Landing pkasting's webrtc fixes for MSVC level 4 warnings in WebRTC.

---

Fixes for re-enabling more MSVC level 4 warnings: webrtc/ edition

This contains fixes for the following sorts of issues:
* Possibly-uninitialized local variable
* Signedness mismatch
* Assignment inside conditional

This also contains a small number of other cleanups to nearby code. In
particular several warning-disables for MSVC are removed because they don't seem
to be necessary (either that warning is not enabled or the code does not trigger
it).

BUG=crbug.com/81439
TEST=none
R=henrika@webrtc.org, pkasting@chromium.org

Review URL: https://webrtc-codereview.appspot.com/18769004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@6667 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
tommi@webrtc.org
2014-07-11 19:09:59 +00:00
parent 180e516bef
commit eec6ecdb1e
14 changed files with 193 additions and 226 deletions

View File

@ -85,7 +85,7 @@ ModuleRtpRtcpImpl::ModuleRtpRtcpImpl(const Configuration& configuration)
CriticalSectionWrapper::CreateCriticalSection()),
default_module_(
static_cast<ModuleRtpRtcpImpl*>(configuration.default_module)),
padding_index_(-1), // Start padding at the first child module.
padding_index_(static_cast<size_t>(-1)), // Start padding at first child.
nack_method_(kNackOff),
nack_last_time_sent_full_(0),
nack_last_seq_number_sent_(0),

View File

@ -266,180 +266,177 @@ TMMBRHelp::FindTMMBRBoundingSet(int32_t numCandidates, TMMBRSet& candidateSet)
numBoundingSet++;
}
}
if (numBoundingSet != 1)
{
numBoundingSet = -1;
}
} else
{
// 1. Sort by increasing packetOH
for (int i = candidateSet.sizeOfSet() - 1; i >= 0; i--)
{
for (int j = 1; j <= i; j++)
{
if (candidateSet.PacketOH(j-1) > candidateSet.PacketOH(j))
{
candidateSet.SwapEntries(j-1, j);
}
}
}
// 2. For tuples with same OH, keep the one w/ the lowest bitrate
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0)
{
// get min bitrate for packets w/ same OH
uint32_t currentPacketOH = candidateSet.PacketOH(i);
uint32_t currentMinTMMBR = candidateSet.Tmmbr(i);
uint32_t currentMinIndexTMMBR = i;
for (uint32_t j = i+1; j < candidateSet.sizeOfSet(); j++)
{
if(candidateSet.PacketOH(j) == currentPacketOH)
{
if(candidateSet.Tmmbr(j) < currentMinTMMBR)
{
currentMinTMMBR = candidateSet.Tmmbr(j);
currentMinIndexTMMBR = j;
}
}
}
// keep lowest bitrate
for (uint32_t j = 0; j < candidateSet.sizeOfSet(); j++)
{
if(candidateSet.PacketOH(j) == currentPacketOH
&& j != currentMinIndexTMMBR)
{
candidateSet.ClearEntry(j);
}
}
}
}
// 3. Select and remove tuple w/ lowest tmmbr.
// (If more than 1, choose the one w/ highest OH).
uint32_t minTMMBR = 0;
uint32_t minIndexTMMBR = 0;
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0)
{
minTMMBR = candidateSet.Tmmbr(i);
minIndexTMMBR = i;
break;
}
}
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0 && candidateSet.Tmmbr(i) <= minTMMBR)
{
// get min bitrate
minTMMBR = candidateSet.Tmmbr(i);
minIndexTMMBR = i;
}
}
// first member of selected list
_boundingSet.SetEntry(numBoundingSet,
candidateSet.Tmmbr(minIndexTMMBR),
candidateSet.PacketOH(minIndexTMMBR),
candidateSet.Ssrc(minIndexTMMBR));
// set intersection value
_ptrIntersectionBoundingSet[numBoundingSet] = 0;
// calculate its maximum packet rate (where its line crosses x-axis)
_ptrMaxPRBoundingSet[numBoundingSet]
= _boundingSet.Tmmbr(numBoundingSet) * 1000
/ float(8 * _boundingSet.PacketOH(numBoundingSet));
numBoundingSet++;
// remove from candidate list
candidateSet.ClearEntry(minIndexTMMBR);
numCandidates--;
// 4. Discard from candidate list all tuple w/ lower OH
// (next tuple must be steeper)
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if(candidateSet.Tmmbr(i) > 0
&& candidateSet.PacketOH(i) < _boundingSet.PacketOH(0))
{
candidateSet.ClearEntry(i);
numCandidates--;
}
}
if (numCandidates == 0)
{
// Should be true already:_boundingSet.lengthOfSet = numBoundingSet;
assert(_boundingSet.lengthOfSet() == numBoundingSet);
return numBoundingSet;
}
bool getNewCandidate = true;
int curCandidateTMMBR = 0;
int curCandidateIndex = 0;
int curCandidatePacketOH = 0;
int curCandidateSSRC = 0;
do
{
if (getNewCandidate)
{
// 5. Remove first remaining tuple from candidate list
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0)
{
curCandidateTMMBR = candidateSet.Tmmbr(i);
curCandidatePacketOH = candidateSet.PacketOH(i);
curCandidateSSRC = candidateSet.Ssrc(i);
curCandidateIndex = i;
candidateSet.ClearEntry(curCandidateIndex);
break;
}
}
}
// 6. Calculate packet rate and intersection of the current
// line with line of last tuple in selected list
float packetRate
= float(curCandidateTMMBR
- _boundingSet.Tmmbr(numBoundingSet-1))*1000
/ (8*(curCandidatePacketOH
- _boundingSet.PacketOH(numBoundingSet-1)));
// 7. If the packet rate is equal or lower than intersection of
// last tuple in selected list,
// remove last tuple in selected list & go back to step 6
if(packetRate <= _ptrIntersectionBoundingSet[numBoundingSet-1])
{
// remove last tuple and goto step 6
numBoundingSet--;
_boundingSet.ClearEntry(numBoundingSet);
_ptrIntersectionBoundingSet[numBoundingSet] = 0;
_ptrMaxPRBoundingSet[numBoundingSet] = 0;
getNewCandidate = false;
} else
{
// 8. If packet rate is lower than maximum packet rate of
// last tuple in selected list, add current tuple to selected
// list
if (packetRate < _ptrMaxPRBoundingSet[numBoundingSet-1])
{
_boundingSet.SetEntry(numBoundingSet,
curCandidateTMMBR,
curCandidatePacketOH,
curCandidateSSRC);
_ptrIntersectionBoundingSet[numBoundingSet] = packetRate;
_ptrMaxPRBoundingSet[numBoundingSet]
= _boundingSet.Tmmbr(numBoundingSet)*1000
/ float(8*_boundingSet.PacketOH(numBoundingSet));
numBoundingSet++;
}
numCandidates--;
getNewCandidate = true;
}
// 9. Go back to step 5 if any tuple remains in candidate list
} while (numCