeDelta TimeDelta::kMinusInfinity = TimeDelta(kMinusInfinityVal);
const TimeDelta TimeDelta::kPlusInfinity = TimeDelta(kPlusInfinityVal);
const TimeDelta TimeDelta::kNotInitialized =
TimeDelta(kSignedNotInitializedVal);
const Timestamp Timestamp::kPlusInfinity = Timestamp(kPlusInfinityVal);
const Timestamp Timestamp::kNotInitialized = Timestamp(kNotInitializedVal);
const DataRate DataRate::kZero = DataRate(0);
const DataRate DataRate::kPlusInfinity = DataRate(kPlusInfinityVal);
const DataRate DataRate::kNotInitialized = DataRate(kNotInitializedVal);
const DataSize DataSize::kZero = DataSize(0);
const DataSize DataSize::kPlusInfinity = DataSize(kPlusInfinityVal);
const DataSize DataSize::kNotInitialized = DataSize(kNotInitializedVal);
DataRate operator/(const DataSize& size, const TimeDelta& duration) {
RTC_DCHECK(size.bytes() < std::numeric_limits<int64_t>::max() / 1000000)
<< "size is too large, size: " << size.bytes() << " is not less than "
<< std::numeric_limits<int64_t>::max() / 1000000;
auto bytes_per_sec = size.bytes() * 1000000 / duration.us();
return DataRate::bytes_per_second(bytes_per_sec);
}
TimeDelta operator/(const DataSize& size, const DataRate& rate) {
RTC_DCHECK(size.bytes() < std::numeric_limits<int64_t>::max() / 1000000)
<< "size is too large, size: " << size.bytes() << " is not less than "
<< std::numeric_limits<int64_t>::max() / 1000000;
auto microseconds = size.bytes() * 1000000 / rate.bytes_per_second();
return TimeDelta::us(microseconds);
}
DataSize operator*(const DataRate& rate, const TimeDelta& duration) {
auto micro_bytes = rate.bytes_per_second() * duration.us();
auto bytes = units_internal::DivideAndRound(micro_bytes, 1000000);
return DataSize::bytes(bytes);
}
DataSize operator*(const TimeDelta& duration, const DataRate& rate) {
return rate * duration;
}
::std::ostream& operator<<(::std::ostream& os, const DataRate& value) {
if (value == DataRate::kPlusInfinity) {
return os << "inf bps";
} else if (value == DataRate::kNotInitialized) {
return os << "? bps";
} else {
return os << value.bps() << " bps";
}
}
::std::ostream& operator<<(::std::ostream& os, const DataSize& value) {
if (value == DataSize::kPlusInfinity) {
return os << "inf bytes";
} else if (value == DataSize::kNotInitialized) {
return os << "? bytes";
} else {
return os << value.bytes() << " bytes";
}
}
::std::ostream& operator<<(::std::ostream& os, const Timestamp& value) {
if (value == Timestamp::kPlusInfinity) {
return os << "inf ms";
} else if (value == Timestamp::kNotInitialized) {
return os << "? ms";
} else {
return os << value.ms() << " ms";
}
}
::std::ostream& operator<<(::std::ostream& os, const TimeDelta& value) {
if (value == TimeDelta::kPlusInfinity) {
return os << "+inf ms";
} else if (value == TimeDelta::kMinusInfinity) {
return os << "-inf ms";
} else if (value == TimeDelta::kNotInitialized) {
return os << "? ms";
} else {
return os << value.ms() << " ms";
}
}
} // namespace webrtc

View File

@ -1,307 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/network_control/include/network_units.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
TEST(TimeDeltaTest, GetBackSameValues) {
const int64_t kValue = 499;
for (int sign = -1; sign <= 1; ++sign) {
int64_t value = kValue * sign;
EXPECT_EQ(TimeDelta::ms(value).ms(), value);
EXPECT_EQ(TimeDelta::us(value).us(), value);
EXPECT_EQ(TimeDelta::s(value).s(), value);
EXPECT_EQ(TimeDelta::seconds(value).s(), value);
}
EXPECT_EQ(TimeDelta::Zero().us(), 0);
}
TEST(TimeDeltaTest, GetDifferentPrefix) {
const int64_t kValue = 3000000;
EXPECT_EQ(TimeDelta::us(kValue).s(), kValue / 1000000);
EXPECT_EQ(TimeDelta::ms(kValue).s(), kValue / 1000);
EXPECT_EQ(TimeDelta::us(kValue).ms(), kValue / 1000);
EXPECT_EQ(TimeDelta::ms(kValue).us(), kValue * 1000);
EXPECT_EQ(TimeDelta::s(kValue).ms(), kValue * 1000);
EXPECT_EQ(TimeDelta::s(kValue).us(), kValue * 1000000);
}
TEST(TimeDeltaTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(TimeDelta::Zero().IsZero());
EXPECT_FALSE(TimeDelta::ms(kValue).IsZero());
EXPECT_TRUE(TimeDelta::Infinity().IsInfinite());
EXPECT_TRUE(TimeDelta::kPlusInfinity.IsInfinite());
EXPECT_TRUE(TimeDelta::kMinusInfinity.IsInfinite());
EXPECT_FALSE(TimeDelta::Zero().IsInfinite());
EXPECT_FALSE(TimeDelta::ms(-kValue).IsInfinite());
EXPECT_FALSE(TimeDelta::ms(kValue).IsInfinite());
EXPECT_FALSE(TimeDelta::Infinity().IsFinite());
EXPECT_FALSE(TimeDelta::kPlusInfinity.IsFinite());
EXPECT_FALSE(TimeDelta::kMinusInfinity.IsFinite());
EXPECT_TRUE(TimeDelta::ms(-kValue).IsFinite());
EXPECT_TRUE(TimeDelta::ms(kValue).IsFinite());
EXPECT_TRUE(TimeDelta::Zero().IsFinite());
}
TEST(TimeDeltaTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const TimeDelta small = TimeDelta::ms(kSmall);
const TimeDelta large = TimeDelta::ms(kLarge);
EXPECT_EQ(TimeDelta::Zero(), TimeDelta::Zero());
EXPECT_EQ(TimeDelta::Infinity(), TimeDelta::Infinity());
EXPECT_EQ(small, TimeDelta::ms(kSmall));
EXPECT_LE(small, TimeDelta::ms(kSmall));
EXPECT_GE(small, TimeDelta::ms(kSmall));
EXPECT_NE(small, TimeDelta::ms(kLarge));
EXPECT_LE(small, TimeDelta::ms(kLarge));
EXPECT_LT(small, TimeDelta::ms(kLarge));
EXPECT_GE(large, TimeDelta::ms(kSmall));
EXPECT_GT(large, TimeDelta::ms(kSmall));
EXPECT_LT(TimeDelta::kZero, small);
EXPECT_GT(TimeDelta::kZero, TimeDelta::ms(-kSmall));
EXPECT_GT(TimeDelta::kZero, TimeDelta::ms(-kSmall));
EXPECT_GT(TimeDelta::kPlusInfinity, large);
EXPECT_LT(TimeDelta::kMinusInfinity, TimeDelta::kZero);
}
TEST(TimeDeltaTest, MathOperations) {
const int64_t kValueA = 267;
const int64_t kValueB = 450;
const TimeDelta delta_a = TimeDelta::ms(kValueA);
const TimeDelta delta_b = TimeDelta::ms(kValueB);
EXPECT_EQ((delta_a + delta_b).ms(), kValueA + kValueB);
EXPECT_EQ((delta_a - delta_b).ms(), kValueA - kValueB);
const int32_t kInt32Value = 123;
const double kFloatValue = 123.0;
EXPECT_EQ((TimeDelta::us(kValueA) * kValueB).us(), kValueA * kValueB);
EXPECT_EQ((TimeDelta::us(kValueA) * kInt32Value).us(), kValueA * kInt32Value);
EXPECT_EQ((TimeDelta::us(kValueA) * kFloatValue).us(), kValueA * kFloatValue);
EXPECT_EQ(TimeDelta::us(-kValueA).Abs().us(), kValueA);
EXPECT_EQ(TimeDelta::us(kValueA).Abs().us(), kValueA);
}
TEST(TimestampTest, GetBackSameValues) {
const int64_t kValue = 499;
EXPECT_EQ(Timestamp::ms(kValue).ms(), kValue);
EXPECT_EQ(Timestamp::us(kValue).us(), kValue);
EXPECT_EQ(Timestamp::s(kValue).s(), kValue);
}
TEST(TimestampTest, GetDifferentPrefix) {
const int64_t kValue = 3000000;
EXPECT_EQ(Timestamp::us(kValue).s(), kValue / 1000000);
EXPECT_EQ(Timestamp::ms(kValue).s(), kValue / 1000);
EXPECT_EQ(Timestamp::us(kValue).ms(), kValue / 1000);
EXPECT_EQ(Timestamp::ms(kValue).us(), kValue * 1000);
EXPECT_EQ(Timestamp::s(kValue).ms(), kValue * 1000);
EXPECT_EQ(Timestamp::s(kValue).us(), kValue * 1000000);
}
TEST(TimestampTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(Timestamp::Infinity().IsInfinite());
EXPECT_FALSE(Timestamp::ms(kValue).IsInfinite());
EXPECT_FALSE(Timestamp::kNotInitialized.IsFinite());
EXPECT_FALSE(Timestamp::Infinity().IsFinite());
EXPECT_TRUE(Timestamp::ms(kValue).IsFinite());
}
TEST(TimestampTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
EXPECT_EQ(Timestamp::Infinity(), Timestamp::Infinity());
EXPECT_EQ(Timestamp::ms(kSmall), Timestamp::ms(kSmall));
EXPECT_LE(Timestamp::ms(kSmall), Timestamp::ms(kSmall));
EXPECT_GE(Timestamp::ms(kSmall), Timestamp::ms(kSmall));
EXPECT_NE(Timestamp::ms(kSmall), Timestamp::ms(kLarge));
EXPECT_LE(Timestamp::ms(kSmall), Timestamp::ms(kLarge));
EXPECT_LT(Timestamp::ms(kSmall), Timestamp::ms(kLarge));
EXPECT_GE(Timestamp::ms(kLarge), Timestamp::ms(kSmall));
EXPECT_GT(Timestamp::ms(kLarge), Timestamp::ms(kSmall));
}
TEST(UnitConversionTest, TimestampAndTimeDeltaMath) {
const int64_t kValueA = 267;
const int64_t kValueB = 450;
const Timestamp time_a = Timestamp::ms(kValueA);
const Timestamp time_b = Timestamp::ms(kValueB);
const TimeDelta delta_a = TimeDelta::ms(kValueA);
EXPECT_EQ((time_a - time_b), TimeDelta::ms(kValueA - kValueB));
EXPECT_EQ((time_b - delta_a), Timestamp::ms(kValueB - kValueA));
EXPECT_EQ((time_b + delta_a), Timestamp::ms(kValueB + kValueA));
}
TEST(DataSizeTest, GetBackSameValues) {
const int64_t kValue = 123 * 8;
EXPECT_EQ(DataSize::bytes(kValue).bytes(), kValue);
EXPECT_EQ(DataSize::bits(kValue).bits(), kValue);
}
TEST(DataSizeTest, GetDifferentPrefix) {
const int64_t kValue = 123 * 8000;
EXPECT_EQ(DataSize::bytes(kValue).bits(), kValue * 8);
EXPECT_EQ(DataSize::bits(kValue).bytes(), kValue / 8);
EXPECT_EQ(DataSize::bits(kValue).kilobits(), kValue / 1000);
EXPECT_EQ(DataSize::bytes(kValue).kilobytes(), kValue / 1000);
}
TEST(DataSizeTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(DataSize::Zero().IsZero());
EXPECT_FALSE(DataSize::bytes(kValue).IsZero());
EXPECT_TRUE(DataSize::Infinity().IsInfinite());
EXPECT_TRUE(DataSize::kPlusInfinity.IsInfinite());
EXPECT_FALSE(DataSize::Zero().IsInfinite());
EXPECT_FALSE(DataSize::bytes(kValue).IsInfinite());
EXPECT_FALSE(DataSize::Infinity().IsFinite());
EXPECT_FALSE(DataSize::kPlusInfinity.IsFinite());
EXPECT_TRUE(DataSize::bytes(kValue).IsFinite());
EXPECT_TRUE(DataSize::Zero().IsFinite());
}
TEST(DataSizeTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const DataSize small = DataSize::bytes(kSmall);
const DataSize large = DataSize::bytes(kLarge);
EXPECT_EQ(DataSize::Zero(), DataSize::Zero());
EXPECT_EQ(DataSize::Infinity(), DataSize::Infinity());
EXPECT_EQ(small, small);
EXPECT_LE(small, small);
EXPECT_GE(small, small);
EXPECT_NE(small, large);
EXPECT_LE(small, large);
EXPECT_LT(small, large);
EXPECT_GE(large, small);
EXPECT_GT(large, small);
EXPECT_LT(DataSize::kZero, small);
EXPECT_GT(DataSize::kPlusInfinity, large);
}
TEST(DataSizeTest, MathOperations) {
const int64_t kValueA = 450;
const int64_t kValueB = 267;
const DataSize size_a = DataSize::bytes(kValueA);
const DataSize size_b = DataSize::bytes(kValueB);
EXPECT_EQ((size_a + size_b).bytes(), kValueA + kValueB);
EXPECT_EQ((size_a - size_b).bytes(), kValueA - kValueB);
const int32_t kInt32Value = 123;
const double kFloatValue = 123.0;
EXPECT_EQ((size_a * kValueB).bytes(), kValueA * kValueB);
EXPECT_EQ((size_a * kInt32Value).bytes(), kValueA * kInt32Value);
EXPECT_EQ((size_a * kFloatValue).bytes(), kValueA * kFloatValue);
EXPECT_EQ((size_a / 10).bytes(), kValueA / 10);
DataSize mutable_size = DataSize::bytes(kValueA);
mutable_size += size_b;
EXPECT_EQ(mutable_size.bytes(), kValueA + kValueB);
mutable_size -= size_a;
EXPECT_EQ(mutable_size.bytes(), kValueB);
}
TEST(DataRateTest, GetBackSameValues) {
const int64_t kValue = 123 * 8;
EXPECT_EQ(DataRate::bytes_per_second(kValue).bytes_per_second(), kValue);
EXPECT_EQ(DataRate::bits_per_second(kValue).bits_per_second(), kValue);
EXPECT_EQ(DataRate::bps(kValue).bps(), kValue);
EXPECT_EQ(DataRate::kbps(kValue).kbps(), kValue);
}
TEST(DataRateTest, GetDifferentPrefix) {
const int64_t kValue = 123 * 8000;
EXPECT_EQ(DataRate::bytes_per_second(kValue).bps(), kValue * 8);
EXPECT_EQ(DataRate::bits_per_second(kValue).bytes_per_second(), kValue / 8);
EXPECT_EQ(DataRate::bps(kValue).kbps(), kValue / 1000);
}
TEST(DataRateTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(DataRate::Zero().IsZero());
EXPECT_FALSE(DataRate::bytes_per_second(kValue).IsZero());
EXPECT_TRUE(DataRate::Infinity().IsInfinite());
EXPECT_TRUE(DataRate::kPlusInfinity.IsInfinite());
EXPECT_FALSE(DataRate::Zero().IsInfinite());
EXPECT_FALSE(DataRate::bytes_per_second(kValue).IsInfinite());
EXPECT_FALSE(DataRate::Infinity().IsFinite());
EXPECT_FALSE(DataRate::kPlusInfinity.IsFinite());
EXPECT_TRUE(DataRate::bytes_per_second(kValue).IsFinite());
EXPECT_TRUE(DataRate::Zero().IsFinite());
}
TEST(DataRateTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const DataRate small = DataRate::bytes_per_second(kSmall);
const DataRate large = DataRate::bytes_per_second(kLarge);
EXPECT_EQ(DataRate::Zero(), DataRate::Zero());
EXPECT_EQ(DataRate::Infinity(), DataRate::Infinity());
EXPECT_EQ(small, small);
EXPECT_LE(small, small);
EXPECT_GE(small, small);
EXPECT_NE(small, large);
EXPECT_LE(small, large);
EXPECT_LT(small, large);
EXPECT_GE(large, small);
EXPECT_GT(large, small);
EXPECT_LT(DataRate::kZero, small);
EXPECT_GT(DataRate::kPlusInfinity, large);
}
TEST(DataRateTest, MathOperations) {
const int64_t kValueA = 450;
const int64_t kValueB = 267;
const DataRate size_a = DataRate::bytes_per_second(kValueA);
const int32_t kInt32Value = 123;
const double kFloatValue = 123.0;
EXPECT_EQ((size_a * kValueB).bytes_per_second(), kValueA * kValueB);
EXPECT_EQ((size_a * kInt32Value).bytes_per_second(), kValueA * kInt32Value);
EXPECT_EQ((size_a * kFloatValue).bytes_per_second(), kValueA * kFloatValue);
}
TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) {
const int64_t kValueA = 5;
const int64_t kValueB = 450;
const int64_t kValueC = 45000;
const TimeDelta delta_a = TimeDelta::seconds(kValueA);
const DataRate rate_b = DataRate::bytes_per_second(kValueB);
const DataSize size_c = DataSize::bytes(kValueC);
EXPECT_EQ((delta_a * rate_b).bytes(), kValueA * kValueB);
EXPECT_EQ((size_c / delta_a).bytes_per_second(), kValueC / kValueA);
EXPECT_EQ((size_c / rate_b).s(), kValueC / kValueB);
}
} // namespace test
} // namespace webrtc

View File

@ -1,83 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/pacer_controller.h"
#include "modules/congestion_controller/network_control/include/network_units.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
PacerController::PacerController(PacedSender* pacer) : pacer_(pacer) {
sequenced_checker_.Detach();
}
PacerController::~PacerController() = default;
void PacerController::OnCongestionWindow(CongestionWindow congestion_window) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
if (congestion_window.enabled) {
congestion_window_ = congestion_window;
} else {
congestion_window_ = rtc::nullopt;
congested_ = false;
UpdatePacerState();
}
}
void PacerController::OnNetworkAvailability(NetworkAvailability msg) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
network_available_ = msg.network_available;
congested_ = false;
UpdatePacerState();
}
void PacerController::OnNetworkRouteChange(NetworkRouteChange) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
congested_ = false;
UpdatePacerState();
}
void PacerController::OnPacerConfig(PacerConfig msg) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
DataRate pacing_rate = msg.data_window / msg.time_window;
DataRate padding_rate = msg.pad_window / msg.time_window;
pacer_->SetPacingRates(pacing_rate.bps(), padding_rate.bps());
}
void PacerController::OnProbeClusterConfig(ProbeClusterConfig config) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
int64_t bitrate_bps = config.target_data_rate.bps();
pacer_->CreateProbeCluster(bitrate_bps);
}
void PacerController::OnOutstandingData(OutstandingData msg) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
if (congestion_window_.has_value()) {
congested_ = msg.in_flight_data > congestion_window_->data_window;
}
UpdatePacerState();
}
void PacerController::UpdatePacerState() {
bool pause = congested_ || !network_available_;
SetPacerState(pause);
}
void PacerController::SetPacerState(bool paused) {
if (paused && !pacer_paused_)
pacer_->Pause();
else if (!paused && pacer_paused_)
pacer_->Resume();
pacer_paused_ = paused;
}
} // namespace webrtc

View File

@ -1,53 +0,0 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_PACER_CONTROLLER_H_
#define MODULES_CONGESTION_CONTROLLER_PACER_CONTROLLER_H_
#include <memory>
#include "modules/congestion_controller/network_control/include/network_types.h"
#include "modules/pacing/paced_sender.h"
#include "rtc_base/sequenced_task_checker.h"
namespace webrtc {
class Clock;
// Wrapper class to control pacer using task queues. Note that this class is
// only designed to be used from a single task queue and has no built in
// concurrency safety.
// TODO(srte): Integrate this interface directly into PacedSender.
class PacerController {
public:
explicit PacerController(PacedSender* pacer);
~PacerController();
void OnCongestionWindow(CongestionWindow msg);
void OnNetworkAvailability(NetworkAvailability msg);
void OnNetworkRouteChange(NetworkRouteChange msg);
void OnOutstandingData(OutstandingData msg);
void OnPacerConfig(PacerConfig msg);
void OnProbeClusterConfig(ProbeClusterConfig msg);
private:
void UpdatePacerState();
void SetPacerState(bool paused);
PacedSender* const pacer_;
rtc::Optional<PacerConfig> current_pacer_config_;
rtc::Optional<CongestionWindow> congestion_window_;
bool congested_ = false;
bool pacer_paused_ = false;
bool network_available_ = true;
rtc::SequencedTaskChecker sequenced_checker_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(PacerController);
};
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_PACER_CONTROLLER_H_

View File

@ -66,8 +66,8 @@ int ProbeBitrateEstimator::HandleProbeAndEstimateBitrate(
EraseOldClusters(packet_feedback.arrival_time_ms - kMaxClusterHistoryMs); EraseOldClusters(packet_feedback.arrival_time_ms - kMaxClusterHistoryMs);
int payload_size_bits = int payload_size_bits = rtc::dchecked_cast<int>(
rtc::dchecked_cast<int>(packet_feedback.payload_size * 8); packet_feedback.payload_size * 8);
AggregatedCluster* cluster = &clusters_[cluster_id]; AggregatedCluster* cluster = &clusters_[cluster_id];
if (packet_feedback.send_time_ms < cluster->first_send_ms) { if (packet_feedback.send_time_ms < cluster->first_send_ms) {

View File

@ -11,8 +11,8 @@
#ifndef MODULES_CONGESTION_CONTROLLER_PROBE_BITRATE_ESTIMATOR_H_ #ifndef MODULES_CONGESTION_CONTROLLER_PROBE_BITRATE_ESTIMATOR_H_
#define MODULES_CONGESTION_CONTROLLER_PROBE_BITRATE_ESTIMATOR_H_ #define MODULES_CONGESTION_CONTROLLER_PROBE_BITRATE_ESTIMATOR_H_
#include <limits>
#include <map> #include <map>
#include <limits>
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"

View File

@ -10,8 +10,8 @@
#include "modules/congestion_controller/probe_bitrate_estimator.h" #include "modules/congestion_controller/probe_bitrate_estimator.h"
#include <utility>
#include <vector> #include <vector>
#include <utility>
#include "modules/remote_bitrate_estimator/aimd_rate_control.h" #include "modules/remote_bitrate_estimator/aimd_rate_control.h"
#include "test/gmock.h" #include "test/gmock.h"

View File

@ -21,12 +21,6 @@
namespace webrtc { namespace webrtc {
namespace { namespace {
// The minimum number probing packets used.
constexpr int kMinProbePacketsSent = 5;
// The minimum probing duration in ms.
constexpr int kMinProbeDurationMs = 15;
// Maximum waiting time from the time of initiating probing to getting // Maximum waiting time from the time of initiating probing to getting
// the measured results back. // the measured results back.
constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000; constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000;
@ -75,20 +69,19 @@ constexpr char kBweRapidRecoveryExperiment[] =
} // namespace } // namespace
ProbeController::ProbeController(NetworkControllerObserver* observer) ProbeController::ProbeController(PacedSender* pacer, const Clock* clock)
: observer_(observer), enable_periodic_alr_probing_(false) { : pacer_(pacer), clock_(clock), enable_periodic_alr_probing_(false) {
Reset(0); Reset();
in_rapid_recovery_experiment_ = webrtc::field_trial::FindFullName( in_rapid_recovery_experiment_ = webrtc::field_trial::FindFullName(
kBweRapidRecoveryExperiment) == "Enabled"; kBweRapidRecoveryExperiment) == "Enabled";
} }
ProbeController::~ProbeController() {}
void ProbeController::SetBitrates(int64_t min_bitrate_bps, void ProbeController::SetBitrates(int64_t min_bitrate_bps,
int64_t start_bitrate_bps, int64_t start_bitrate_bps,
int64_t max_bitrate_bps, int64_t max_bitrate_bps) {
int64_t at_time_ms) { rtc::CritScope cs(&critsect_);
if (start_bitrate_bps > 0) {
if (start_bitrate_bps > 0) {
start_bitrate_bps_ = start_bitrate_bps; start_bitrate_bps_ = start_bitrate_bps;
estimated_bitrate_bps_ = start_bitrate_bps; estimated_bitrate_bps_ = start_bitrate_bps;
} else if (start_bitrate_bps_ == 0) { } else if (start_bitrate_bps_ == 0) {
@ -102,8 +95,8 @@ void ProbeController::SetBitrates(int64_t min_bitrate_bps,
switch (state_) { switch (state_) {
case State::kInit: case State::kInit:
if (network_available_) if (network_state_ == kNetworkUp)
InitiateExponentialProbing(at_time_ms); InitiateExponentialProbing();
break; break;
case State::kWaitingForProbingResult: case State::kWaitingForProbingResult:
@ -126,32 +119,33 @@ void ProbeController::SetBitrates(int64_t min_bitrate_bps,
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated", RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated",
max_bitrate_bps_ / 1000); max_bitrate_bps_ / 1000);
InitiateProbing(at_time_ms, {max_bitrate_bps}, false); InitiateProbing(clock_->TimeInMilliseconds(), {max_bitrate_bps}, false);
} }
break; break;
} }
} }
void ProbeController::OnNetworkAvailability(NetworkAvailability msg) { void ProbeController::OnNetworkStateChanged(NetworkState network_state) {
network_available_ = msg.network_available; rtc::CritScope cs(&critsect_);
if (network_available_ && state_ == State::kInit && start_bitrate_bps_ > 0) network_state_ = network_state;
InitiateExponentialProbing(msg.at_time.ms()); if (network_state_ == kNetworkUp && state_ == State::kInit)
InitiateExponentialProbing();
} }
void ProbeController::InitiateExponentialProbing(int64_t at_time_ms) { void ProbeController::InitiateExponentialProbing() {
RTC_DCHECK(network_available_); RTC_DCHECK(network_state_ == kNetworkUp);
RTC_DCHECK(state_ == State::kInit); RTC_DCHECK(state_ == State::kInit);
RTC_DCHECK_GT(start_bitrate_bps_, 0); RTC_DCHECK_GT(start_bitrate_bps_, 0);
// When probing at 1.8 Mbps ( 6x 300), this represents a threshold of // When probing at 1.8 Mbps ( 6x 300), this represents a threshold of
// 1.2 Mbps to continue probing. // 1.2 Mbps to continue probing.
InitiateProbing(at_time_ms, {3 * start_bitrate_bps_, 6 * start_bitrate_bps_}, InitiateProbing(clock_->TimeInMilliseconds(),
true); {3 * start_bitrate_bps_, 6 * start_bitrate_bps_}, true);
} }
void ProbeController::SetEstimatedBitrate(int64_t bitrate_bps, void ProbeController::SetEstimatedBitrate(int64_t bitrate_bps) {
int64_t at_time_ms) { rtc::CritScope cs(&critsect_);
int64_t now_ms = at_time_ms; int64_t now_ms = clock_->TimeInMilliseconds();
if (mid_call_probing_waiting_for_result_ && if (mid_call_probing_waiting_for_result_ &&
bitrate_bps >= mid_call_probing_succcess_threshold_) { bitrate_bps >= mid_call_probing_succcess_threshold_) {
@ -185,36 +179,36 @@ void ProbeController::SetEstimatedBitrate(int64_t bitrate_bps,
} }
void ProbeController::EnablePeriodicAlrProbing(bool enable) { void ProbeController::EnablePeriodicAlrProbing(bool enable) {
rtc::CritScope cs(&critsect_);
enable_periodic_alr_probing_ = enable; enable_periodic_alr_probing_ = enable;
} }
void ProbeController::SetAlrStartTimeMs(
rtc::Optional<int64_t> alr_start_time_ms) {
alr_start_time_ms_ = alr_start_time_ms;
}
void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) { void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) {
rtc::CritScope cs(&critsect_);
alr_end_time_ms_.emplace(alr_end_time_ms); alr_end_time_ms_.emplace(alr_end_time_ms);
} }
void ProbeController::RequestProbe(int64_t at_time_ms) { void ProbeController::RequestProbe() {
int64_t now_ms = clock_->TimeInMilliseconds();
rtc::CritScope cs(&critsect_);
// Called once we have returned to normal state after a large drop in // Called once we have returned to normal state after a large drop in
// estimated bandwidth. The current response is to initiate a single probe // estimated bandwidth. The current response is to initiate a single probe
// session (if not already probing) at the previous bitrate. // session (if not already probing) at the previous bitrate.
// //
// If the probe session fails, the assumption is that this drop was a // If the probe session fails, the assumption is that this drop was a
// real one from a competing flow or a network change. // real one from a competing flow or a network change.
bool in_alr = alr_start_time_ms_.has_value(); bool in_alr = pacer_->GetApplicationLimitedRegionStartTime().has_value();
bool alr_ended_recently = bool alr_ended_recently =
(alr_end_time_ms_.has_value() && (alr_end_time_ms_.has_value() &&
at_time_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs); now_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs);
if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) { if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) {
if (state_ == State::kProbingComplete) { if (state_ == State::kProbingComplete) {
uint32_t suggested_probe_bps = uint32_t suggested_probe_bps =
kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_; kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_;
uint32_t min_expected_probe_result_bps = uint32_t min_expected_probe_result_bps =
(1 - kProbeUncertainty) * suggested_probe_bps; (1 - kProbeUncertainty) * suggested_probe_bps;
int64_t time_since_drop_ms = at_time_ms - time_of_last_large_drop_ms_; int64_t time_since_drop_ms = now_ms - time_of_last_large_drop_ms_;
int64_t time_since_probe_ms = at_time_ms - last_bwe_drop_probing_time_ms_; int64_t time_since_probe_ms = now_ms - last_bwe_drop_probing_time_ms_;
if (min_expected_probe_result_bps > estimated_bitrate_bps_ && if (min_expected_probe_result_bps > estimated_bitrate_bps_ &&
time_since_drop_ms < kBitrateDropTimeoutMs && time_since_drop_ms < kBitrateDropTimeoutMs &&
time_since_probe_ms > kMinTimeBetweenAlrProbesMs) { time_since_probe_ms > kMinTimeBetweenAlrProbesMs) {
@ -222,23 +216,24 @@ void ProbeController::RequestProbe(int64_t at_time_ms) {
// Track how often we probe in response to bandwidth drop in ALR. // Track how often we probe in response to bandwidth drop in ALR.
RTC_HISTOGRAM_COUNTS_10000( RTC_HISTOGRAM_COUNTS_10000(
"WebRTC.BWE.BweDropProbingIntervalInS", "WebRTC.BWE.BweDropProbingIntervalInS",
(at_time_ms - last_bwe_drop_probing_time_ms_) / 1000); (now_ms - last_bwe_drop_probing_time_ms_) / 1000);
InitiateProbing(at_time_ms, {suggested_probe_bps}, false); InitiateProbing(now_ms, {suggested_probe_bps}, false);
last_bwe_drop_probing_time_ms_ = at_time_ms; last_bwe_drop_probing_time_ms_ = now_ms;
} }
} }
} }
} }
void ProbeController::Reset(int64_t at_time_ms) { void ProbeController::Reset() {
network_available_ = true; rtc::CritScope cs(&critsect_);
network_state_ = kNetworkUp;
state_ = State::kInit; state_ = State::kInit;
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
time_last_probing_initiated_ms_ = 0; time_last_probing_initiated_ms_ = 0;
estimated_bitrate_bps_ = 0; estimated_bitrate_bps_ = 0;
start_bitrate_bps_ = 0; start_bitrate_bps_ = 0;
max_bitrate_bps_ = 0; max_bitrate_bps_ = 0;
int64_t now_ms = at_time_ms; int64_t now_ms = clock_->TimeInMilliseconds();
last_bwe_drop_probing_time_ms_ = now_ms; last_bwe_drop_probing_time_ms_ = now_ms;
alr_end_time_ms_.reset(); alr_end_time_ms_.reset();
mid_call_probing_waiting_for_result_ = false; mid_call_probing_waiting_for_result_ = false;
@ -246,8 +241,10 @@ void ProbeController::Reset(int64_t at_time_ms) {
bitrate_before_last_large_drop_bps_ = 0; bitrate_before_last_large_drop_bps_ = 0;
} }
void ProbeController::Process(int64_t at_time_ms) { void ProbeController::Process() {
int64_t now_ms = at_time_ms; rtc::CritScope cs(&critsect_);
int64_t now_ms = clock_->TimeInMilliseconds();
if (now_ms - time_last_probing_initiated_ms_ > if (now_ms - time_last_probing_initiated_ms_ >
kMaxWaitingTimeForProbingResultMs) { kMaxWaitingTimeForProbingResultMs) {
@ -264,9 +261,11 @@ void ProbeController::Process(int64_t at_time_ms) {
return; return;
// Probe bandwidth periodically when in ALR state. // Probe bandwidth periodically when in ALR state.
if (alr_start_time_ms_ && estimated_bitrate_bps_ > 0) { rtc::Optional<int64_t> alr_start_time =
pacer_->GetApplicationLimitedRegionStartTime();
if (alr_start_time && estimated_bitrate_bps_ > 0) {
int64_t next_probe_time_ms = int64_t next_probe_time_ms =
std::max(*alr_start_time_ms_, time_last_probing_initiated_ms_) + std::max(*alr_start_time, time_last_probing_initiated_ms_) +
kAlrPeriodicProbingIntervalMs; kAlrPeriodicProbingIntervalMs;
if (now_ms >= next_probe_time_ms) { if (now_ms >= next_probe_time_ms) {
InitiateProbing(now_ms, {estimated_bitrate_bps_ * 2}, true); InitiateProbing(now_ms, {estimated_bitrate_bps_ * 2}, true);
@ -286,13 +285,7 @@ void ProbeController::InitiateProbing(
bitrate = max_probe_bitrate_bps; bitrate = max_probe_bitrate_bps;
probe_further = false; probe_further = false;
} }
pacer_->CreateProbeCluster(rtc::dchecked_cast<int>(bitrate));
ProbeClusterConfig config;
config.at_time = Timestamp::ms(now_ms);
config.target_data_rate = DataRate::bps(rtc::dchecked_cast<int>(bitrate));
config.target_duration = TimeDelta::ms(kMinProbeDurationMs);
config.target_probe_count = kMinProbePacketsSent;
observer_->OnProbeClusterConfig(config);
} }
time_last_probing_initiated_ms_ = now_ms; time_last_probing_initiated_ms_ = now_ms;
if (probe_further) { if (probe_further) {

View File

@ -11,12 +11,11 @@
#ifndef MODULES_CONGESTION_CONTROLLER_PROBE_CONTROLLER_H_ #ifndef MODULES_CONGESTION_CONTROLLER_PROBE_CONTROLLER_H_
#define MODULES_CONGESTION_CONTROLLER_PROBE_CONTROLLER_H_ #define MODULES_CONGESTION_CONTROLLER_PROBE_CONTROLLER_H_
#include <stdint.h>
#include <initializer_list> #include <initializer_list>
#include "api/optional.h" #include "common_types.h" // NOLINT(build/include)
#include "modules/congestion_controller/network_control/include/network_control.h" #include "modules/pacing/paced_sender.h"
#include "rtc_base/criticalsection.h"
namespace webrtc { namespace webrtc {
@ -27,30 +26,27 @@ class Clock;
// bitrate is adjusted by an application. // bitrate is adjusted by an application.
class ProbeController { class ProbeController {
public: public:
explicit ProbeController(NetworkControllerObserver* observer); ProbeController(PacedSender* pacer, const Clock* clock);
~ProbeController();
void SetBitrates(int64_t min_bitrate_bps, void SetBitrates(int64_t min_bitrate_bps,
int64_t start_bitrate_bps, int64_t start_bitrate_bps,
int64_t max_bitrate_bps, int64_t max_bitrate_bps);
int64_t at_time_ms);
void OnNetworkAvailability(NetworkAvailability msg); void OnNetworkStateChanged(NetworkState state);
void SetEstimatedBitrate(int64_t bitrate_bps, int64_t at_time_ms); void SetEstimatedBitrate(int64_t bitrate_bps);
void EnablePeriodicAlrProbing(bool enable); void EnablePeriodicAlrProbing(bool enable);
void SetAlrStartTimeMs(rtc::Optional<int64_t> alr_start_time);
void SetAlrEndedTimeMs(int64_t alr_end_time); void SetAlrEndedTimeMs(int64_t alr_end_time);
void RequestProbe(int64_t at_time_ms); void RequestProbe();
// Resets the ProbeController to a state equivalent to as if it was just // Resets the ProbeController to a state equivalent to as if it was just
// created EXCEPT for |enable_periodic_alr_probing_|. // created EXCEPT for |enable_periodic_alr_probing_|.
void Reset(int64_t at_time_ms); void Reset();
void Process(int64_t at_time_ms); void Process();
private: private:
enum class State { enum class State {
@ -62,32 +58,33 @@ class ProbeController {
kProbingComplete, kProbingComplete,
}; };
void InitiateExponentialProbing(int64_t at_time_ms); void InitiateExponentialProbing() RTC_EXCLUSIVE_LOCKS_REQUIRED(critsect_);
void InitiateProbing(int64_t now_ms, void InitiateProbing(int64_t now_ms,
std::initializer_list<int64_t> bitrates_to_probe, std::initializer_list<int64_t> bitrates_to_probe,
bool probe_further); bool probe_further)
RTC_EXCLUSIVE_LOCKS_REQUIRED(critsect_);
NetworkControllerObserver* const observer_; rtc::CriticalSection critsect_;
PacedSender* const pacer_;
const Clock* const clock_;
NetworkState network_state_ RTC_GUARDED_BY(critsect_);
State state_ RTC_GUARDED_BY(critsect_);
int64_t min_bitrate_to_probe_further_bps_ RTC_GUARDED_BY(critsect_);
int64_t time_last_probing_initiated_ms_ RTC_GUARDED_BY(critsect_);
int64_t estimated_bitrate_bps_ RTC_GUARDED_BY(critsect_);
int64_t start_bitrate_bps_ RTC_GUARDED_BY(critsect_);
int64_t max_bitrate_bps_ RTC_GUARDED_BY(critsect_);
int64_t last_bwe_drop_probing_time_ms_ RTC_GUARDED_BY(critsect_);
rtc::Optional<int64_t> alr_end_time_ms_ RTC_GUARDED_BY(critsect_);
bool enable_periodic_alr_probing_ RTC_GUARDED_BY(critsect_);
int64_t time_of_last_large_drop_ms_ RTC_GUARDED_BY(critsect_);
int64_t bitrate_before_last_large_drop_bps_ RTC_GUARDED_BY(critsect_);
bool network_available_; bool in_rapid_recovery_experiment_ RTC_GUARDED_BY(critsect_);
State state_;
int64_t min_bitrate_to_probe_further_bps_;
int64_t time_last_probing_initiated_ms_;
int64_t estimated_bitrate_bps_;
int64_t start_bitrate_bps_;
int64_t max_bitrate_bps_;
int64_t last_bwe_drop_probing_time_ms_;
rtc::Optional<int64_t> alr_start_time_ms_;
rtc::Optional<int64_t> alr_end_time_ms_;
bool enable_periodic_alr_probing_;
int64_t time_of_last_large_drop_ms_;
int64_t bitrate_before_last_large_drop_bps_;
bool in_rapid_recovery_experiment_;
// For WebRTC.BWE.MidCallProbing.* metric. // For WebRTC.BWE.MidCallProbing.* metric.
bool mid_call_probing_waiting_for_result_; bool mid_call_probing_waiting_for_result_ RTC_GUARDED_BY(&critsect_);
int64_t mid_call_probing_bitrate_bps_; int64_t mid_call_probing_bitrate_bps_ RTC_GUARDED_BY(&critsect_);
int64_t mid_call_probing_succcess_threshold_; int64_t mid_call_probing_succcess_threshold_ RTC_GUARDED_BY(&critsect_);
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(ProbeController); RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(ProbeController);
}; };

View File

@ -9,8 +9,8 @@
*/ */
#include <memory> #include <memory>
#include "modules/congestion_controller/network_control/include/network_types.h"
#include "modules/congestion_controller/probe_controller.h" #include "modules/congestion_controller/probe_controller.h"
#include "modules/pacing/mock/mock_paced_sender.h"
#include "rtc_base/logging.h" #include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h" #include "system_wrappers/include/clock.h"
#include "test/gmock.h" #include "test/gmock.h"
@ -18,13 +18,9 @@
using testing::_; using testing::_;
using testing::AtLeast; using testing::AtLeast;
using testing::Field;
using testing::Matcher;
using testing::NiceMock; using testing::NiceMock;
using testing::Return; using testing::Return;
using webrtc::ProbeClusterConfig;
namespace webrtc { namespace webrtc {
namespace test { namespace test {
@ -40,252 +36,234 @@ constexpr int kAlrProbeInterval = 5000;
constexpr int kAlrEndedTimeoutMs = 3000; constexpr int kAlrEndedTimeoutMs = 3000;
constexpr int kBitrateDropTimeoutMs = 5000; constexpr int kBitrateDropTimeoutMs = 5000;
inline Matcher<ProbeClusterConfig> DataRateEqBps(int bps) {
return Field(&ProbeClusterConfig::target_data_rate, DataRate::bps(bps));
}
class MockNetworkControllerObserver : public NetworkControllerObserver {
public:
MOCK_METHOD1(OnCongestionWindow, void(CongestionWindow));
MOCK_METHOD1(OnPacerConfig, void(PacerConfig));
MOCK_METHOD1(OnProbeClusterConfig, void(ProbeClusterConfig));
MOCK_METHOD1(OnTargetTransferRate, void(TargetTransferRate));
};
} // namespace } // namespace
class ProbeControllerTest : public ::testing::Test { class ProbeControllerTest : public ::testing::Test {
protected: protected:
ProbeControllerTest() : clock_(100000000L) { ProbeControllerTest() : clock_(100000000L) {
probe_controller_.reset(new ProbeController(&cluster_handler_)); probe_controller_.reset(new ProbeController(&pacer_, &clock_));
} }
~ProbeControllerTest() override {} ~ProbeControllerTest() override {}
void SetNetworkAvailable(bool available) {
NetworkAvailability msg;
msg.at_time = Timestamp::ms(NowMs());
msg.network_available = available;
probe_controller_->OnNetworkAvailability(msg);
}
int64_t NowMs() { return clock_.TimeInMilliseconds(); }
SimulatedClock clock_; SimulatedClock clock_;
NiceMock<MockNetworkControllerObserver> cluster_handler_; NiceMock<MockPacedSender> pacer_;
std::unique_ptr<ProbeController> probe_controller_; std::unique_ptr<ProbeController> probe_controller_;
}; };
TEST_F(ProbeControllerTest, InitiatesProbingAtStart) { TEST_F(ProbeControllerTest, InitiatesProbingAtStart) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(AtLeast(2)); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(AtLeast(2));
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
} }
TEST_F(ProbeControllerTest, ProbeOnlyWhenNetworkIsUp) { TEST_F(ProbeControllerTest, ProbeOnlyWhenNetworkIsUp) {
SetNetworkAvailable(false); probe_controller_->OnNetworkStateChanged(kNetworkDown);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(AtLeast(2)); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(AtLeast(2));
SetNetworkAvailable(true); probe_controller_->OnNetworkStateChanged(kNetworkUp);
} }
TEST_F(ProbeControllerTest, InitiatesProbingOnMaxBitrateIncrease) { TEST_F(ProbeControllerTest, InitiatesProbingOnMaxBitrateIncrease) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(AtLeast(2)); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(AtLeast(2));
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
// Long enough to time out exponential probing. // Long enough to time out exponential probing.
clock_.AdvanceTimeMilliseconds(kExponentialProbingTimeoutMs); clock_.AdvanceTimeMilliseconds(kExponentialProbingTimeoutMs);
probe_controller_->SetEstimatedBitrate(kStartBitrateBps, NowMs()); probe_controller_->SetEstimatedBitrate(kStartBitrateBps);
probe_controller_->Process(NowMs()); probe_controller_->Process();
EXPECT_CALL(cluster_handler_, EXPECT_CALL(pacer_, CreateProbeCluster(kMaxBitrateBps + 100));
OnProbeClusterConfig(DataRateEqBps(kMaxBitrateBps + 100)));
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps + 100, NowMs()); kMaxBitrateBps + 100);
} }
TEST_F(ProbeControllerTest, InitiatesProbingOnMaxBitrateIncreaseAtMaxBitrate) { TEST_F(ProbeControllerTest, InitiatesProbingOnMaxBitrateIncreaseAtMaxBitrate) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(AtLeast(2)); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(AtLeast(2));
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
// Long enough to time out exponential probing. // Long enough to time out exponential probing.
clock_.AdvanceTimeMilliseconds(kExponentialProbingTimeoutMs); clock_.AdvanceTimeMilliseconds(kExponentialProbingTimeoutMs);
probe_controller_->SetEstimatedBitrate(kStartBitrateBps, NowMs()); probe_controller_->SetEstimatedBitrate(kStartBitrateBps);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(kMaxBitrateBps, NowMs()); probe_controller_->SetEstimatedBitrate(kMaxBitrateBps);
EXPECT_CALL(cluster_handler_, EXPECT_CALL(pacer_, CreateProbeCluster(kMaxBitrateBps + 100));
OnProbeClusterConfig(DataRateEqBps(kMaxBitrateBps + 100)));
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps + 100, NowMs()); kMaxBitrateBps + 100);
} }
TEST_F(ProbeControllerTest, TestExponentialProbing) { TEST_F(ProbeControllerTest, TestExponentialProbing) {
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
// Repeated probe should only be sent when estimated bitrate climbs above // Repeated probe should only be sent when estimated bitrate climbs above
// 0.7 * 6 * kStartBitrateBps = 1260. // 0.7 * 6 * kStartBitrateBps = 1260.
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetEstimatedBitrate(1000, NowMs()); probe_controller_->SetEstimatedBitrate(1000);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(DataRateEqBps(2 * 1800))); EXPECT_CALL(pacer_, CreateProbeCluster(2 * 1800));
probe_controller_->SetEstimatedBitrate(1800, NowMs()); probe_controller_->SetEstimatedBitrate(1800);
} }
TEST_F(ProbeControllerTest, TestExponentialProbingTimeout) { TEST_F(ProbeControllerTest, TestExponentialProbingTimeout) {
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
// Advance far enough to cause a time out in waiting for probing result. // Advance far enough to cause a time out in waiting for probing result.
clock_.AdvanceTimeMilliseconds(kExponentialProbingTimeoutMs); clock_.AdvanceTimeMilliseconds(kExponentialProbingTimeoutMs);
probe_controller_->Process(NowMs()); probe_controller_->Process();
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetEstimatedBitrate(1800, NowMs()); probe_controller_->SetEstimatedBitrate(1800);
} }
TEST_F(ProbeControllerTest, RequestProbeInAlr) { TEST_F(ProbeControllerTest, RequestProbeInAlr) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(2); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(2);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(DataRateEqBps(0.85 * 500))) EXPECT_CALL(pacer_, CreateProbeCluster(0.85 * 500)).Times(1);
.Times(1); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
probe_controller_->SetAlrStartTimeMs(clock_.TimeInMilliseconds()); .WillRepeatedly(Return(clock_.TimeInMilliseconds()));
clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1); clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(250, NowMs()); probe_controller_->SetEstimatedBitrate(250);
probe_controller_->RequestProbe(NowMs()); probe_controller_->RequestProbe();
} }
TEST_F(ProbeControllerTest, RequestProbeWhenAlrEndedRecently) { TEST_F(ProbeControllerTest, RequestProbeWhenAlrEndedRecently) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(2); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(2);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(DataRateEqBps(0.85 * 500))) EXPECT_CALL(pacer_, CreateProbeCluster(0.85 * 500)).Times(1);
.Times(1); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
probe_controller_->SetAlrStartTimeMs(rtc::nullopt); .WillRepeatedly(Return(rtc::nullopt));
clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1); clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(250, NowMs()); probe_controller_->SetEstimatedBitrate(250);
probe_controller_->SetAlrEndedTimeMs(clock_.TimeInMilliseconds()); probe_controller_->SetAlrEndedTimeMs(clock_.TimeInMilliseconds());
clock_.AdvanceTimeMilliseconds(kAlrEndedTimeoutMs - 1); clock_.AdvanceTimeMilliseconds(kAlrEndedTimeoutMs - 1);
probe_controller_->RequestProbe(NowMs()); probe_controller_->RequestProbe();
} }
TEST_F(ProbeControllerTest, RequestProbeWhenAlrNotEndedRecently) { TEST_F(ProbeControllerTest, RequestProbeWhenAlrNotEndedRecently) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(2); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(2);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetAlrStartTimeMs(rtc::nullopt); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
.WillRepeatedly(Return(rtc::nullopt));
clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1); clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(250, NowMs()); probe_controller_->SetEstimatedBitrate(250);
probe_controller_->SetAlrEndedTimeMs(clock_.TimeInMilliseconds()); probe_controller_->SetAlrEndedTimeMs(clock_.TimeInMilliseconds());
clock_.AdvanceTimeMilliseconds(kAlrEndedTimeoutMs + 1); clock_.AdvanceTimeMilliseconds(kAlrEndedTimeoutMs + 1);
probe_controller_->RequestProbe(NowMs()); probe_controller_->RequestProbe();
} }
TEST_F(ProbeControllerTest, RequestProbeWhenBweDropNotRecent) { TEST_F(ProbeControllerTest, RequestProbeWhenBweDropNotRecent) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(2); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(2);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetAlrStartTimeMs(clock_.TimeInMilliseconds()); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
.WillRepeatedly(Return(clock_.TimeInMilliseconds()));
clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1); clock_.AdvanceTimeMilliseconds(kAlrProbeInterval + 1);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(250, NowMs()); probe_controller_->SetEstimatedBitrate(250);
clock_.AdvanceTimeMilliseconds(kBitrateDropTimeoutMs + 1); clock_.AdvanceTimeMilliseconds(kBitrateDropTimeoutMs + 1);
probe_controller_->RequestProbe(NowMs()); probe_controller_->RequestProbe();
} }
TEST_F(ProbeControllerTest, PeriodicProbing) { TEST_F(ProbeControllerTest, PeriodicProbing) {
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(2); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(2);
probe_controller_->EnablePeriodicAlrProbing(true); probe_controller_->EnablePeriodicAlrProbing(true);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
int64_t start_time = clock_.TimeInMilliseconds(); int64_t start_time = clock_.TimeInMilliseconds();
// Expect the controller to send a new probe after 5s has passed. // Expect the controller to send a new probe after 5s has passed.
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(DataRateEqBps(1000))) EXPECT_CALL(pacer_, CreateProbeCluster(1000)).Times(1);
.Times(1); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
probe_controller_->SetAlrStartTimeMs(start_time); .WillRepeatedly(Return(start_time));
clock_.AdvanceTimeMilliseconds(5000); clock_.AdvanceTimeMilliseconds(5000);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
// The following probe should be sent at 10s into ALR. // The following probe should be sent at 10s into ALR.
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetAlrStartTimeMs(start_time); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
.WillRepeatedly(Return(start_time));
clock_.AdvanceTimeMilliseconds(4000); clock_.AdvanceTimeMilliseconds(4000);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(1); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(1);
probe_controller_->SetAlrStartTimeMs(start_time); EXPECT_CALL(pacer_, GetApplicationLimitedRegionStartTime())
.WillRepeatedly(Return(start_time));
clock_.AdvanceTimeMilliseconds(1000); clock_.AdvanceTimeMilliseconds(1000);
probe_controller_->Process(NowMs()); probe_controller_->Process();
probe_controller_->SetEstimatedBitrate(500, NowMs()); probe_controller_->SetEstimatedBitrate(500);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_); testing::Mock::VerifyAndClearExpectations(&pacer_);
} }
TEST_F(ProbeControllerTest, PeriodicProbingAfterReset) { TEST_F(ProbeControllerTest, PeriodicProbingAfterReset) {
NiceMock<MockNetworkControllerObserver> local_handler; testing::StrictMock<MockPacedSender> local_pacer;
probe_controller_.reset(new ProbeController(&local_handler)); probe_controller_.reset(new ProbeController(&local_pacer, &clock_));
int64_t alr_start_time = clock_.TimeInMilliseconds(); int64_t alr_start_time = clock_.TimeInMilliseconds();
EXPECT_CALL(local_pacer, GetApplicationLimitedRegionStartTime())
.WillRepeatedly(Return(alr_start_time));
probe_controller_->SetAlrStartTimeMs(alr_start_time); EXPECT_CALL(local_pacer, CreateProbeCluster(_)).Times(2);
EXPECT_CALL(local_handler, OnProbeClusterConfig(_)).Times(2);
probe_controller_->EnablePeriodicAlrProbing(true); probe_controller_->EnablePeriodicAlrProbing(true);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
probe_controller_->Reset(NowMs()); probe_controller_->Reset();
clock_.AdvanceTimeMilliseconds(10000); clock_.AdvanceTimeMilliseconds(10000);
probe_controller_->Process(NowMs()); probe_controller_->Process();
EXPECT_CALL(local_handler, OnProbeClusterConfig(_)).Times(2); EXPECT_CALL(local_pacer, CreateProbeCluster(_)).Times(2);
probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps, probe_controller_->SetBitrates(kMinBitrateBps, kStartBitrateBps,
kMaxBitrateBps, NowMs()); kMaxBitrateBps);
// Make sure we use |kStartBitrateBps| as the estimated bitrate // Make sure we use |kStartBitrateBps| as the estimated bitrate
// until SetEstimatedBitrate is called with an updated estimate. // until SetEstimatedBitrate is called with an updated estimate.
clock_.AdvanceTimeMilliseconds(10000); clock_.AdvanceTimeMilliseconds(10000);
EXPECT_CALL(local_handler, EXPECT_CALL(local_pacer, CreateProbeCluster(kStartBitrateBps*2));
OnProbeClusterConfig(DataRateEqBps(kStartBitrateBps * 2))); probe_controller_->Process();
probe_controller_->Process(NowMs());
} }
TEST_F(ProbeControllerTest, TestExponentialProbingOverflow) { TEST_F(ProbeControllerTest, TestExponentialProbingOverflow) {
const int64_t kMbpsMultiplier = 1000000; const int64_t kMbpsMultiplier = 1000000;
probe_controller_->SetBitrates(kMinBitrateBps, 10 * kMbpsMultiplier, probe_controller_->SetBitrates(kMinBitrateBps, 10 * kMbpsMultiplier,
100 * kMbpsMultiplier, NowMs()); 100 * kMbpsMultiplier);
// Verify that probe bitrate is capped at the specified max bitrate. // Verify that probe bitrate is capped at the specified max bitrate
EXPECT_CALL(cluster_handler_, EXPECT_CALL(pacer_, CreateProbeCluster(100 * kMbpsMultiplier));
OnProbeClusterConfig(DataRateEqBps(100 * kMbpsMultiplier))); probe_controller_->SetEstimatedBitrate(60 * kMbpsMultiplier);
probe_controller_->SetEstimatedBitrate(60 * kMbpsMultiplier, NowMs()); testing::Mock::VerifyAndClearExpectations(&pacer_);
testing::Mock::VerifyAndClearExpectations(&cluster_handler_);
// Verify that repeated probes aren't sent. // Verify that repeated probes aren't sent.
EXPECT_CALL(cluster_handler_, OnProbeClusterConfig(_)).Times(0); EXPECT_CALL(pacer_, CreateProbeCluster(_)).Times(0);
probe_controller_->SetEstimatedBitrate(100 * kMbpsMultiplier, NowMs()); probe_controller_->SetEstimatedBitrate(100 * kMbpsMultiplier);
} }
} // namespace test } // namespace test

View File

@ -11,331 +11,142 @@
#include "modules/congestion_controller/include/send_side_congestion_controller.h" #include "modules/congestion_controller/include/send_side_congestion_controller.h"
#include <algorithm> #include <algorithm>
#include <functional> #include <cstdio>
#include <memory> #include <memory>
#include <vector> #include <vector>
#include "modules/congestion_controller/include/goog_cc_factory.h"
#include "modules/congestion_controller/network_control/include/network_types.h" #include "modules/bitrate_controller/include/bitrate_controller.h"
#include "modules/congestion_controller/network_control/include/network_units.h" #include "modules/congestion_controller/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/probe_controller.h"
#include "modules/pacing/alr_detector.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h" #include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
#include "rtc_base/format_macros.h" #include "rtc_base/format_macros.h"
#include "rtc_base/logging.h" #include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "rtc_base/ptr_util.h" #include "rtc_base/ptr_util.h"
#include "rtc_base/rate_limiter.h" #include "rtc_base/rate_limiter.h"
#include "rtc_base/sequenced_task_checker.h"
#include "rtc_base/socket.h" #include "rtc_base/socket.h"
#include "rtc_base/timeutils.h" #include "rtc_base/timeutils.h"
#include "system_wrappers/include/field_trial.h" #include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/runtime_enabled_features.h" #include "system_wrappers/include/runtime_enabled_features.h"
using rtc::MakeUnique;
namespace webrtc { namespace webrtc {
namespace { namespace {
const char kCwndExperiment[] = "WebRTC-CwndExperiment";
const char kPacerPushbackExperiment[] = "WebRTC-PacerPushbackExperiment";
const int64_t kDefaultAcceptedQueueMs = 250;
bool CwndExperimentEnabled() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kCwndExperiment);
// The experiment is enabled iff the field trial string begins with "Enabled".
return experiment_string.find("Enabled") == 0;
}
bool ReadCwndExperimentParameter(int64_t* accepted_queue_ms) {
RTC_DCHECK(accepted_queue_ms);
std::string experiment_string =
webrtc::field_trial::FindFullName(kCwndExperiment);
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%" PRId64, accepted_queue_ms);
if (parsed_values == 1) {
RTC_CHECK_GE(*accepted_queue_ms, 0)
<< "Accepted must be greater than or equal to 0.";
return true;
}
return false;
}
static const int64_t kRetransmitWindowSizeMs = 500; static const int64_t kRetransmitWindowSizeMs = 500;
const char kPacerPushbackExperiment[] = "WebRTC-PacerPushbackExperiment"; // Makes sure that the bitrate and the min, max values are in valid range.
static void ClampBitrates(int* bitrate_bps,
bool IsPacerPushbackExperimentEnabled() { int* min_bitrate_bps,
return webrtc::field_trial::IsEnabled(kPacerPushbackExperiment) || int* max_bitrate_bps) {
(!webrtc::field_trial::IsDisabled(kPacerPushbackExperiment) && // TODO(holmer): We should make sure the default bitrates are set to 10 kbps,
webrtc::runtime_enabled_features::IsFeatureEnabled( // and that we don't try to set the min bitrate to 0 from any applications.
webrtc::runtime_enabled_features::kDualStreamModeFeatureName)); // The congestion controller should allow a min bitrate of 0.
if (*min_bitrate_bps < congestion_controller::GetMinBitrateBps())
*min_bitrate_bps = congestion_controller::GetMinBitrateBps();
if (*max_bitrate_bps > 0)
*max_bitrate_bps = std::max(*min_bitrate_bps, *max_bitrate_bps);
if (*bitrate_bps > 0)
*bitrate_bps = std::max(*min_bitrate_bps, *bitrate_bps);
} }
NetworkControllerFactoryInterface::uptr ControllerFactory( std::vector<webrtc::PacketFeedback> ReceivedPacketFeedbackVector(
RtcEventLog* event_log) { const std::vector<webrtc::PacketFeedback>& input) {
return rtc::MakeUnique<GoogCcNetworkControllerFactory>(event_log); std::vector<PacketFeedback> received_packet_feedback_vector;
auto is_received = [](const webrtc::PacketFeedback& packet_feedback) {
return packet_feedback.arrival_time_ms !=
webrtc::PacketFeedback::kNotReceived;
};
std::copy_if(input.begin(), input.end(),
std::back_inserter(received_packet_feedback_vector),
is_received);
return received_packet_feedback_vector;
} }
void SortPacketFeedbackVector(std::vector<webrtc::PacketFeedback>* input) { void SortPacketFeedbackVector(
std::vector<webrtc::PacketFeedback>* const input) {
RTC_DCHECK(input);
std::sort(input->begin(), input->end(), PacketFeedbackComparator()); std::sort(input->begin(), input->end(), PacketFeedbackComparator());
} }
PacketResult NetworkPacketFeedbackFromRtpPacketFeedback( bool IsPacerPushbackExperimentEnabled() {
const webrtc::PacketFeedback& pf) { return webrtc::field_trial::IsEnabled(kPacerPushbackExperiment) || (
PacketResult feedback; !webrtc::field_trial::IsDisabled(kPacerPushbackExperiment) &&
if (pf.arrival_time_ms == webrtc::PacketFeedback::kNotReceived) webrtc::runtime_enabled_features::IsFeatureEnabled(
feedback.receive_time = Timestamp::Infinity(); webrtc::runtime_enabled_features::kDualStreamModeFeatureName));
else
feedback.receive_time = Timestamp::ms(pf.arrival_time_ms);
if (pf.send_time_ms != webrtc::PacketFeedback::kNoSendTime) {
feedback.sent_packet = SentPacket();
feedback.sent_packet->send_time = Timestamp::ms(pf.send_time_ms);
feedback.sent_packet->size = DataSize::bytes(pf.payload_size);
feedback.sent_packet->pacing_info = pf.pacing_info;
}
return feedback;
} }
std::vector<PacketResult> PacketResultsFromRtpFeedbackVector(
const std::vector<PacketFeedback>& feedback_vector) {
RTC_DCHECK(std::is_sorted(feedback_vector.begin(), feedback_vector.end(),
PacketFeedbackComparator()));
std::vector<PacketResult> packet_feedbacks;
packet_feedbacks.reserve(feedback_vector.size());
for (const PacketFeedback& rtp_feedback : feedback_vector) {
auto feedback = NetworkPacketFeedbackFromRtpPacketFeedback(rtp_feedback);
packet_feedbacks.push_back(feedback);
}
return packet_feedbacks;
}
TargetRateConstraints ConvertConstraints(int min_bitrate_bps,
int max_bitrate_bps,
int start_bitrate_bps,
const Clock* clock) {
TargetRateConstraints msg;
msg.at_time = Timestamp::ms(clock->TimeInMilliseconds());
msg.min_data_rate =
min_bitrate_bps >= 0 ? DataRate::bps(min_bitrate_bps) : DataRate::Zero();
msg.starting_rate = start_bitrate_bps > 0 ? DataRate::bps(start_bitrate_bps)
: DataRate::kNotInitialized;
msg.max_data_rate = max_bitrate_bps > 0 ? DataRate::bps(max_bitrate_bps)
: DataRate::Infinity();
return msg;
}
} // namespace } // namespace
namespace send_side_cc_internal {
class ControlHandler : public NetworkControllerObserver {
public:
ControlHandler(PacerController* pacer_controller, const Clock* clock);
void OnCongestionWindow(CongestionWindow window) override;
void OnPacerConfig(PacerConfig config) override;
void OnProbeClusterConfig(ProbeClusterConfig config) override;
void OnTargetTransferRate(TargetTransferRate target_rate) override;
void OnNetworkAvailability(NetworkAvailability msg);
void OnPacerQueueUpdate(PacerQueueUpdate msg);
void RegisterNetworkObserver(
SendSideCongestionController::Observer* observer);
void DeRegisterNetworkObserver(
SendSideCongestionController::Observer* observer);
rtc::Optional<TargetTransferRate> last_transfer_rate();
bool pacer_configured();
RateLimiter* retransmission_rate_limiter();
private:
void OnNetworkInvalidation();
bool GetNetworkParameters(int32_t* estimated_bitrate_bps,
uint8_t* fraction_loss,
int64_t* rtt_ms);
bool IsSendQueueFull() const;
bool HasNetworkParametersToReportChanged(int64_t bitrate_bps,
uint8_t fraction_loss,
int64_t rtt);
PacerController* pacer_controller_;
RateLimiter retransmission_rate_limiter_;
rtc::CriticalSection state_lock_;
rtc::Optional<TargetTransferRate> last_target_rate_
RTC_GUARDED_BY(state_lock_);
bool pacer_configured_ RTC_GUARDED_BY(state_lock_) = false;
SendSideCongestionController::Observer* observer_ = nullptr;
rtc::Optional<TargetTransferRate> current_target_rate_msg_;
bool network_available_ = true;
int64_t last_reported_target_bitrate_bps_ = 0;
uint8_t last_reported_fraction_loss_ = 0;
int64_t last_reported_rtt_ms_ = 0;
const bool pacer_pushback_experiment_ = false;
int64_t pacer_expected_queue_ms_ = 0;
float encoding_rate_ratio_ = 1.0;
rtc::SequencedTaskChecker sequenced_checker_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(ControlHandler);
};
ControlHandler::ControlHandler(PacerController* pacer_controller,
const Clock* clock)
: pacer_controller_(pacer_controller),
retransmission_rate_limiter_(clock, kRetransmitWindowSizeMs),
pacer_pushback_experiment_(IsPacerPushbackExperimentEnabled()) {
sequenced_checker_.Detach();
}
void ControlHandler::OnCongestionWindow(CongestionWindow window) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
pacer_controller_->OnCongestionWindow(window);
}
void ControlHandler::OnPacerConfig(PacerConfig config) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
pacer_controller_->OnPacerConfig(config);
rtc::CritScope cs(&state_lock_);
pacer_configured_ = true;
}
void ControlHandler::OnProbeClusterConfig(ProbeClusterConfig config) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
pacer_controller_->OnProbeClusterConfig(config);
}
void ControlHandler::OnTargetTransferRate(TargetTransferRate target_rate) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
retransmission_rate_limiter_.SetMaxRate(
target_rate.network_estimate.bandwidth.bps());
current_target_rate_msg_ = target_rate;
OnNetworkInvalidation();
rtc::CritScope cs(&state_lock_);
last_target_rate_ = target_rate;
}
void ControlHandler::OnNetworkAvailability(NetworkAvailability msg) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
network_available_ = msg.network_available;
OnNetworkInvalidation();
}
void ControlHandler::OnPacerQueueUpdate(PacerQueueUpdate msg) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
pacer_expected_queue_ms_ = msg.expected_queue_time.ms();
OnNetworkInvalidation();
}
void ControlHandler::RegisterNetworkObserver(
SendSideCongestionController::Observer* observer) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
RTC_DCHECK(observer_ == nullptr);
observer_ = observer;
}
void ControlHandler::DeRegisterNetworkObserver(
SendSideCongestionController::Observer* observer) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequenced_checker_);
RTC_DCHECK_EQ(observer_, observer);
observer_ = nullptr;
}
void ControlHandler::OnNetworkInvalidation() {
if (!current_target_rate_msg_.has_value())
return;
uint32_t target_bitrate_bps = current_target_rate_msg_->target_rate.bps();
int64_t rtt_ms =
current_target_rate_msg_->network_estimate.round_trip_time.ms();
float loss_rate_ratio =
current_target_rate_msg_->network_estimate.loss_rate_ratio;
int loss_ratio_255 = loss_rate_ratio * 255;
uint8_t fraction_loss =
rtc::dchecked_cast<uint8_t>(rtc::SafeClamp(loss_ratio_255, 0, 255));
int64_t probing_interval_ms =
current_target_rate_msg_->network_estimate.bwe_period.ms();
if (!network_available_) {
target_bitrate_bps = 0;
} else if (!pacer_pushback_experiment_) {
target_bitrate_bps = IsSendQueueFull() ? 0 : target_bitrate_bps;
} else {
int64_t queue_length_ms = pacer_expected_queue_ms_;
if (queue_length_ms == 0) {
encoding_rate_ratio_ = 1.0;
} else if (queue_length_ms > 50) {
float encoding_ratio = 1.0 - queue_length_ms / 1000.0;
encoding_rate_ratio_ = std::min(encoding_rate_ratio_, encoding_ratio);
encoding_rate_ratio_ = std::max(encoding_rate_ratio_, 0.0f);
}
target_bitrate_bps *= encoding_rate_ratio_;
target_bitrate_bps = target_bitrate_bps < 50000 ? 0 : target_bitrate_bps;
}
if (HasNetworkParametersToReportChanged(target_bitrate_bps, fraction_loss,
rtt_ms)) {
if (observer_) {
observer_->OnNetworkChanged(target_bitrate_bps, fraction_loss, rtt_ms,
probing_interval_ms);
}
}
}
bool ControlHandler::HasNetworkParametersToReportChanged(
int64_t target_bitrate_bps,
uint8_t fraction_loss,
int64_t rtt_ms) {
bool changed = last_reported_target_bitrate_bps_ != target_bitrate_bps ||
(target_bitrate_bps > 0 &&
(last_reported_fraction_loss_ != fraction_loss ||
last_reported_rtt_ms_ != rtt_ms));
if (changed &&
(last_reported_target_bitrate_bps_ == 0 || target_bitrate_bps == 0)) {
RTC_LOG(LS_INFO) << "Bitrate estimate state changed, BWE: "
<< target_bitrate_bps << " bps.";
}
last_reported_target_bitrate_bps_ = target_bitrate_bps;
last_reported_fraction_loss_ = fraction_loss;
last_reported_rtt_ms_ = rtt_ms;
return changed;
}
bool ControlHandler::IsSendQueueFull() const {
return pacer_expected_queue_ms_ > PacedSender::kMaxQueueLengthMs;
}
rtc::Optional<TargetTransferRate> ControlHandler::last_transfer_rate() {
rtc::CritScope cs(&state_lock_);
return last_target_rate_;
}
bool ControlHandler::pacer_configured() {
rtc::CritScope cs(&state_lock_);
return pacer_configured_;
}
RateLimiter* ControlHandler::retransmission_rate_limiter() {
return &retransmission_rate_limiter_;
}
} // namespace send_side_cc_internal
SendSideCongestionController::SendSideCongestionController( SendSideCongestionController::SendSideCongestionController(
const Clock* clock, const Clock* clock,
Observer* observer, Observer* observer,
RtcEventLog* event_log, RtcEventLog* event_log,
PacedSender* pacer) PacedSender* pacer)
: SendSideCongestionController(clock,
event_log,
pacer,
ControllerFactory(event_log)) {
if (observer != nullptr)
RegisterNetworkObserver(observer);
}
SendSideCongestionController::SendSideCongestionController(
const Clock* clock,
RtcEventLog* event_log,
PacedSender* pacer,
NetworkControllerFactoryInterface::uptr controller_factory)
: clock_(clock), : clock_(clock),
observer_(observer),
event_log_(event_log),
pacer_(pacer), pacer_(pacer),
bitrate_controller_(
BitrateController::CreateBitrateController(clock_, event_log)),
acknowledged_bitrate_estimator_(
rtc::MakeUnique<AcknowledgedBitrateEstimator>()),
probe_controller_(new ProbeController(pacer_, clock_)),
retransmission_rate_limiter_(
new RateLimiter(clock, kRetransmitWindowSizeMs)),
transport_feedback_adapter_(clock_), transport_feedback_adapter_(clock_),
pacer_controller_(MakeUnique<PacerController>(pacer_)), last_reported_bitrate_bps_(0),
control_handler(MakeUnique<send_side_cc_internal::ControlHandler>( last_reported_fraction_loss_(0),
pacer_controller_.get(), last_reported_rtt_(0),
clock_)), network_state_(kNetworkUp),
controller_(controller_factory->Create(control_handler.get())), pause_pacer_(false),
process_interval_(controller_factory->GetProcessInterval()), pacer_paused_(false),
min_bitrate_bps_(congestion_controller::GetMinBitrateBps()),
delay_based_bwe_(new DelayBasedBwe(event_log_, clock_)),
in_cwnd_experiment_(CwndExperimentEnabled()),
accepted_queue_ms_(kDefaultAcceptedQueueMs),
was_in_alr_(false),
send_side_bwe_with_overhead_( send_side_bwe_with_overhead_(
webrtc::field_trial::IsEnabled("WebRTC-SendSideBwe-WithOverhead")), webrtc::field_trial::IsEnabled("WebRTC-SendSideBwe-WithOverhead")),
transport_overhead_bytes_per_packet_(0), transport_overhead_bytes_per_packet_(0),
network_available_(true), pacer_pushback_experiment_(IsPacerPushbackExperimentEnabled()) {
task_queue_(MakeUnique<rtc::TaskQueue>("SendSideCCQueue")) {} delay_based_bwe_->SetMinBitrate(min_bitrate_bps_);
if (in_cwnd_experiment_ &&
SendSideCongestionController::~SendSideCongestionController() { !ReadCwndExperimentParameter(&accepted_queue_ms_)) {
// Must be destructed before any objects used by calls on the task queue. RTC_LOG(LS_WARNING) << "Failed to parse parameters for CwndExperiment "
task_queue_.reset(); "from field trial string. Experiment disabled.";
in_cwnd_experiment_ = false;
}
} }
SendSideCongestionController::~SendSideCongestionController() {}
void SendSideCongestionController::RegisterPacketFeedbackObserver( void SendSideCongestionController::RegisterPacketFeedbackObserver(
PacketFeedbackObserver* observer) { PacketFeedbackObserver* observer) {
transport_feedback_adapter_.RegisterPacketFeedbackObserver(observer); transport_feedback_adapter_.RegisterPacketFeedbackObserver(observer);
@ -347,84 +158,92 @@ void SendSideCongestionController::DeRegisterPacketFeedbackObserver(
} }
void SendSideCongestionController::RegisterNetworkObserver(Observer* observer) { void SendSideCongestionController::RegisterNetworkObserver(Observer* observer) {
WaitOnTask([this, observer]() { rtc::CritScope cs(&observer_lock_);
control_handler->RegisterNetworkObserver(observer); RTC_DCHECK(observer_ == nullptr);
}); observer_ = observer;
} }
void SendSideCongestionController::DeRegisterNetworkObserver( void SendSideCongestionController::DeRegisterNetworkObserver(
Observer* observer) { Observer* observer) {
WaitOnTask([this, observer]() { rtc::CritScope cs(&observer_lock_);
control_handler->DeRegisterNetworkObserver(observer); RTC_DCHECK_EQ(observer_, observer);
}); observer_ = nullptr;
} }
void SendSideCongestionController::SetBweBitrates(int min_bitrate_bps, void SendSideCongestionController::SetBweBitrates(int min_bitrate_bps,
int start_bitrate_bps, int start_bitrate_bps,
int max_bitrate_bps) { int max_bitrate_bps) {
TargetRateConstraints msg = ConvertConstraints( ClampBitrates(&start_bitrate_bps, &min_bitrate_bps, &max_bitrate_bps);
min_bitrate_bps, max_bitrate_bps, start_bitrate_bps, clock_); bitrate_controller_->SetBitrates(start_bitrate_bps, min_bitrate_bps,
WaitOnTask([this, msg]() { controller_->OnTargetRateConstraints(msg); }); max_bitrate_bps);
probe_controller_->SetBitrates(min_bitrate_bps, start_bitrate_bps,
max_bitrate_bps);
{
rtc::CritScope cs(&bwe_lock_);
if (start_bitrate_bps > 0)
delay_based_bwe_->SetStartBitrate(start_bitrate_bps);
min_bitrate_bps_ = min_bitrate_bps;
delay_based_bwe_->SetMinBitrate(min_bitrate_bps_);
}
MaybeTriggerOnNetworkChanged();
} }
// TODO(holmer): Split this up and use SetBweBitrates in combination with // TODO(holmer): Split this up and use SetBweBitrates in combination with
// OnNetworkRouteChanged. // OnNetworkRouteChanged.
void SendSideCongestionController::OnNetworkRouteChanged( void SendSideCongestionController::OnNetworkRouteChanged(
const rtc::NetworkRoute& network_route, const rtc::NetworkRoute& network_route,
int start_bitrate_bps, int bitrate_bps,
int min_bitrate_bps, int min_bitrate_bps,
int max_bitrate_bps) { int max_bitrate_bps) {
ClampBitrates(&bitrate_bps, &min_bitrate_bps, &max_bitrate_bps);
// TODO(honghaiz): Recreate this object once the bitrate controller is
// no longer exposed outside SendSideCongestionController.
bitrate_controller_->ResetBitrates(bitrate_bps, min_bitrate_bps,
max_bitrate_bps);
transport_feedback_adapter_.SetNetworkIds(network_route.local_network_id, transport_feedback_adapter_.SetNetworkIds(network_route.local_network_id,
network_route.remote_network_id); network_route.remote_network_id);
{
rtc::CritScope cs(&bwe_lock_);
min_bitrate_bps_ = min_bitrate_bps;
delay_based_bwe_.reset(new DelayBasedBwe(event_log_, clock_));
acknowledged_bitrate_estimator_.reset(new AcknowledgedBitrateEstimator());
delay_based_bwe_->SetStartBitrate(bitrate_bps);
delay_based_bwe_->SetMinBitrate(min_bitrate_bps);
}
NetworkRouteChange msg; probe_controller_->Reset();
msg.at_time = Timestamp::ms(clock_->TimeInMilliseconds()); probe_controller_->SetBitrates(min_bitrate_bps, bitrate_bps, max_bitrate_bps);
msg.constraints = ConvertConstraints(min_bitrate_bps, max_bitrate_bps,
start_bitrate_bps, clock_); MaybeTriggerOnNetworkChanged();
WaitOnTask([this, msg]() { }
controller_->OnNetworkRouteChange(msg);
pacer_controller_->OnNetworkRouteChange(msg); BitrateController* SendSideCongestionController::GetBitrateController() const {
}); return bitrate_controller_.get();
} }
bool SendSideCongestionController::AvailableBandwidth( bool SendSideCongestionController::AvailableBandwidth(
uint32_t* bandwidth) const { uint32_t* bandwidth) const {
// TODO(srte): Remove this interface and push information about bandwidth return bitrate_controller_->AvailableBandwidth(bandwidth);
// estimation to users of this class, thereby reducing synchronous calls.
if (control_handler->last_transfer_rate().has_value()) {
*bandwidth =
control_handler->last_transfer_rate()->network_estimate.bandwidth.bps();
return true;
}
return false;
} }
RtcpBandwidthObserver* SendSideCongestionController::GetBandwidthObserver() { RtcpBandwidthObserver* SendSideCongestionController::GetBandwidthObserver()
return this; const {
return bitrate_controller_.get();
} }
RateLimiter* SendSideCongestionController::GetRetransmissionRateLimiter() { RateLimiter* SendSideCongestionController::GetRetransmissionRateLimiter() {
return control_handler->retransmission_rate_limiter(); return retransmission_rate_limiter_.get();
} }
void SendSideCongestionController::EnablePeriodicAlrProbing(bool enable) { void SendSideCongestionController::EnablePeriodicAlrProbing(bool enable) {
WaitOnTask([this, enable]() { probe_controller_->EnablePeriodicAlrProbing(enable);
streams_config_.requests_alr_probing = enable;
UpdateStreamsConfig();
});
}
void SendSideCongestionController::UpdateStreamsConfig() {
RTC_DCHECK(task_queue_->IsCurrent());
streams_config_.at_time = Timestamp::ms(clock_->TimeInMilliseconds());
controller_->OnStreamsConfig(streams_config_);
} }
int64_t SendSideCongestionController::GetPacerQueuingDelayMs() const { int64_t SendSideCongestionController::GetPacerQueuingDelayMs() const {
// TODO(srte): This should be made less synchronous. Now it grabs a lock in return IsNetworkDown() ? 0 : pacer_->QueueInMs();
// the pacer just for stats usage. Some kind of push interface might make
// sense.
return network_available_ ? pacer_->QueueInMs() : 0;
} }
int64_t SendSideCongestionController::GetFirstPacketTimeMs() const { int64_t SendSideCongestionController::GetFirstPacketTimeMs() const {
@ -439,19 +258,18 @@ SendSideCongestionController::GetTransportFeedbackObserver() {
void SendSideCongestionController::SignalNetworkState(NetworkState state) { void SendSideCongestionController::SignalNetworkState(NetworkState state) {
RTC_LOG(LS_INFO) << "SignalNetworkState " RTC_LOG(LS_INFO) << "SignalNetworkState "
<< (state == kNetworkUp ? "Up" : "Down"); << (state == kNetworkUp ? "Up" : "Down");
NetworkAvailability msg; {
msg.at_time = Timestamp::ms(clock_->TimeInMilliseconds()); rtc::CritScope cs(&network_state_lock_);
msg.network_available = state == kNetworkUp; pause_pacer_ = state == kNetworkDown;
network_available_ = msg.network_available; network_state_ = state;
WaitOnTask([this, msg]() { }
controller_->OnNetworkAvailability(msg); probe_controller_->OnNetworkStateChanged(state);
pacer_controller_->OnNetworkAvailability(msg); MaybeTriggerOnNetworkChanged();
control_handler->OnNetworkAvailability(msg);
});
} }
void SendSideCongestionController::SetTransportOverhead( void SendSideCongestionController::SetTransportOverhead(
size_t transport_overhead_bytes_per_packet) { size_t transport_overhead_bytes_per_packet) {
rtc::CritScope cs(&bwe_lock_);
transport_overhead_bytes_per_packet_ = transport_overhead_bytes_per_packet; transport_overhead_bytes_per_packet_ = transport_overhead_bytes_per_packet;
} }
@ -463,52 +281,38 @@ void SendSideCongestionController::OnSentPacket(
return; return;
transport_feedback_adapter_.OnSentPacket(sent_packet.packet_id, transport_feedback_adapter_.OnSentPacket(sent_packet.packet_id,
sent_packet.send_time_ms); sent_packet.send_time_ms);
MaybeUpdateOutstandingData(); if (in_cwnd_experiment_)
auto packet = transport_feedback_adapter_.GetPacket(sent_packet.packet_id); LimitOutstandingBytes(transport_feedback_adapter_.GetOutstandingBytes());
if (packet.has_value()) {
SentPacket msg;
msg.size = DataSize::bytes(packet->payload_size);
msg.send_time = Timestamp::ms(packet->send_time_ms);
task_queue_->PostTask([this, msg]() { controller_->OnSentPacket(msg); });
}
} }
void SendSideCongestionController::OnRttUpdate(int64_t avg_rtt_ms, void SendSideCongestionController::OnRttUpdate(int64_t avg_rtt_ms,
int64_t max_rtt_ms) { int64_t max_rtt_ms) {
int64_t now_ms = clock_->TimeInMilliseconds(); rtc::CritScope cs(&bwe_lock_);
RoundTripTimeUpdate report; delay_based_bwe_->OnRttUpdate(avg_rtt_ms, max_rtt_ms);
report.receive_time = Timestamp::ms(now_ms);
report.round_trip_time = TimeDelta::ms(avg_rtt_ms);
report.smoothed = true;
task_queue_->PostTask(
[this, report]() { controller_->OnRoundTripTimeUpdate(report); });
} }
int64_t SendSideCongestionController::TimeUntilNextProcess() { int64_t SendSideCongestionController::TimeUntilNextProcess() {
const int kMaxProcessInterval = 60 * 1000; return bitrate_controller_->TimeUntilNextProcess();
if (process_interval_.IsInfinite())
return kMaxProcessInterval;
int64_t next_process_ms = last_process_update_ms_ + process_interval_.ms();
int64_t time_until_next_process =
next_process_ms - clock_->TimeInMilliseconds();
return std::max<int64_t>(time_until_next_process, 0);
} }
void SendSideCongestionController::Process() { void SendSideCongestionController::Process() {
int64_t now_ms = clock_->TimeInMilliseconds(); bool pause_pacer;
last_process_update_ms_ = now_ms; // TODO(holmer): Once this class is running on a task queue we should
// replace this with a task instead.
{ {
ProcessInterval msg; rtc::CritScope lock(&network_state_lock_);
msg.at_time = Timestamp::ms(now_ms); pause_pacer = pause_pacer_;
task_queue_->PostTask(
[this, msg]() { controller_->OnProcessInterval(msg); });
} }
if (control_handler->pacer_configured()) { if (pause_pacer && !pacer_paused_) {
PacerQueueUpdate msg; pacer_->Pause();
msg.expected_queue_time = TimeDelta::ms(pacer_->ExpectedQueueTimeMs()); pacer_paused_ = true;
task_queue_->PostTask( } else if (!pause_pacer && pacer_paused_) {
[this, msg]() { control_handler->OnPacerQueueUpdate(msg); }); pacer_->Resume();
pacer_paused_ = false;
} }
bitrate_controller_->Process();
probe_controller_->Process();
MaybeTriggerOnNetworkChanged();
} }
void SendSideCongestionController::AddPacket( void SendSideCongestionController::AddPacket(
@ -517,6 +321,7 @@ void SendSideCongestionController::AddPacket(
size_t length, size_t length,
const PacedPacketInfo& pacing_info) { const PacedPacketInfo& pacing_info) {
if (send_side_bwe_with_overhead_) { if (send_side_bwe_with_overhead_) {
rtc::CritScope cs(&bwe_lock_);
length += transport_overhead_bytes_per_packet_; length += transport_overhead_bytes_per_packet_;
} }
transport_feedback_adapter_.AddPacket(ssrc, sequence_number, length, transport_feedback_adapter_.AddPacket(ssrc, sequence_number, length,
@ -526,35 +331,61 @@ void SendSideCongestionController::AddPacket(
void SendSideCongestionController::OnTransportFeedback( void SendSideCongestionController::OnTransportFeedback(
const rtcp::TransportFeedback& feedback) { const rtcp::TransportFeedback& feedback) {
RTC_DCHECK_RUNS_SERIALIZED(&worker_race_); RTC_DCHECK_RUNS_SERIALIZED(&worker_race_);
int64_t feedback_time_ms = clock_->TimeInMilliseconds();
DataSize prior_in_flight =
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes());
transport_feedback_adapter_.OnTransportFeedback(feedback); transport_feedback_adapter_.OnTransportFeedback(feedback);
MaybeUpdateOutstandingData(); std::vector<PacketFeedback> feedback_vector = ReceivedPacketFeedbackVector(
transport_feedback_adapter_.GetTransportFeedbackVector());
std::vector<PacketFeedback> feedback_vector =
transport_feedback_adapter_.GetTransportFeedbackVector();
SortPacketFeedbackVector(&feedback_vector); SortPacketFeedbackVector(&feedback_vector);
if (!feedback_vector.empty()) { bool currently_in_alr =
TransportPacketsFeedback msg; pacer_->GetApplicationLimitedRegionStartTime().has_value();
msg.packet_feedbacks = PacketResultsFromRtpFeedbackVector(feedback_vector); if (was_in_alr_ && !currently_in_alr) {
msg.feedback_time = Timestamp::ms(feedback_time_ms); int64_t now_ms = rtc::TimeMillis();
msg.prior_in_flight = prior_in_flight; acknowledged_bitrate_estimator_->SetAlrEndedTimeMs(now_ms);
msg.data_in_flight = probe_controller_->SetAlrEndedTimeMs(now_ms);
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes());
task_queue_->PostTask(
[this, msg]() { controller_->OnTransportPacketsFeedback(msg); });
} }
was_in_alr_ = currently_in_alr;
acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(
feedback_vector);
DelayBasedBwe::Result result;
{
rtc::CritScope cs(&bwe_lock_);
result = delay_based_bwe_->IncomingPacketFeedbackVector(
feedback_vector, acknowledged_bitrate_estimator_->bitrate_bps());
}
if (result.updated) {
bitrate_controller_->OnDelayBasedBweResult(result);
// Update the estimate in the ProbeController, in case we want to probe.
MaybeTriggerOnNetworkChanged();
}
if (result.recovered_from_overuse)
probe_controller_->RequestProbe();
if (in_cwnd_experiment_)
LimitOutstandingBytes(transport_feedback_adapter_.GetOutstandingBytes());
} }
void SendSideCongestionController::MaybeUpdateOutstandingData() { void SendSideCongestionController::LimitOutstandingBytes(
OutstandingData msg; size_t num_outstanding_bytes) {
msg.in_flight_data = RTC_DCHECK(in_cwnd_experiment_);
DataSize::bytes(transport_feedback_adapter_.GetOutstandingBytes()); rtc::CritScope lock(&network_state_lock_);
task_queue_->PostTask( rtc::Optional<int64_t> min_rtt_ms =
[this, msg]() { pacer_controller_->OnOutstandingData(msg); }); transport_feedback_adapter_.GetMinFeedbackLoopRtt();
// No valid RTT. Could be because send-side BWE isn't used, in which case
// we don't try to limit the outstanding packets.
if (!min_rtt_ms)
return;
const size_t kMinCwndBytes = 2 * 1500;
size_t max_outstanding_bytes =
std::max<size_t>((*min_rtt_ms + accepted_queue_ms_) *
last_reported_bitrate_bps_ / 1000 / 8,
kMinCwndBytes);
RTC_LOG(LS_INFO) << clock_->TimeInMilliseconds()
<< " Outstanding bytes: " << num_outstanding_bytes
<< " pacer queue: " << pacer_->QueueInMs()
<< " max outstanding: " << max_outstanding_bytes;
RTC_LOG(LS_INFO) << "Feedback rtt: " << *min_rtt_ms
<< " Bitrate: " << last_reported_bitrate_bps_;
pause_pacer_ = num_outstanding_bytes > max_outstanding_bytes;
} }
std::vector<PacketFeedback> std::vector<PacketFeedback>
@ -563,99 +394,81 @@ SendSideCongestionController::GetTransportFeedbackVector() const {
return transport_feedback_adapter_.GetTransportFeedbackVector(); return transport_feedback_adapter_.GetTransportFeedbackVector();
} }
void SendSideCongestionController::WaitOnTasks() { void SendSideCongestionController::MaybeTriggerOnNetworkChanged() {
rtc::Event event(false, false); uint32_t bitrate_bps;
task_queue_->PostTask([&event]() { event.Set(); }); uint8_t fraction_loss;
event.Wait(rtc::Event::kForever); int64_t rtt;
} bool estimate_changed = bitrate_controller_->GetNetworkParameters(
&bitrate_bps, &fraction_loss, &rtt);
void SendSideCongestionController::WaitOnTask(std::function<void()> closure) { if (estimate_changed) {
rtc::Event done(false, false); pacer_->SetEstimatedBitrate(bitrate_bps);
task_queue_->PostTask(rtc::NewClosure(closure, [&done] { done.Set(); })); probe_controller_->SetEstimatedBitrate(bitrate_bps);
done.Wait(rtc::Event::kForever); retransmission_rate_limiter_->SetMaxRate(bitrate_bps);
}
void SendSideCongestionController::SetSendBitrateLimits(
int64_t min_send_bitrate_bps,
int64_t max_padding_bitrate_bps) {
WaitOnTask([this, min_send_bitrate_bps, max_padding_bitrate_bps]() {
streams_config_.min_pacing_rate = DataRate::bps(min_send_bitrate_bps);
streams_config_.max_padding_rate = DataRate::bps(max_padding_bitrate_bps);
UpdateStreamsConfig();
});
}
void SendSideCongestionController::SetPacingFactor(float pacing_factor) {
WaitOnTask([this, pacing_factor]() {
streams_config_.pacing_factor = pacing_factor;
UpdateStreamsConfig();
});
}
void SendSideCongestionController::OnReceivedEstimatedBitrate(
uint32_t bitrate) {
RemoteBitrateReport msg;
msg.receive_time = Timestamp::ms(clock_->TimeInMilliseconds());
msg.bandwidth = DataRate::bps(bitrate);
task_queue_->PostTask(
[this, msg]() { controller_->OnRemoteBitrateReport(msg); });
}
void SendSideCongestionController::OnReceivedRtcpReceiverReport(
const webrtc::ReportBlockList& report_blocks,
int64_t rtt_ms,
int64_t now_ms) {
OnReceivedRtcpReceiverReportBlocks(report_blocks, now_ms);
RoundTripTimeUpdate report;
report.receive_time = Timestamp::ms(now_ms);
report.round_trip_time = TimeDelta::ms(rtt_ms);
report.smoothed = false;
task_queue_->PostTask(
[this, report]() { controller_->OnRoundTripTimeUpdate(report); });
}
void SendSideCongestionController::OnReceivedRtcpReceiverReportBlocks(
const ReportBlockList& report_blocks,
int64_t now_ms) {
if (report_blocks.empty())
return;
int total_packets_lost_delta = 0;
int total_packets_delta = 0;
// Compute the packet loss from all report blocks.
for (const RTCPReportBlock& report_block : report_blocks) {
auto it = last_report_blocks_.find(report_block.source_ssrc);
if (it != last_report_blocks_.end()) {
auto number_of_packets = report_block.extended_highest_sequence_number -
it->second.extended_highest_sequence_number;
total_packets_delta += number_of_packets;
auto lost_delta = report_block.packets_lost - it->second.packets_lost;
total_packets_lost_delta += lost_delta;
}
last_report_blocks_[report_block.source_ssrc] = report_block;
} }
// Can only compute delta if there has been previous blocks to compare to. If
// not, total_packets_delta will be unchanged and there's nothing more to do.
if (!total_packets_delta)
return;
int packets_received_delta = total_packets_delta - total_packets_lost_delta;
// To detect lost packets, at least one packet has to be received. This check
// is needed to avoid bandwith detection update in
// VideoSendStreamTest.SuspendBelowMinBitrate
if (packets_received_delta < 1) if (!pacer_pushback_experiment_) {
return; bitrate_bps = IsNetworkDown() || IsSendQueueFull() ? 0 : bitrate_bps;
Timestamp now = Timestamp::ms(now_ms); } else {
TransportLossReport msg; if (IsNetworkDown()) {
msg.packets_lost_delta = total_packets_lost_delta; bitrate_bps = 0;
msg.packets_received_delta = packets_received_delta; } else {
msg.receive_time = now; int64_t queue_length_ms = pacer_->ExpectedQueueTimeMs();
msg.start_time = last_report_block_time_;
msg.end_time = now; if (queue_length_ms == 0) {
task_queue_->PostTask( encoding_rate_ = 1.0;
[this, msg]() { controller_->OnTransportLossReport(msg); }); } else if (queue_length_ms > 50) {
last_report_block_time_ = now; float encoding_rate = 1.0 - queue_length_ms / 1000.0;
encoding_rate_ = std::min(encoding_rate_, encoding_rate);
encoding_rate_ = std::max(encoding_rate_, 0.0f);
}
bitrate_bps *= encoding_rate_;
bitrate_bps = bitrate_bps < 50000 ? 0 : bitrate_bps;
}
}
if (HasNetworkParametersToReportChanged(bitrate_bps, fraction_loss, rtt)) {
int64_t probing_interval_ms;
{
rtc::CritScope cs(&bwe_lock_);
probing_interval_ms = delay_based_bwe_->GetExpectedBwePeriodMs();
}
{
rtc::CritScope cs(&observer_lock_);
if (observer_) {
observer_->OnNetworkChanged(bitrate_bps, fraction_loss, rtt,
probing_interval_ms);
}
}
}
} }
bool SendSideCongestionController::HasNetworkParametersToReportChanged(
uint32_t bitrate_bps,
uint8_t fraction_loss,
int64_t rtt) {
rtc::CritScope cs(&network_state_lock_);
bool changed =
last_reported_bitrate_bps_ != bitrate_bps ||
(bitrate_bps > 0 && (last_reported_fraction_loss_ != fraction_loss ||
last_reported_rtt_ != rtt));
if (changed && (last_reported_bitrate_bps_ == 0 || bitrate_bps == 0)) {
RTC_LOG(LS_INFO) << "Bitrate estimate state changed, BWE: " << bitrate_bps
<< " bps.";
}
last_reported_bitrate_bps_ = bitrate_bps;
last_reported_fraction_loss_ = fraction_loss;
last_reported_rtt_ = rtt;
return changed;
}
bool SendSideCongestionController::IsSendQueueFull() const {
return pacer_->ExpectedQueueTimeMs() > PacedSender::kMaxQueueLengthMs;
}
bool SendSideCongestionController::IsNetworkDown() const {
rtc::CritScope cs(&network_state_lock_);
return network_state_ == kNetworkDown;
}
} // namespace webrtc } // namespace webrtc

View File

@ -8,10 +8,11 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#include "modules/congestion_controller/include/send_side_congestion_controller.h"
#include "logging/rtc_event_log/mock/mock_rtc_event_log.h" #include "logging/rtc_event_log/mock/mock_rtc_event_log.h"
#include "modules/bitrate_controller/include/bitrate_controller.h"
#include "modules/congestion_controller/congestion_controller_unittests_helper.h" #include "modules/congestion_controller/congestion_controller_unittests_helper.h"
#include "modules/congestion_controller/include/mock/mock_congestion_observer.h" #include "modules/congestion_controller/include/mock/mock_congestion_observer.h"
#include "modules/congestion_controller/include/send_side_congestion_controller.h"
#include "modules/pacing/mock/mock_paced_sender.h" #include "modules/pacing/mock/mock_paced_sender.h"
#include "modules/pacing/packet_router.h" #include "modules/pacing/packet_router.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h" #include "modules/remote_bitrate_estimator/include/bwe_defines.h"
@ -32,31 +33,16 @@ using testing::SaveArg;
using testing::StrictMock; using testing::StrictMock;
namespace webrtc { namespace webrtc {
namespace test {
namespace { namespace {
const webrtc::PacedPacketInfo kPacingInfo0(0, 5, 2000); const webrtc::PacedPacketInfo kPacingInfo0(0, 5, 2000);
const webrtc::PacedPacketInfo kPacingInfo1(1, 8, 4000); const webrtc::PacedPacketInfo kPacingInfo1(1, 8, 4000);
const uint32_t kInitialBitrateBps = 60000; const uint32_t kInitialBitrateBps = 60000;
const float kDefaultPacingRate = 2.5f;
class SendSideCongestionControllerForTest
: public SendSideCongestionController {
public:
SendSideCongestionControllerForTest(const Clock* clock,
Observer* observer,
RtcEventLog* event_log,
PacedSender* pacer)
: SendSideCongestionController(clock, observer, event_log, pacer) {}
~SendSideCongestionControllerForTest() {}
void Process() override {
SendSideCongestionController::Process();
SendSideCongestionController::WaitOnTasks();
}
};
} // namespace } // namespace
namespace test {
class SendSideCongestionControllerTest : public ::testing::Test { class SendSideCongestionControllerTest : public ::testing::Test {
protected: protected:
@ -66,15 +52,14 @@ class SendSideCongestionControllerTest : public ::testing::Test {
void SetUp() override { void SetUp() override {
pacer_.reset(new NiceMock<MockPacedSender>()); pacer_.reset(new NiceMock<MockPacedSender>());
controller_.reset(new SendSideCongestionControllerForTest( controller_.reset(new SendSideCongestionController(
&clock_, &observer_, &event_log_, pacer_.get())); &clock_, &observer_, &event_log_, pacer_.get()));
bandwidth_observer_ = controller_->GetBandwidthObserver(); bandwidth_observer_ = controller_->GetBandwidthObserver();
// Set the initial bitrate estimate and expect the |observer| and |pacer_| // Set the initial bitrate estimate and expect the |observer| and |pacer_|
// to be updated. // to be updated.
EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps, _, _, _));
EXPECT_CALL(*pacer_, EXPECT_CALL(*pacer_, SetEstimatedBitrate(kInitialBitrateBps));
SetPacingRates(kInitialBitrateBps * kDefaultPacingRate, _));
EXPECT_CALL(*pacer_, CreateProbeCluster(kInitialBitrateBps * 3)); EXPECT_CALL(*pacer_, CreateProbeCluster(kInitialBitrateBps * 3));
EXPECT_CALL(*pacer_, CreateProbeCluster(kInitialBitrateBps * 5)); EXPECT_CALL(*pacer_, CreateProbeCluster(kInitialBitrateBps * 5));
controller_->SetBweBitrates(0, kInitialBitrateBps, 5 * kInitialBitrateBps); controller_->SetBweBitrates(0, kInitialBitrateBps, 5 * kInitialBitrateBps);
@ -83,9 +68,8 @@ class SendSideCongestionControllerTest : public ::testing::Test {
// Custom setup - use an observer that tracks the target bitrate, without // Custom setup - use an observer that tracks the target bitrate, without
// prescribing on which iterations it must change (like a mock would). // prescribing on which iterations it must change (like a mock would).
void TargetBitrateTrackingSetup() { void TargetBitrateTrackingSetup() {
bandwidth_observer_ = nullptr;
pacer_.reset(new NiceMock<MockPacedSender>()); pacer_.reset(new NiceMock<MockPacedSender>());
controller_.reset(new SendSideCongestionControllerForTest( controller_.reset(new SendSideCongestionController(
&clock_, &target_bitrate_observer_, &event_log_, pacer_.get())); &clock_, &target_bitrate_observer_, &event_log_, pacer_.get()));
controller_->SetBweBitrates(0, kInitialBitrateBps, 5 * kInitialBitrateBps); controller_->SetBweBitrates(0, kInitialBitrateBps, 5 * kInitialBitrateBps);
} }
@ -153,7 +137,7 @@ class SendSideCongestionControllerTest : public ::testing::Test {
RtcpBandwidthObserver* bandwidth_observer_; RtcpBandwidthObserver* bandwidth_observer_;
PacketRouter packet_router_; PacketRouter packet_router_;
std::unique_ptr<NiceMock<MockPacedSender>> pacer_; std::unique_ptr<NiceMock<MockPacedSender>> pacer_;
std::unique_ptr<SendSideCongestionControllerForTest> controller_; std::unique_ptr<SendSideCongestionController> controller_;
rtc::Optional<uint32_t> target_bitrate_bps_; rtc::Optional<uint32_t> target_bitrate_bps_;
}; };
@ -164,15 +148,13 @@ TEST_F(SendSideCongestionControllerTest, OnNetworkChanged) {
controller_->Process(); controller_->Process();
EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps * 2, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps * 2, _, _, _));
EXPECT_CALL(*pacer_, EXPECT_CALL(*pacer_, SetEstimatedBitrate(kInitialBitrateBps * 2));
SetPacingRates(kInitialBitrateBps * 2 * kDefaultPacingRate, _));
bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2); bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2);
clock_.AdvanceTimeMilliseconds(25); clock_.AdvanceTimeMilliseconds(25);
controller_->Process(); controller_->Process();
EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps, _, _, _));
EXPECT_CALL(*pacer_, EXPECT_CALL(*pacer_, SetEstimatedBitrate(kInitialBitrateBps));
SetPacingRates(kInitialBitrateBps * kDefaultPacingRate, _));
bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps); bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps);
clock_.AdvanceTimeMilliseconds(25); clock_.AdvanceTimeMilliseconds(25);
controller_->Process(); controller_->Process();
@ -180,14 +162,14 @@ TEST_F(SendSideCongestionControllerTest, OnNetworkChanged) {
TEST_F(SendSideCongestionControllerTest, OnSendQueueFull) { TEST_F(SendSideCongestionControllerTest, OnSendQueueFull) {
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs + 1)); .WillOnce(Return(PacedSender::kMaxQueueLengthMs + 1));
EXPECT_CALL(observer_, OnNetworkChanged(0, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(0, _, _, _));
controller_->Process(); controller_->Process();
// Let the pacer not be full next time the controller checks. // Let the pacer not be full next time the controller checks.
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs - 1)); .WillOnce(Return(PacedSender::kMaxQueueLengthMs - 1));
EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps, _, _, _));
controller_->Process(); controller_->Process();
@ -195,24 +177,23 @@ TEST_F(SendSideCongestionControllerTest, OnSendQueueFull) {
TEST_F(SendSideCongestionControllerTest, OnSendQueueFullAndEstimateChange) { TEST_F(SendSideCongestionControllerTest, OnSendQueueFullAndEstimateChange) {
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs + 1)); .WillOnce(Return(PacedSender::kMaxQueueLengthMs + 1));
EXPECT_CALL(observer_, OnNetworkChanged(0, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(0, _, _, _));
controller_->Process(); controller_->Process();
// Receive new estimate but let the queue still be full. // Receive new estimate but let the queue still be full.
bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2); bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2);
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs + 1)); .WillOnce(Return(PacedSender::kMaxQueueLengthMs + 1));
// The send pacer should get the new estimate though. // The send pacer should get the new estimate though.
EXPECT_CALL(*pacer_, EXPECT_CALL(*pacer_, SetEstimatedBitrate(kInitialBitrateBps * 2));
SetPacingRates(kInitialBitrateBps * 2 * kDefaultPacingRate, _));
clock_.AdvanceTimeMilliseconds(25); clock_.AdvanceTimeMilliseconds(25);
controller_->Process(); controller_->Process();
// Let the pacer not be full next time the controller checks. // Let the pacer not be full next time the controller checks.
// |OnNetworkChanged| should be called with the new estimate. // |OnNetworkChanged| should be called with the new estimate.
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs - 1)); .WillOnce(Return(PacedSender::kMaxQueueLengthMs - 1));
EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps * 2, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps * 2, _, _, _));
clock_.AdvanceTimeMilliseconds(25); clock_.AdvanceTimeMilliseconds(25);
controller_->Process(); controller_->Process();
@ -233,7 +214,7 @@ TEST_F(SendSideCongestionControllerTest, OnNetworkRouteChanged) {
int new_bitrate = 200000; int new_bitrate = 200000;
testing::Mock::VerifyAndClearExpectations(pacer_.get()); testing::Mock::VerifyAndClearExpectations(pacer_.get());
EXPECT_CALL(observer_, OnNetworkChanged(new_bitrate, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(new_bitrate, _, _, _));
EXPECT_CALL(*pacer_, SetPacingRates(new_bitrate * kDefaultPacingRate, _)); EXPECT_CALL(*pacer_, SetEstimatedBitrate(new_bitrate));
rtc::NetworkRoute route; rtc::NetworkRoute route;
route.local_network_id = 1; route.local_network_id = 1;
controller_->OnNetworkRouteChanged(route, new_bitrate, -1, -1); controller_->OnNetworkRouteChanged(route, new_bitrate, -1, -1);
@ -243,10 +224,8 @@ TEST_F(SendSideCongestionControllerTest, OnNetworkRouteChanged) {
EXPECT_CALL( EXPECT_CALL(
observer_, observer_,
OnNetworkChanged(congestion_controller::GetMinBitrateBps(), _, _, _)); OnNetworkChanged(congestion_controller::GetMinBitrateBps(), _, _, _));
EXPECT_CALL( EXPECT_CALL(*pacer_,
*pacer_, SetEstimatedBitrate(congestion_controller::GetMinBitrateBps()));
SetPacingRates(
congestion_controller::GetMinBitrateBps() * kDefaultPacingRate, _));
route.local_network_id = 2; route.local_network_id = 2;
controller_->OnNetworkRouteChanged(route, -1, -1, -1); controller_->OnNetworkRouteChanged(route, -1, -1, -1);
} }
@ -255,7 +234,7 @@ TEST_F(SendSideCongestionControllerTest, OldFeedback) {
int new_bitrate = 200000; int new_bitrate = 200000;
testing::Mock::VerifyAndClearExpectations(pacer_.get()); testing::Mock::VerifyAndClearExpectations(pacer_.get());
EXPECT_CALL(observer_, OnNetworkChanged(new_bitrate, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(new_bitrate, _, _, _));
EXPECT_CALL(*pacer_, SetPacingRates(new_bitrate * kDefaultPacingRate, _)); EXPECT_CALL(*pacer_, SetEstimatedBitrate(new_bitrate));
// Send a few packets on the first network route. // Send a few packets on the first network route.
std::vector<PacketFeedback> packets; std::vector<PacketFeedback> packets;
@ -288,17 +267,15 @@ TEST_F(SendSideCongestionControllerTest, OldFeedback) {
EXPECT_CALL( EXPECT_CALL(
observer_, observer_,
OnNetworkChanged(congestion_controller::GetMinBitrateBps(), _, _, _)); OnNetworkChanged(congestion_controller::GetMinBitrateBps(), _, _, _));
EXPECT_CALL( EXPECT_CALL(*pacer_,
*pacer_, SetEstimatedBitrate(congestion_controller::GetMinBitrateBps()));
SetPacingRates(
congestion_controller::GetMinBitrateBps() * kDefaultPacingRate, _));
route.local_network_id = 2; route.local_network_id = 2;
controller_->OnNetworkRouteChanged(route, -1, -1, -1); controller_->OnNetworkRouteChanged(route, -1, -1, -1);
} }
TEST_F(SendSideCongestionControllerTest, TEST_F(SendSideCongestionControllerTest,
SignalNetworkStateAndQueueIsFullAndEstimateChange) { SignalNetworkStateAndQueueIsFullAndEstimateChange) {
// Send queue is full. // Send queue is full
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs + 1)); .WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs + 1));
EXPECT_CALL(observer_, OnNetworkChanged(0, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(0, _, _, _));
@ -313,15 +290,14 @@ TEST_F(SendSideCongestionControllerTest,
controller_->Process(); controller_->Process();
// Receive new estimate but let the queue still be full. // Receive new estimate but let the queue still be full.
EXPECT_CALL(*pacer_, EXPECT_CALL(*pacer_, SetEstimatedBitrate(kInitialBitrateBps * 2));
SetPacingRates(kInitialBitrateBps * 2 * kDefaultPacingRate, _));
bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2); bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2);
clock_.AdvanceTimeMilliseconds(25); clock_.AdvanceTimeMilliseconds(25);
controller_->Process(); controller_->Process();
// Let the pacer not be full next time the controller checks. // Let the pacer not be full next time the controller checks.
EXPECT_CALL(*pacer_, ExpectedQueueTimeMs()) EXPECT_CALL(*pacer_, ExpectedQueueTimeMs())
.WillRepeatedly(Return(PacedSender::kMaxQueueLengthMs - 1)); .WillOnce(Return(PacedSender::kMaxQueueLengthMs - 1));
EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps * 2, _, _, _)); EXPECT_CALL(observer_, OnNetworkChanged(kInitialBitrateBps * 2, _, _, _));
controller_->Process(); controller_->Process();
} }
@ -347,7 +323,7 @@ TEST_F(SendSideCongestionControllerTest, GetProbingInterval) {
controller_->Process(); controller_->Process();
EXPECT_CALL(observer_, OnNetworkChanged(_, _, _, testing::Ne(0))); EXPECT_CALL(observer_, OnNetworkChanged(_, _, _, testing::Ne(0)));
EXPECT_CALL(*pacer_, SetPacingRates(_, _)); EXPECT_CALL(*pacer_, SetEstimatedBitrate(_));
bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2); bandwidth_observer_->OnReceivedEstimatedBitrate(kInitialBitrateBps * 2);
clock_.AdvanceTimeMilliseconds(25); clock_.AdvanceTimeMilliseconds(25);
controller_->Process(); controller_->Process();

View File

@ -50,17 +50,6 @@ bool SendTimeHistory::OnSentPacket(uint16_t sequence_number,
return true; return true;
} }
rtc::Optional<PacketFeedback> SendTimeHistory::GetPacket(
uint16_t sequence_number) const {
int64_t unwrapped_seq_num =
seq_num_unwrapper_.UnwrapWithoutUpdate(sequence_number);
rtc::Optional<PacketFeedback> optional_feedback;
auto it = history_.find(unwrapped_seq_num);
if (it != history_.end())
optional_feedback.emplace(it->second);
return optional_feedback;
}
bool SendTimeHistory::GetFeedback(PacketFeedback* packet_feedback, bool SendTimeHistory::GetFeedback(PacketFeedback* packet_feedback,
bool remove) { bool remove) {
RTC_DCHECK(packet_feedback); RTC_DCHECK(packet_feedback);

View File

@ -33,9 +33,6 @@ class SendTimeHistory {
// Return false if not found. // Return false if not found.
bool OnSentPacket(uint16_t sequence_number, int64_t send_time_ms); bool OnSentPacket(uint16_t sequence_number, int64_t send_time_ms);
// Retrieves packet info identified by |sequence_number|.
rtc::Optional<PacketFeedback> GetPacket(uint16_t sequence_number) const;
// Look up PacketFeedback for a sent packet, based on the sequence number, and // Look up PacketFeedback for a sent packet, based on the sequence number, and
// populate all fields except for arrival_time. The packet parameter must // populate all fields except for arrival_time. The packet parameter must
// thus be non-null and have the sequence_number field set. // thus be non-null and have the sequence_number field set.

View File

@ -52,7 +52,8 @@ TEST_F(SendTimeHistoryTest, SaveAndRestoreNetworkId) {
uint16_t sequence_number = 0; uint16_t sequence_number = 0;
int64_t now_ms = clock_.TimeInMilliseconds(); int64_t now_ms = clock_.TimeInMilliseconds();
for (int i = 1; i < 5; ++i) { for (int i = 1; i < 5; ++i) {
PacketFeedback packet(now_ms, sequence_number, 1000, i, i - 1, kPacingInfo); PacketFeedback packet(now_ms, sequence_number, 1000, i, i - 1,
kPacingInfo);
history_.AddAndRemoveOld(packet); history_.AddAndRemoveOld(packet);
history_.OnSentPacket(sequence_number, now_ms); history_.OnSentPacket(sequence_number, now_ms);
PacketFeedback restored(now_ms, sequence_number); PacketFeedback restored(now_ms, sequence_number);
@ -81,26 +82,6 @@ TEST_F(SendTimeHistoryTest, AddRemoveOne) {
EXPECT_FALSE(history_.GetFeedback(&received_packet3, true)); EXPECT_FALSE(history_.GetFeedback(&received_packet3, true));
} }
TEST_F(SendTimeHistoryTest, GetPacketReturnsSentPacket) {
const uint16_t kSeqNo = 10;
const PacedPacketInfo kPacingInfo(0, 5, 1200);
const PacketFeedback kSentPacket(0, -1, 1, kSeqNo, 123, 0, 0, kPacingInfo);
AddPacketWithSendTime(kSeqNo, 123, 1, kPacingInfo);
auto sent_packet = history_.GetPacket(kSeqNo);
EXPECT_EQ(kSentPacket, *sent_packet);
}
TEST_F(SendTimeHistoryTest, GetPacketEmptyForRemovedPacket) {
const uint16_t kSeqNo = 10;
const PacedPacketInfo kPacingInfo(0, 5, 1200);
AddPacketWithSendTime(kSeqNo, 123, 1, kPacingInfo);
auto sent_packet = history_.GetPacket(kSeqNo);
PacketFeedback received_packet(0, 0, kSeqNo, 0, kPacingInfo);
EXPECT_TRUE(history_.GetFeedback(&received_packet, true));
sent_packet = history_.GetPacket(kSeqNo);
EXPECT_FALSE(sent_packet.has_value());
}
TEST_F(SendTimeHistoryTest, PopulatesExpectedFields) { TEST_F(SendTimeHistoryTest, PopulatesExpectedFields) {
const uint16_t kSeqNo = 10; const uint16_t kSeqNo = 10;
const int64_t kSendTime = 1000; const int64_t kSendTime = 1000;

View File

@ -82,12 +82,6 @@ void TransportFeedbackAdapter::OnSentPacket(uint16_t sequence_number,
send_time_history_.OnSentPacket(sequence_number, send_time_ms); send_time_history_.OnSentPacket(sequence_number, send_time_ms);
} }
rtc::Optional<PacketFeedback> TransportFeedbackAdapter::GetPacket(
uint16_t sequence_number) const {
rtc::CritScope cs(&lock_);
return send_time_history_.GetPacket(sequence_number);
}
void TransportFeedbackAdapter::SetNetworkIds(uint16_t local_id, void TransportFeedbackAdapter::SetNetworkIds(uint16_t local_id,
uint16_t remote_id) { uint16_t remote_id) {
rtc::CritScope cs(&lock_); rtc::CritScope cs(&lock_);
@ -124,6 +118,7 @@ std::vector<PacketFeedback> TransportFeedbackAdapter::GetPacketFeedbackVector(
return packet_feedback_vector; return packet_feedback_vector;
} }
packet_feedback_vector.reserve(feedback.GetPacketStatusCount()); packet_feedback_vector.reserve(feedback.GetPacketStatusCount());
int64_t feedback_rtt = -1;
{ {
rtc::CritScope cs(&lock_); rtc::CritScope cs(&lock_);
size_t failed_lookups = 0; size_t failed_lookups = 0;
@ -153,6 +148,12 @@ std::vector<PacketFeedback> TransportFeedbackAdapter::GetPacketFeedbackVector(
++failed_lookups; ++failed_lookups;
if (packet_feedback.local_net_id == local_net_id_ && if (packet_feedback.local_net_id == local_net_id_ &&
packet_feedback.remote_net_id == remote_net_id_) { packet_feedback.remote_net_id == remote_net_id_) {
if (packet_feedback.send_time_ms >= 0) {
int64_t rtt = now_ms - packet_feedback.send_time_ms;
// max() is used to account for feedback being delayed by the
// receiver.
feedback_rtt = std::max(rtt, feedback_rtt);
}
packet_feedback_vector.push_back(packet_feedback); packet_feedback_vector.push_back(packet_feedback);
} }
@ -164,6 +165,14 @@ std::vector<PacketFeedback> TransportFeedbackAdapter::GetPacketFeedbackVector(
<< " packet" << (failed_lookups > 1 ? "s" : "") << " packet" << (failed_lookups > 1 ? "s" : "")
<< ". Send time history too small?"; << ". Send time history too small?";
} }
if (feedback_rtt > -1) {
feedback_rtts_.push_back(feedback_rtt);
const size_t kFeedbackRttWindow = 32;
if (feedback_rtts_.size() > kFeedbackRttWindow)
feedback_rtts_.pop_front();
min_feedback_rtt_.emplace(
*std::min_element(feedback_rtts_.begin(), feedback_rtts_.end()));
}
} }
return packet_feedback_vector; return packet_feedback_vector;
} }
@ -184,6 +193,11 @@ TransportFeedbackAdapter::GetTransportFeedbackVector() const {
return last_packet_feedback_vector_; return last_packet_feedback_vector_;
} }
rtc::Optional<int64_t> TransportFeedbackAdapter::GetMinFeedbackLoopRtt() const {
rtc::CritScope cs(&lock_);
return min_feedback_rtt_;
}
size_t TransportFeedbackAdapter::GetOutstandingBytes() const { size_t TransportFeedbackAdapter::GetOutstandingBytes() const {
rtc::CritScope cs(&lock_); rtc::CritScope cs(&lock_);
return send_time_history_.GetOutstandingBytes(local_net_id_, remote_net_id_); return send_time_history_.GetOutstandingBytes(local_net_id_, remote_net_id_);

View File

@ -47,7 +47,7 @@ class TransportFeedbackAdapter {
// to the CongestionController interface. // to the CongestionController interface.
void OnTransportFeedback(const rtcp::TransportFeedback& feedback); void OnTransportFeedback(const rtcp::TransportFeedback& feedback);
std::vector<PacketFeedback> GetTransportFeedbackVector() const; std::vector<PacketFeedback> GetTransportFeedbackVector() const;
rtc::Optional<PacketFeedback> GetPacket(uint16_t sequence_number) const; rtc::Optional<int64_t> GetMinFeedbackLoopRtt() const;
void SetTransportOverhead(int transport_overhead_bytes_per_packet); void SetTransportOverhead(int transport_overhead_bytes_per_packet);
@ -67,6 +67,8 @@ class TransportFeedbackAdapter {
std::vector<PacketFeedback> last_packet_feedback_vector_; std::vector<PacketFeedback> last_packet_feedback_vector_;
uint16_t local_net_id_ RTC_GUARDED_BY(&lock_); uint16_t local_net_id_ RTC_GUARDED_BY(&lock_);
uint16_t remote_net_id_ RTC_GUARDED_BY(&lock_); uint16_t remote_net_id_ RTC_GUARDED_BY(&lock_);
std::deque<int64_t> feedback_rtts_ RTC_GUARDED_BY(&lock_);
rtc::Optional<int64_t> min_feedback_rtt_ RTC_GUARDED_BY(&lock_);
rtc::CriticalSection observers_lock_; rtc::CriticalSection observers_lock_;
std::vector<PacketFeedbackObserver*> observers_ std::vector<PacketFeedbackObserver*> observers_

View File

@ -10,6 +10,8 @@ import("../../webrtc.gni")
rtc_static_library("pacing") { rtc_static_library("pacing") {
sources = [ sources = [
"alr_detector.cc",
"alr_detector.h",
"bitrate_prober.cc", "bitrate_prober.cc",
"bitrate_prober.h", "bitrate_prober.h",
"interval_budget.cc", "interval_budget.cc",
@ -58,6 +60,7 @@ if (rtc_include_tests) {
testonly = true testonly = true
sources = [ sources = [
"alr_detector_unittest.cc",
"bitrate_prober_unittest.cc", "bitrate_prober_unittest.cc",
"interval_budget_unittest.cc", "interval_budget_unittest.cc",
"paced_sender_unittest.cc", "paced_sender_unittest.cc",

View File

@ -8,11 +8,11 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#include "modules/congestion_controller/alr_detector.h" #include "modules/pacing/alr_detector.h"
#include <algorithm> #include <algorithm>
#include <cstdio>
#include <string> #include <string>
#include <cstdio>
#include "logging/rtc_event_log/events/rtc_event_alr_state.h" #include "logging/rtc_event_log/events/rtc_event_alr_state.h"
#include "logging/rtc_event_log/rtc_event_log.h" #include "logging/rtc_event_log/rtc_event_log.h"
@ -52,16 +52,7 @@ AlrDetector::AlrDetector(RtcEventLog* event_log)
AlrDetector::~AlrDetector() {} AlrDetector::~AlrDetector() {}
void AlrDetector::OnBytesSent(size_t bytes_sent, int64_t send_time_ms) { void AlrDetector::OnBytesSent(size_t bytes_sent, int64_t delta_time_ms) {
if (!last_send_time_ms_.has_value()) {
last_send_time_ms_ = send_time_ms;
// Since the duration for sending the bytes is unknwon, return without
// updating alr state.
return;
}
int64_t delta_time_ms = send_time_ms - *last_send_time_ms_;
last_send_time_ms_ = send_time_ms;
alr_budget_.UseBudget(bytes_sent); alr_budget_.UseBudget(bytes_sent);
alr_budget_.IncreaseBudget(delta_time_ms); alr_budget_.IncreaseBudget(delta_time_ms);
bool state_changed = false; bool state_changed = false;

View File

@ -8,8 +8,8 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#ifndef MODULES_CONGESTION_CONTROLLER_ALR_DETECTOR_H_ #ifndef MODULES_PACING_ALR_DETECTOR_H_
#define MODULES_CONGESTION_CONTROLLER_ALR_DETECTOR_H_ #define MODULES_PACING_ALR_DETECTOR_H_
#include "api/optional.h" #include "api/optional.h"
#include "common_types.h" // NOLINT(build/include) #include "common_types.h" // NOLINT(build/include)
@ -35,7 +35,7 @@ class AlrDetector {
explicit AlrDetector(RtcEventLog* event_log); explicit AlrDetector(RtcEventLog* event_log);
~AlrDetector(); ~AlrDetector();
void OnBytesSent(size_t bytes_sent, int64_t send_time_ms); void OnBytesSent(size_t bytes_sent, int64_t delta_time_ms);
// Set current estimated bandwidth. // Set current estimated bandwidth.
void SetEstimatedBitrate(int bitrate_bps); void SetEstimatedBitrate(int bitrate_bps);
@ -61,8 +61,6 @@ class AlrDetector {
int alr_start_budget_level_percent_; int alr_start_budget_level_percent_;
int alr_stop_budget_level_percent_; int alr_stop_budget_level_percent_;
rtc::Optional<int64_t> last_send_time_ms_;
IntervalBudget alr_budget_; IntervalBudget alr_budget_;
rtc::Optional<int64_t> alr_started_time_ms_; rtc::Optional<int64_t> alr_started_time_ms_;
@ -71,4 +69,4 @@ class AlrDetector {
} // namespace webrtc } // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_ALR_DETECTOR_H_ #endif // MODULES_PACING_ALR_DETECTOR_H_

View File

@ -8,7 +8,7 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#include "modules/congestion_controller/alr_detector.h" #include "modules/pacing/alr_detector.h"
#include "rtc_base/experiments/alr_experiment.h" #include "rtc_base/experiments/alr_experiment.h"
#include "test/field_trial.h" #include "test/field_trial.h"
@ -25,9 +25,8 @@ namespace webrtc {
namespace { namespace {
class SimulateOutgoingTrafficIn { class SimulateOutgoingTrafficIn {
public: public:
explicit SimulateOutgoingTrafficIn(AlrDetector* alr_detector, explicit SimulateOutgoingTrafficIn(AlrDetector* alr_detector)
int64_t* timestamp_ms) : alr_detector_(alr_detector) {
: alr_detector_(alr_detector), timestamp_ms_(timestamp_ms) {
RTC_CHECK(alr_detector_); RTC_CHECK(alr_detector_);
} }
@ -49,21 +48,18 @@ class SimulateOutgoingTrafficIn {
return; return;
const int kTimeStepMs = 10; const int kTimeStepMs = 10;
for (int t = 0; t < *interval_ms_; t += kTimeStepMs) { for (int t = 0; t < *interval_ms_; t += kTimeStepMs) {
*timestamp_ms_ += kTimeStepMs;
alr_detector_->OnBytesSent(kEstimatedBitrateBps * *usage_percentage_ * alr_detector_->OnBytesSent(kEstimatedBitrateBps * *usage_percentage_ *
kTimeStepMs / (8 * 100 * 1000), kTimeStepMs / (8 * 100 * 1000),
*timestamp_ms_); kTimeStepMs);
} }
int remainder_ms = *interval_ms_ % kTimeStepMs; int remainder_ms = *interval_ms_ % kTimeStepMs;
if (remainder_ms > 0) { if (remainder_ms > 0) {
*timestamp_ms_ += kTimeStepMs;
alr_detector_->OnBytesSent(kEstimatedBitrateBps * *usage_percentage_ * alr_detector_->OnBytesSent(kEstimatedBitrateBps * *usage_percentage_ *
remainder_ms / (8 * 100 * 1000), remainder_ms / (8 * 100 * 1000),
*timestamp_ms_); kTimeStepMs);
} }
} }
AlrDetector* const alr_detector_; AlrDetector* const alr_detector_;
int64_t* timestamp_ms_;
rtc::Optional<int> interval_ms_; rtc::Optional<int> interval_ms_;
rtc::Optional<int> usage_percentage_; rtc::Optional<int> usage_percentage_;
}; };
@ -77,7 +73,6 @@ class AlrDetectorTest : public testing::Test {
protected: protected:
AlrDetector alr_detector_; AlrDetector alr_detector_;
int64_t timestamp_ms_ = 1000;
}; };
TEST_F(AlrDetectorTest, AlrDetection) { TEST_F(AlrDetectorTest, AlrDetection) {
@ -85,19 +80,19 @@ TEST_F(AlrDetectorTest, AlrDetection) {
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());
// Stay in non-ALR state when usage is close to 100%. // Stay in non-ALR state when usage is close to 100%.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(1000) .ForTimeMs(1000)
.AtPercentOfEstimatedBitrate(90); .AtPercentOfEstimatedBitrate(90);
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());
// Verify that we ALR starts when bitrate drops below 20%. // Verify that we ALR starts when bitrate drops below 20%.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(1500) .ForTimeMs(1500)
.AtPercentOfEstimatedBitrate(20); .AtPercentOfEstimatedBitrate(20);
EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime());
// Verify that ALR ends when usage is above 65%. // Verify that ALR ends when usage is above 65%.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(4000) .ForTimeMs(4000)
.AtPercentOfEstimatedBitrate(100); .AtPercentOfEstimatedBitrate(100);
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());
@ -108,19 +103,19 @@ TEST_F(AlrDetectorTest, ShortSpike) {
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());
// Verify that we ALR starts when bitrate drops below 20%. // Verify that we ALR starts when bitrate drops below 20%.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(1000) .ForTimeMs(1000)
.AtPercentOfEstimatedBitrate(20); .AtPercentOfEstimatedBitrate(20);
EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime());
// Verify that we stay in ALR region even after a short bitrate spike. // Verify that we stay in ALR region even after a short bitrate spike.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(100) .ForTimeMs(100)
.AtPercentOfEstimatedBitrate(150); .AtPercentOfEstimatedBitrate(150);
EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime());
// ALR ends when usage is above 65%. // ALR ends when usage is above 65%.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(3000) .ForTimeMs(3000)
.AtPercentOfEstimatedBitrate(100); .AtPercentOfEstimatedBitrate(100);
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());
@ -131,7 +126,7 @@ TEST_F(AlrDetectorTest, BandwidthEstimateChanges) {
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());
// ALR starts when bitrate drops below 20%. // ALR starts when bitrate drops below 20%.
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(1000) .ForTimeMs(1000)
.AtPercentOfEstimatedBitrate(20); .AtPercentOfEstimatedBitrate(20);
EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime());
@ -142,7 +137,7 @@ TEST_F(AlrDetectorTest, BandwidthEstimateChanges) {
// to the BWE drop by initiating a new probe. // to the BWE drop by initiating a new probe.
alr_detector_.SetEstimatedBitrate(kEstimatedBitrateBps / 5); alr_detector_.SetEstimatedBitrate(kEstimatedBitrateBps / 5);
EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_TRUE(alr_detector_.GetApplicationLimitedRegionStartTime());
SimulateOutgoingTrafficIn(&alr_detector_, &timestamp_ms_) SimulateOutgoingTrafficIn(&alr_detector_)
.ForTimeMs(1000) .ForTimeMs(1000)
.AtPercentOfEstimatedBitrate(50); .AtPercentOfEstimatedBitrate(50);
EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime()); EXPECT_FALSE(alr_detector_.GetApplicationLimitedRegionStartTime());

View File

@ -15,6 +15,7 @@
namespace webrtc { namespace webrtc {
namespace { namespace {
constexpr int kWindowMs = 500; constexpr int kWindowMs = 500;
constexpr int kDeltaTimeMs = 2000;
} }
IntervalBudget::IntervalBudget(int initial_target_rate_kbps) IntervalBudget::IntervalBudget(int initial_target_rate_kbps)
@ -34,6 +35,7 @@ void IntervalBudget::set_target_rate_kbps(int target_rate_kbps) {
} }
void IntervalBudget::IncreaseBudget(int64_t delta_time_ms) { void IntervalBudget::IncreaseBudget(int64_t delta_time_ms) {
RTC_DCHECK_LT(delta_time_ms, kDeltaTimeMs);
int bytes = target_rate_kbps_ * delta_time_ms / 8; int bytes = target_rate_kbps_ * delta_time_ms / 8;
if (bytes_remaining_ < 0 || can_build_up_underuse_) { if (bytes_remaining_ < 0 || can_build_up_underuse_) {
// We overused last interval, compensate this interval. // We overused last interval, compensate this interval.
@ -54,8 +56,6 @@ size_t IntervalBudget::bytes_remaining() const {
} }
int IntervalBudget::budget_level_percent() const { int IntervalBudget::budget_level_percent() const {
if (max_bytes_in_budget_ == 0)
return 0;
return bytes_remaining_ * 100 / max_bytes_in_budget_; return bytes_remaining_ * 100 / max_bytes_in_budget_;
} }

View File

@ -30,10 +30,12 @@ class MockPacedSender : public PacedSender {
size_t bytes, size_t bytes,
bool retransmission)); bool retransmission));
MOCK_METHOD1(CreateProbeCluster, void(int)); MOCK_METHOD1(CreateProbeCluster, void(int));
MOCK_METHOD2(SetPacingRates, void(uint32_t, uint32_t)); MOCK_METHOD1(SetEstimatedBitrate, void(uint32_t));
MOCK_CONST_METHOD0(QueueInMs, int64_t()); MOCK_CONST_METHOD0(QueueInMs, int64_t());
MOCK_CONST_METHOD0(QueueInPackets, int()); MOCK_CONST_METHOD0(QueueInPackets, int());
MOCK_CONST_METHOD0(ExpectedQueueTimeMs, int64_t()); MOCK_CONST_METHOD0(ExpectedQueueTimeMs, int64_t());
MOCK_CONST_METHOD0(GetApplicationLimitedRegionStartTime,
rtc::Optional<int64_t>());
MOCK_METHOD0(Process, void()); MOCK_METHOD0(Process, void());
}; };

View File

@ -18,6 +18,7 @@
#include <utility> #include <utility>
#include "modules/include/module_common_types.h" #include "modules/include/module_common_types.h"
#include "modules/pacing/alr_detector.h"
#include "modules/pacing/bitrate_prober.h" #include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h" #include "modules/pacing/interval_budget.h"
#include "modules/pacing/packet_queue.h" #include "modules/pacing/packet_queue.h"
@ -53,6 +54,7 @@ bool IsRoundRobinPacingEnabled() {
namespace webrtc { namespace webrtc {
const int64_t PacedSender::kMaxQueueLengthMs = 2000; const int64_t PacedSender::kMaxQueueLengthMs = 2000;
const float PacedSender::kDefaultPaceMultiplier = 2.5f;
namespace { namespace {
std::unique_ptr<PacketQueueInterface> CreatePacketQueue(const Clock* clock, std::unique_ptr<PacketQueueInterface> CreatePacketQueue(const Clock* clock,
@ -79,16 +81,21 @@ PacedSender::PacedSender(const Clock* clock,
std::unique_ptr<PacketQueueInterface> packets) std::unique_ptr<PacketQueueInterface> packets)
: clock_(clock), : clock_(clock),
packet_sender_(packet_sender), packet_sender_(packet_sender),
alr_detector_(rtc::MakeUnique<AlrDetector>(event_log)),
paused_(false), paused_(false),
media_budget_(rtc::MakeUnique<IntervalBudget>(0)), media_budget_(rtc::MakeUnique<IntervalBudget>(0)),
padding_budget_(rtc::MakeUnique<IntervalBudget>(0)), padding_budget_(rtc::MakeUnique<IntervalBudget>(0)),
prober_(rtc::MakeUnique<BitrateProber>(event_log)), prober_(rtc::MakeUnique<BitrateProber>(event_log)),
probing_send_failure_(false), probing_send_failure_(false),
estimated_bitrate_bps_(0),
min_send_bitrate_kbps_(0u),
max_padding_bitrate_kbps_(0u),
pacing_bitrate_kbps_(0), pacing_bitrate_kbps_(0),
time_last_update_us_(clock->TimeInMicroseconds()), time_last_update_us_(clock->TimeInMicroseconds()),
first_sent_packet_ms_(-1), first_sent_packet_ms_(-1),
packets_(std::move(packets)), packets_(std::move(packets)),
packet_counter_(0), packet_counter_(0),
pacing_factor_(kDefaultPaceMultiplier),
queue_time_limit(kMaxQueueLengthMs), queue_time_limit(kMaxQueueLengthMs),
account_for_audio_(false) { account_for_audio_(false) {
UpdateBudgetWithElapsedTime(kMinPacketLimitMs); UpdateBudgetWithElapsedTime(kMinPacketLimitMs);
@ -109,7 +116,6 @@ void PacedSender::Pause() {
paused_ = true; paused_ = true;
packets_->SetPauseState(true, clock_->TimeInMilliseconds()); packets_->SetPauseState(true, clock_->TimeInMilliseconds());
} }
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to get // Tell the process thread to call our TimeUntilNextProcess() method to get
// a new (longer) estimate for when to call Process(). // a new (longer) estimate for when to call Process().
if (process_thread_) if (process_thread_)
@ -124,7 +130,6 @@ void PacedSender::Resume() {
paused_ = false; paused_ = false;
packets_->SetPauseState(false, clock_->TimeInMilliseconds()); packets_->SetPauseState(false, clock_->TimeInMilliseconds());
} }
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to // Tell the process thread to call our TimeUntilNextProcess() method to
// refresh the estimate for when to call Process(). // refresh the estimate for when to call Process().
if (process_thread_) if (process_thread_)
@ -137,12 +142,29 @@ void PacedSender::SetProbingEnabled(bool enabled) {
prober_->SetEnabled(enabled); prober_->SetEnabled(enabled);
} }
void PacedSender::SetPacingRates(uint32_t pacing_rate_bps, void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) {
uint32_t padding_rate_bps) { if (bitrate_bps == 0)
RTC_LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate.";
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_rate_bps > 0); estimated_bitrate_bps_ = bitrate_bps;
pacing_bitrate_kbps_ = pacing_rate_bps / 1000; padding_budget_->set_target_rate_kbps(
padding_budget_->set_target_rate_kbps(padding_rate_bps / 1000); std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
pacing_bitrate_kbps_ =
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
pacing_factor_;
alr_detector_->SetEstimatedBitrate(bitrate_bps);
}
void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps,
int padding_bitrate) {
rtc::CritScope cs(&critsect_);
min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000;
pacing_bitrate_kbps_ =
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
pacing_factor_;
max_padding_bitrate_kbps_ = padding_bitrate / 1000;
padding_budget_->set_target_rate_kbps(
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
} }
void PacedSender::InsertPacket(RtpPacketSender::Priority priority, void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
@ -152,8 +174,8 @@ void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
size_t bytes, size_t bytes,
bool retransmission) { bool retransmission) {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_bitrate_kbps_ > 0) RTC_DCHECK(estimated_bitrate_bps_ > 0)
<< "SetPacingRate must be called before InsertPacket."; << "SetEstimatedBitrate must be called before InsertPacket.";
int64_t now_ms = clock_->TimeInMilliseconds(); int64_t now_ms = clock_->TimeInMilliseconds();
prober_->OnIncomingPacket(bytes); prober_->OnIncomingPacket(bytes);
@ -178,6 +200,12 @@ int64_t PacedSender::ExpectedQueueTimeMs() const {
pacing_bitrate_kbps_); pacing_bitrate_kbps_);
} }
rtc::Optional<int64_t> PacedSender::GetApplicationLimitedRegionStartTime()
const {
rtc::CritScope cs(&critsect_);
return alr_detector_->GetApplicationLimitedRegionStartTime();
}
size_t PacedSender::QueueSizePackets() const { size_t PacedSender::QueueSizePackets() const {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
return packets_->SizeInPackets(); return packets_->SizeInPackets();
@ -229,7 +257,8 @@ void PacedSender::Process() {
// do, timestamps get messed up. // do, timestamps get messed up.
if (packet_counter_ == 0) if (packet_counter_ == 0)
return; return;
SendPadding(1, pacing_info); size_t bytes_sent = SendPadding(1, pacing_info);
alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
return; return;
} }
@ -262,7 +291,7 @@ void PacedSender::Process() {
pacing_info = prober_->CurrentCluster(); pacing_info = prober_->CurrentCluster();
recommended_probe_size = prober_->RecommendedMinProbeSize(); recommended_probe_size = prober_->RecommendedMinProbeSize();
} }
while (!packets_->Empty() && !paused_) { while (!packets_->Empty()) {
// Since we need to release the lock in order to send, we first pop the // Since we need to release the lock in order to send, we first pop the
// element from the priority queue but keep it in storage, so that we can // element from the priority queue but keep it in storage, so that we can
// reinsert it if send fails. // reinsert it if send fails.
@ -290,9 +319,8 @@ void PacedSender::Process() {
int padding_needed = int padding_needed =
static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent) static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent)
: padding_budget_->bytes_remaining()); : padding_budget_->bytes_remaining());
if (padding_needed > 0) { if (padding_needed > 0)
bytes_sent += SendPadding(padding_needed, pacing_info); bytes_sent += SendPadding(padding_needed, pacing_info);
}
} }
} }
if (is_probing) { if (is_probing) {
@ -300,11 +328,11 @@ void PacedSender::Process() {
if (!probing_send_failure_) if (!probing_send_failure_)
prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent); prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent);
} }
alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
} }
void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) { void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) {
RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread; RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread;
rtc::CritScope cs(&process_thread_lock_);
process_thread_ = process_thread; process_thread_ = process_thread;
} }
@ -360,6 +388,14 @@ void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) {
padding_budget_->UseBudget(bytes_sent); padding_budget_->UseBudget(bytes_sent);
} }
void PacedSender::SetPacingFactor(float pacing_factor) {
rtc::CritScope cs(&critsect_);
pacing_factor_ = pacing_factor;
// Make sure new padding factor is applied immediately, otherwise we need to
// wait for the send bitrate estimate to be updated before this takes effect.
SetEstimatedBitrate(estimated_bitrate_bps_);
}
void PacedSender::SetQueueTimeLimit(int limit_ms) { void PacedSender::SetQueueTimeLimit(int limit_ms) {
rtc::CritScope cs(&critsect_); rtc::CritScope cs(&critsect_);
queue_time_limit = limit_ms; queue_time_limit = limit_ms;

View File

@ -21,6 +21,7 @@
#include "typedefs.h" // NOLINT(build/include) #include "typedefs.h" // NOLINT(build/include)
namespace webrtc { namespace webrtc {
class AlrDetector;
class BitrateProber; class BitrateProber;
class Clock; class Clock;
class ProbeClusterCreatedObserver; class ProbeClusterCreatedObserver;
@ -54,6 +55,12 @@ class PacedSender : public Pacer {
// encoding them). Bitrate sent may temporarily exceed target set by // encoding them). Bitrate sent may temporarily exceed target set by
// UpdateBitrate() so that this limit will be upheld. // UpdateBitrate() so that this limit will be upheld.
static const int64_t kMaxQueueLengthMs; static const int64_t kMaxQueueLengthMs;
// Pacing-rate relative to our target send rate.
// Multiplicative factor that is applied to the target bitrate to calculate
// the number of bytes that can be transmitted per interval.
// Increasing this factor will result in lower delays in cases of bitrate
// overshoots from the encoder.
static const float kDefaultPaceMultiplier;
PacedSender(const Clock* clock, PacedSender(const Clock* clock,
PacketSender* packet_sender, PacketSender* packet_sender,
@ -79,9 +86,22 @@ class PacedSender : public Pacer {
// effect. // effect.
void SetProbingEnabled(bool enabled); void SetProbingEnabled(bool enabled);
// Sets the pacing rates. Must be called once before packets can be sent. // Sets the estimated capacity of the network. Must be called once before
void SetPacingRates(uint32_t pacing_rate_bps, // packets can be sent.
uint32_t padding_rate_bps) override; // |bitrate_bps| is our estimate of what we are allowed to send on average.
// We will pace out bursts of packets at a bitrate of
// |bitrate_bps| * kDefaultPaceMultiplier.
void SetEstimatedBitrate(uint32_t bitrate_bps) override;
// Sets the minimum send bitrate and maximum padding bitrate requested by send
// streams.
// |min_send_bitrate_bps| might be higher that the estimated available network
// bitrate and if so, the pacer will send with |min_send_bitrate_bps|.
// |max_padding_bitrate_bps| might be higher than the estimate available
// network bitrate and if so, the pacer will send padding packets to reach
// the min of the estimated available bitrate and |max_padding_bitrate_bps|.
void SetSendBitrateLimits(int min_send_bitrate_bps,
int max_padding_bitrate_bps);
// Returns true if we send the packet now, else it will add the packet // Returns true if we send the packet now, else it will add the packet
// information to the queue and call TimeToSendPacket when it's time to send. // information to the queue and call TimeToSendPacket when it's time to send.
@ -111,6 +131,14 @@ class PacedSender : public Pacer {
// packets in the queue, given the current size and bitrate, ignoring prio. // packets in the queue, given the current size and bitrate, ignoring prio.
virtual int64_t ExpectedQueueTimeMs() const; virtual int64_t ExpectedQueueTimeMs() const;
// Returns time in milliseconds when the current application-limited region
// started or empty result if the sender is currently not application-limited.
//
// Application Limited Region (ALR) refers to operating in a state where the
// traffic on network is limited due to application not having enough
// traffic to meet the current channel capacity.
virtual rtc::Optional<int64_t> GetApplicationLimitedRegionStartTime() const;
// Returns the number of milliseconds until the module want a worker thread // Returns the number of milliseconds until the module want a worker thread
// to call Process. // to call Process.
int64_t TimeUntilNextProcess() override; int64_t TimeUntilNextProcess() override;
@ -120,6 +148,7 @@ class PacedSender : public Pacer {
// Called when the prober is associated with a process thread. // Called when the prober is associated with a process thread.
void ProcessThreadAttached(ProcessThread* process_thread) override; void ProcessThreadAttached(ProcessThread* process_thread) override;
void SetPacingFactor(float pacing_factor);
void SetQueueTimeLimit(int limit_ms); void SetQueueTimeLimit(int limit_ms);
private: private:
@ -137,6 +166,7 @@ class PacedSender : public Pacer {
const Clock* const clock_; const Clock* const clock_;
PacketSender* const packet_sender_; PacketSender* const packet_sender_;
const std::unique_ptr<AlrDetector> alr_detector_ RTC_PT_GUARDED_BY(critsect_);
rtc::CriticalSection critsect_; rtc::CriticalSection critsect_;
bool paused_ RTC_GUARDED_BY(critsect_); bool paused_ RTC_GUARDED_BY(critsect_);
@ -154,6 +184,9 @@ class PacedSender : public Pacer {
bool probing_send_failure_ RTC_GUARDED_BY(critsect_); bool probing_send_failure_ RTC_GUARDED_BY(critsect_);
// Actual configured bitrates (media_budget_ may temporarily be higher in // Actual configured bitrates (media_budget_ may temporarily be higher in
// order to meet pace time constraint). // order to meet pace time constraint).
uint32_t estimated_bitrate_bps_ RTC_GUARDED_BY(critsect_);
uint32_t min_send_bitrate_kbps_ RTC_GUARDED_BY(critsect_);
uint32_t max_padding_bitrate_kbps_ RTC_GUARDED_BY(critsect_);
uint32_t pacing_bitrate_kbps_ RTC_GUARDED_BY(critsect_); uint32_t pacing_bitrate_kbps_ RTC_GUARDED_BY(critsect_);
int64_t time_last_update_us_ RTC_GUARDED_BY(critsect_); int64_t time_last_update_us_ RTC_GUARDED_BY(critsect_);
@ -162,15 +195,9 @@ class PacedSender : public Pacer {
const std::unique_ptr<PacketQueueInterface> packets_ const std::unique_ptr<PacketQueueInterface> packets_
RTC_PT_GUARDED_BY(critsect_); RTC_PT_GUARDED_BY(critsect_);
uint64_t packet_counter_ RTC_GUARDED_BY(critsect_); uint64_t packet_counter_ RTC_GUARDED_BY(critsect_);
ProcessThread* process_thread_ = nullptr;
// Lock to avoid race when attaching process thread. This can happen due to float pacing_factor_ RTC_GUARDED_BY(critsect_);
// the Call class setting network state on SendSideCongestionController, which
// in turn calls Pause/Resume on Pacedsender, before actually starting the
// pacer process thread. If SendSideCongestionController is running on a task
// queue separate from the thread used by Call, this causes a race.
rtc::CriticalSection process_thread_lock_;
ProcessThread* process_thread_ RTC_GUARDED_BY(process_thread_lock_) = nullptr;
int64_t queue_time_limit RTC_GUARDED_BY(critsect_); int64_t queue_time_limit RTC_GUARDED_BY(critsect_);
bool account_for_audio_ RTC_GUARDED_BY(critsect_); bool account_for_audio_ RTC_GUARDED_BY(critsect_);
}; };

View File

@ -31,8 +31,6 @@ constexpr unsigned kSecondClusterBps = 1800000;
// values. This results in probing slightly higher than the target bitrate. // values. This results in probing slightly higher than the target bitrate.
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets. // For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
constexpr int kBitrateProbingError = 150000; constexpr int kBitrateProbingError = 150000;
const float kPaceMultiplier = 2.5f;
} // namespace } // namespace
namespace webrtc { namespace webrtc {
@ -118,7 +116,7 @@ class PacedSenderTest : public testing::TestWithParam<std::string> {
// have to enable probing, either by creating a new PacedSender instance or // have to enable probing, either by creating a new PacedSender instance or
// by calling SetProbingEnabled(true). // by calling SetProbingEnabled(true).
send_bucket_->SetProbingEnabled(false); send_bucket_->SetProbingEnabled(false);
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
} }
@ -173,7 +171,7 @@ TEST_P(PacedSenderTest, QueuePacket) {
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send = const size_t packets_to_send =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send; ++i) { for (size_t i = 0; i < packets_to_send; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false); clock_.TimeInMilliseconds(), 250, false);
@ -222,7 +220,7 @@ TEST_P(PacedSenderTest, PaceQueuedPackets) {
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send_per_interval = const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) { for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false); clock_.TimeInMilliseconds(), 250, false);
@ -307,14 +305,14 @@ TEST_P(PacedSenderTest, Padding) {
uint32_t ssrc = 12345; uint32_t ssrc = 12345;
uint16_t sequence_number = 1234; uint16_t sequence_number = 1234;
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
kTargetBitrateBps); send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
// Due to the multiplicative factor we can send 5 packets during a send // Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send_per_interval = const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) { for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false); clock_.TimeInMilliseconds(), 250, false);
@ -344,8 +342,8 @@ TEST_P(PacedSenderTest, Padding) {
} }
TEST_P(PacedSenderTest, NoPaddingBeforeNormalPacket) { TEST_P(PacedSenderTest, NoPaddingBeforeNormalPacket) {
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
kTargetBitrateBps); send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
send_bucket_->Process(); send_bucket_->Process();
@ -372,8 +370,8 @@ TEST_P(PacedSenderTest, VerifyPaddingUpToBitrate) {
int64_t capture_time_ms = 56789; int64_t capture_time_ms = 56789;
const int kTimeStep = 5; const int kTimeStep = 5;
const int64_t kBitrateWindow = 100; const int64_t kBitrateWindow = 100;
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
kTargetBitrateBps); send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
int64_t start_time = clock_.TimeInMilliseconds(); int64_t start_time = clock_.TimeInMilliseconds();
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
@ -400,8 +398,11 @@ TEST_P(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
PacedSenderPadding callback; PacedSenderPadding callback;
send_bucket_.reset(new PacedSender(&clock_, &callback, nullptr)); send_bucket_.reset(new PacedSender(&clock_, &callback, nullptr));
send_bucket_->SetProbingEnabled(false); send_bucket_->SetProbingEnabled(false);
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, send_bucket_->SetEstimatedBitrate(kTargetBitrateBps);
kTargetBitrateBps);
send_bucket_->SetSendBitrateLimits(
0 /*allocated_bitrate_bps*/,
kTargetBitrateBps * 2 /* max_padding_bitrate_bps */);
int64_t start_time = clock_.TimeInMilliseconds(); int64_t start_time = clock_.TimeInMilliseconds();
size_t media_bytes = 0; size_t media_bytes = 0;
@ -432,7 +433,7 @@ TEST_P(PacedSenderTest, Priority) {
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send_per_interval = const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) { for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false); clock_.TimeInMilliseconds(), 250, false);
@ -486,7 +487,7 @@ TEST_P(PacedSenderTest, RetransmissionPriority) {
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send_per_interval = const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
send_bucket_->Process(); send_bucket_->Process();
EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
@ -547,7 +548,7 @@ TEST_P(PacedSenderTest, HighPrioDoesntAffectBudget) {
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send_per_interval = const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) { for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false); clock_.TimeInMilliseconds(), 250, false);
@ -581,7 +582,7 @@ TEST_P(PacedSenderTest, Pause) {
// interval. (network capacity * multiplier / (8 bits per byte * // interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second) // (packet size * #send intervals per second)
const size_t packets_to_send_per_interval = const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); kTargetBitrateBps * PacedSender::kDefaultPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) { for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false); clock_.TimeInMilliseconds(), 250, false);
@ -740,10 +741,10 @@ TEST_P(PacedSenderTest, ExpectedQueueTimeMs) {
uint16_t sequence_number = 1234; uint16_t sequence_number = 1234;
const size_t kNumPackets = 60; const size_t kNumPackets = 60;
const size_t kPacketSize = 1200; const size_t kPacketSize = 1200;
const int32_t kMaxBitrate = kPaceMultiplier * 30000; const int32_t kMaxBitrate = PacedSender::kDefaultPaceMultiplier * 30000;
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs()); EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(30000);
for (size_t i = 0; i < kNumPackets; ++i) { for (size_t i = 0; i < kNumPackets; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false); clock_.TimeInMilliseconds(), kPacketSize, false);
@ -777,7 +778,7 @@ TEST_P(PacedSenderTest, QueueTimeGrowsOverTime) {
uint16_t sequence_number = 1234; uint16_t sequence_number = 1234;
EXPECT_EQ(0, send_bucket_->QueueInMs()); EXPECT_EQ(0, send_bucket_->QueueInMs());
send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(30000);
SendAndExpectPacket(PacedSender::kNormalPriority, SendAndExpectPacket(PacedSender::kNormalPriority,
ssrc, ssrc,
sequence_number, sequence_number,
@ -801,7 +802,7 @@ TEST_P(PacedSenderTest, ProbingWithInsertedPackets) {
send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr)); send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
send_bucket_->CreateProbeCluster(kFirstClusterBps); send_bucket_->CreateProbeCluster(kFirstClusterBps);
send_bucket_->CreateProbeCluster(kSecondClusterBps); send_bucket_->CreateProbeCluster(kSecondClusterBps);
send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(kInitialBitrateBps);
for (int i = 0; i < 10; ++i) { for (int i = 0; i < 10; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
@ -846,7 +847,7 @@ TEST_P(PacedSenderTest, ProbingWithPaddingSupport) {
PacedSenderProbing packet_sender; PacedSenderProbing packet_sender;
send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr)); send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
send_bucket_->CreateProbeCluster(kFirstClusterBps); send_bucket_->CreateProbeCluster(kFirstClusterBps);
send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(kInitialBitrateBps);
for (int i = 0; i < 3; ++i) { for (int i = 0; i < 3; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
@ -934,7 +935,8 @@ TEST_P(PacedSenderTest, PaddingOveruse) {
const size_t kPacketSize = 1200; const size_t kPacketSize = 1200;
send_bucket_->Process(); send_bucket_->Process();
send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(60000);
send_bucket_->SetSendBitrateLimits(60000, 0);
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false); clock_.TimeInMilliseconds(), kPacketSize, false);
@ -943,7 +945,7 @@ TEST_P(PacedSenderTest, PaddingOveruse) {
// Add 30kbit padding. When increasing budget, media budget will increase from // Add 30kbit padding. When increasing budget, media budget will increase from
// negative (overuse) while padding budget will increase from 0. // negative (overuse) while padding budget will increase from 0.
clock_.AdvanceTimeMilliseconds(5); clock_.AdvanceTimeMilliseconds(5);
send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 30000); send_bucket_->SetSendBitrateLimits(60000, 30000);
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false); clock_.TimeInMilliseconds(), kPacketSize, false);
@ -961,7 +963,7 @@ TEST_F(PacedSenderTest, AverageQueueTime) {
const size_t kPacketSize = 1200; const size_t kPacketSize = 1200;
const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second. const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second.
send_bucket_->SetPacingRates(kBitrateBps * kPaceMultiplier, 0); send_bucket_->SetEstimatedBitrate(kBitrateBps);
EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs()); EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
@ -1006,8 +1008,7 @@ TEST_P(PacedSenderTest, ProbeClusterId) {
uint16_t sequence_number = 1234; uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200; const size_t kPacketSize = 1200;
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
kTargetBitrateBps);
send_bucket_->SetProbingEnabled(true); send_bucket_->SetProbingEnabled(true);
for (int i = 0; i < 10; ++i) { for (int i = 0; i < 10; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
@ -1053,8 +1054,7 @@ TEST_P(PacedSenderTest, AvoidBusyLoopOnSendFailure) {
uint16_t sequence_number = 1234; uint16_t sequence_number = 1234;
const size_t kPacketSize = kFirstClusterBps / (8000 / 10); const size_t kPacketSize = kFirstClusterBps / (8000 / 10);
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, send_bucket_->SetSendBitrateLimits(kTargetBitrateBps, kTargetBitrateBps);
kTargetBitrateBps);
send_bucket_->SetProbingEnabled(true); send_bucket_->SetProbingEnabled(true);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, clock_.TimeInMilliseconds(), sequence_number, clock_.TimeInMilliseconds(),

View File

@ -17,8 +17,7 @@
namespace webrtc { namespace webrtc {
class Pacer : public Module, public RtpPacketSender { class Pacer : public Module, public RtpPacketSender {
public: public:
virtual void SetPacingRates(uint32_t pacing_rate_bps, virtual void SetEstimatedBitrate(uint32_t bitrate_bps) {}
uint32_t padding_rate_bps) {}
virtual void SetEstimatedBitrateAndCongestionWindow( virtual void SetEstimatedBitrateAndCongestionWindow(
uint32_t bitrate_bps, uint32_t bitrate_bps,
bool in_probe_rtt, bool in_probe_rtt,

View File

@ -15,6 +15,7 @@
#include <vector> #include <vector>
#include "modules/include/module_common_types.h" #include "modules/include/module_common_types.h"
#include "modules/pacing/alr_detector.h"
#include "modules/pacing/bitrate_prober.h" #include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h" #include "modules/pacing/interval_budget.h"
#include "modules/utility/include/process_thread.h" #include "modules/utility/include/process_thread.h"

View File

@ -98,6 +98,7 @@ bool PacketRouter::TimeToSendPacket(uint32_t ssrc,
int64_t capture_timestamp, int64_t capture_timestamp,
bool retransmission, bool retransmission,
const PacedPacketInfo& pacing_info) { const PacedPacketInfo& pacing_info) {
RTC_DCHECK_RUNS_SERIALIZED(&pacer_race_);
rtc::CritScope cs(&modules_crit_); rtc::CritScope cs(&modules_crit_);
for (auto* rtp_module : rtp_send_modules_) { for (auto* rtp_module : rtp_send_modules_) {
if (!rtp_module->SendingMedia()) if (!rtp_module->SendingMedia())
@ -113,6 +114,7 @@ bool PacketRouter::TimeToSendPacket(uint32_t ssrc,
size_t PacketRouter::TimeToSendPadding(size_t bytes_to_send, size_t PacketRouter::TimeToSendPadding(size_t bytes_to_send,
const PacedPacketInfo& pacing_info) { const PacedPacketInfo& pacing_info) {
RTC_DCHECK_RUNS_SERIALIZED(&pacer_race_);
size_t total_bytes_sent = 0; size_t total_bytes_sent = 0;
rtc::CritScope cs(&modules_crit_); rtc::CritScope cs(&modules_crit_);
// Rtp modules are ordered by which stream can most benefit from padding. // Rtp modules are ordered by which stream can most benefit from padding.
@ -221,6 +223,7 @@ bool PacketRouter::SendRemb(int64_t bitrate_bps,
} }
bool PacketRouter::SendTransportFeedback(rtcp::TransportFeedback* packet) { bool PacketRouter::SendTransportFeedback(rtcp::TransportFeedback* packet) {
RTC_DCHECK_RUNS_SERIALIZED(&pacer_race_);
rtc::CritScope cs(&modules_crit_); rtc::CritScope cs(&modules_crit_);
// Prefer send modules. // Prefer send modules.
for (auto* rtp_module : rtp_send_modules_) { for (auto* rtp_module : rtp_send_modules_) {

View File

@ -91,6 +91,7 @@ class PacketRouter : public PacedSender::PacketSender,
void UnsetActiveRembModule() RTC_EXCLUSIVE_LOCKS_REQUIRED(modules_crit_); void UnsetActiveRembModule() RTC_EXCLUSIVE_LOCKS_REQUIRED(modules_crit_);
void DetermineActiveRembModule() RTC_EXCLUSIVE_LOCKS_REQUIRED(modules_crit_); void DetermineActiveRembModule() RTC_EXCLUSIVE_LOCKS_REQUIRED(modules_crit_);
rtc::RaceChecker pacer_race_;
rtc::CriticalSection modules_crit_; rtc::CriticalSection modules_crit_;
// Rtp and Rtcp modules of the rtp senders. // Rtp and Rtcp modules of the rtp senders.
std::list<RtpRtcp*> rtp_send_modules_ RTC_GUARDED_BY(modules_crit_); std::list<RtpRtcp*> rtp_send_modules_ RTC_GUARDED_BY(modules_crit_);

View File

@ -477,47 +477,47 @@ TEST_P(BweSimulation, Evaluation8) {
RunPauseResumeFlows(GetParam()); RunPauseResumeFlows(GetParam());
} }
// Following test cases begin with "GoogCcComparison" run the // Following test cases begin with "GccComparison" run the
// evaluation test cases for both GoogCc and other calling RMCAT. // evaluation test cases for both GCC and other calling RMCAT.
TEST_P(BweSimulation, GoogCcComparison1) { TEST_P(BweSimulation, GccComparison1) {
RunVariableCapacity1SingleFlow(GetParam()); RunVariableCapacity1SingleFlow(GetParam());
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunVariableCapacity1SingleFlow(kSendSideEstimator); gcc_test.RunVariableCapacity1SingleFlow(kSendSideEstimator);
} }
TEST_P(BweSimulation, GoogCcComparison2) { TEST_P(BweSimulation, GccComparison2) {
const size_t kNumFlows = 2; const size_t kNumFlows = 2;
RunVariableCapacity2MultipleFlows(GetParam(), kNumFlows); RunVariableCapacity2MultipleFlows(GetParam(), kNumFlows);
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunVariableCapacity2MultipleFlows(kSendSideEstimator, kNumFlows); gcc_test.RunVariableCapacity2MultipleFlows(kSendSideEstimator, kNumFlows);
} }
TEST_P(BweSimulation, GoogCcComparison3) { TEST_P(BweSimulation, GccComparison3) {
RunBidirectionalFlow(GetParam()); RunBidirectionalFlow(GetParam());
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunBidirectionalFlow(kSendSideEstimator); gcc_test.RunBidirectionalFlow(kSendSideEstimator);
} }
TEST_P(BweSimulation, GoogCcComparison4) { TEST_P(BweSimulation, GccComparison4) {
RunSelfFairness(GetParam()); RunSelfFairness(GetParam());
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunSelfFairness(GetParam()); gcc_test.RunSelfFairness(GetParam());
} }
TEST_P(BweSimulation, GoogCcComparison5) { TEST_P(BweSimulation, GccComparison5) {
RunRoundTripTimeFairness(GetParam()); RunRoundTripTimeFairness(GetParam());
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunRoundTripTimeFairness(kSendSideEstimator); gcc_test.RunRoundTripTimeFairness(kSendSideEstimator);
} }
TEST_P(BweSimulation, GoogCcComparison6) { TEST_P(BweSimulation, GccComparison6) {
RunLongTcpFairness(GetParam()); RunLongTcpFairness(GetParam());
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunLongTcpFairness(kSendSideEstimator); gcc_test.RunLongTcpFairness(kSendSideEstimator);
} }
TEST_P(BweSimulation, GoogCcComparison7) { TEST_P(BweSimulation, GccComparison7) {
const int kNumTcpFiles = 10; const int kNumTcpFiles = 10;
std::vector<int> tcp_file_sizes_bytes = std::vector<int> tcp_file_sizes_bytes =
@ -528,24 +528,24 @@ TEST_P(BweSimulation, GoogCcComparison7) {
RunMultipleShortTcpFairness(GetParam(), tcp_file_sizes_bytes, RunMultipleShortTcpFairness(GetParam(), tcp_file_sizes_bytes,
tcp_starting_times_ms); tcp_starting_times_ms);
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunMultipleShortTcpFairness( gcc_test.RunMultipleShortTcpFairness(kSendSideEstimator, tcp_file_sizes_bytes,
kSendSideEstimator, tcp_file_sizes_bytes, tcp_starting_times_ms); tcp_starting_times_ms);
} }
TEST_P(BweSimulation, GoogCcComparison8) { TEST_P(BweSimulation, GccComparison8) {
RunPauseResumeFlows(GetParam()); RunPauseResumeFlows(GetParam());
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunPauseResumeFlows(kSendSideEstimator); gcc_test.RunPauseResumeFlows(kSendSideEstimator);
} }
TEST_P(BweSimulation, GoogCcComparisonChoke) { TEST_P(BweSimulation, GccComparisonChoke) {
int array[] = {1000, 500, 1000}; int array[] = {1000, 500, 1000};
std::vector<int> capacities_kbps(array, array + 3); std::vector<int> capacities_kbps(array, array + 3);
RunChoke(GetParam(), capacities_kbps); RunChoke(GetParam(), capacities_kbps);
BweTest goog_cc_test(false); BweTest gcc_test(false);
goog_cc_test.RunChoke(kSendSideEstimator, capacities_kbps); gcc_test.RunChoke(kSendSideEstimator, capacities_kbps);
} }
} // namespace bwe } // namespace bwe

View File

@ -181,8 +181,7 @@ enum BandwidthEstimatorType {
kBbrEstimator kBbrEstimator
}; };
const char* const bwe_names[] = {"Null", "NADA", "REMB", const char* const bwe_names[] = {"Null", "NADA", "REMB", "GCC", "TCP", "BBR"};
"GoogCc", "TCP", "BBR"};
int64_t GetAbsSendTimeInMs(uint32_t abs_send_time); int64_t GetAbsSendTimeInMs(uint32_t abs_send_time);

View File

@ -32,7 +32,7 @@ SendSideBweSender::SendSideBweSender(int kbps,
&event_log_)), &event_log_)),
acknowledged_bitrate_estimator_( acknowledged_bitrate_estimator_(
rtc::MakeUnique<AcknowledgedBitrateEstimator>()), rtc::MakeUnique<AcknowledgedBitrateEstimator>()),
bwe_(new DelayBasedBwe(nullptr)), bwe_(new DelayBasedBwe(nullptr, clock)),
feedback_observer_(bitrate_controller_.get()), feedback_observer_(bitrate_controller_.get()),
clock_(clock), clock_(clock),
send_time_history_(clock_, 10000), send_time_history_(clock_, 10000),
@ -72,7 +72,7 @@ void SendSideBweSender::GiveFeedback(const FeedbackPacket& feedback) {
int64_t rtt_ms = int64_t rtt_ms =
clock_->TimeInMilliseconds() - feedback.latest_send_time_ms(); clock_->TimeInMilliseconds() - feedback.latest_send_time_ms();
bwe_->OnRttUpdate(rtt_ms); bwe_->OnRttUpdate(rtt_ms, rtt_ms);
BWE_TEST_LOGGING_PLOT(1, "RTT", clock_->TimeInMilliseconds(), rtt_ms); BWE_TEST_LOGGING_PLOT(1, "RTT", clock_->TimeInMilliseconds(), rtt_ms);
std::sort(packet_feedback_vector.begin(), packet_feedback_vector.end(), std::sort(packet_feedback_vector.begin(), packet_feedback_vector.end(),
@ -80,8 +80,7 @@ void SendSideBweSender::GiveFeedback(const FeedbackPacket& feedback) {
acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector( acknowledged_bitrate_estimator_->IncomingPacketFeedbackVector(
packet_feedback_vector); packet_feedback_vector);
DelayBasedBwe::Result result = bwe_->IncomingPacketFeedbackVector( DelayBasedBwe::Result result = bwe_->IncomingPacketFeedbackVector(
packet_feedback_vector, acknowledged_bitrate_estimator_->bitrate_bps(), packet_feedback_vector, acknowledged_bitrate_estimator_->bitrate_bps());
clock_->TimeInMilliseconds());
if (result.updated) if (result.updated)
bitrate_controller_->OnDelayBasedBweResult(result); bitrate_controller_->OnDelayBasedBweResult(result);

View File

@ -24,9 +24,6 @@
namespace webrtc { namespace webrtc {
namespace testing { namespace testing {
namespace bwe { namespace bwe {
namespace {
const float kPaceMultiplier = 2.5f;
}
void PacketSender::Pause() { void PacketSender::Pause() {
running_ = false; running_ = false;
@ -167,7 +164,7 @@ PacedVideoSender::PacedVideoSender(PacketProcessorListener* listener,
? static_cast<Pacer*>(new BbrPacedSender(&clock_, this, nullptr)) ? static_cast<Pacer*>(new BbrPacedSender(&clock_, this, nullptr))
: static_cast<Pacer*>(new PacedSender(&clock_, this, nullptr))) { : static_cast<Pacer*>(new PacedSender(&clock_, this, nullptr))) {
modules_.push_back(pacer_.get()); modules_.push_back(pacer_.get());
pacer_->SetPacingRates(source->bits_per_second() * kPaceMultiplier, 0); pacer_->SetEstimatedBitrate(source->bits_per_second());
} }
PacedVideoSender::~PacedVideoSender() { PacedVideoSender::~PacedVideoSender() {
@ -315,7 +312,7 @@ void PacedVideoSender::OnNetworkChanged(uint32_t target_bitrate_bps,
uint8_t fraction_lost, uint8_t fraction_lost,
int64_t rtt) { int64_t rtt) {
VideoSender::OnNetworkChanged(target_bitrate_bps, fraction_lost, rtt); VideoSender::OnNetworkChanged(target_bitrate_bps, fraction_lost, rtt);
pacer_->SetPacingRates(target_bitrate_bps * kPaceMultiplier, 0); pacer_->SetEstimatedBitrate(target_bitrate_bps);
} }
void PacedVideoSender::OnNetworkChanged(uint32_t bitrate_for_encoder_bps, void PacedVideoSender::OnNetworkChanged(uint32_t bitrate_for_encoder_bps,

View File

@ -231,6 +231,7 @@ if (!build_with_chromium) {
"../modules/audio_coding:ana_debug_dump_proto", "../modules/audio_coding:ana_debug_dump_proto",
"../modules/audio_coding:audio_network_adaptor", "../modules/audio_coding:audio_network_adaptor",
"../modules/audio_coding:neteq_tools", "../modules/audio_coding:neteq_tools",
"../modules/congestion_controller:estimators",
"../modules/rtp_rtcp:rtp_rtcp_format", "../modules/rtp_rtcp:rtp_rtcp_format",
"../rtc_base:checks", "../rtc_base:checks",
"../rtc_base:rtc_base_approved", "../rtc_base:rtc_base_approved",
@ -239,8 +240,6 @@ if (!build_with_chromium) {
# TODO(kwiberg): Remove this dependency. # TODO(kwiberg): Remove this dependency.
"../api/audio_codecs:audio_codecs_api", "../api/audio_codecs:audio_codecs_api",
"../modules/congestion_controller", "../modules/congestion_controller",
"../modules/congestion_controller:delay_based_bwe",
"../modules/congestion_controller:estimators",
"../modules/pacing", "../modules/pacing",
"../modules/rtp_rtcp", "../modules/rtp_rtcp",
"../system_wrappers:system_wrappers_default", "../system_wrappers:system_wrappers_default",

View File

@ -33,7 +33,6 @@
#include "modules/audio_coding/neteq/tools/resample_input_audio_file.h" #include "modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "modules/congestion_controller/acknowledged_bitrate_estimator.h" #include "modules/congestion_controller/acknowledged_bitrate_estimator.h"
#include "modules/congestion_controller/bitrate_estimator.h" #include "modules/congestion_controller/bitrate_estimator.h"
#include "modules/congestion_controller/delay_based_bwe.h"
#include "modules/congestion_controller/include/receive_side_congestion_controller.h" #include "modules/congestion_controller/include/receive_side_congestion_controller.h"
#include "modules/congestion_controller/include/send_side_congestion_controller.h" #include "modules/congestion_controller/include/send_side_congestion_controller.h"
#include "modules/include/module_common_types.h" #include "modules/include/module_common_types.h"

View File

@ -839,7 +839,7 @@ VideoSendStreamImpl::VideoSendStreamImpl(
} }
if (alr_settings) { if (alr_settings) {
transport->send_side_cc()->EnablePeriodicAlrProbing(true); transport->send_side_cc()->EnablePeriodicAlrProbing(true);
transport->send_side_cc()->SetPacingFactor(alr_settings->pacing_factor); transport->pacer()->SetPacingFactor(alr_settings->pacing_factor);
configured_pacing_factor_ = alr_settings->pacing_factor; configured_pacing_factor_ = alr_settings->pacing_factor;
transport->pacer()->SetQueueTimeLimit(alr_settings->max_paced_queue_time); transport->pacer()->SetQueueTimeLimit(alr_settings->max_paced_queue_time);
} }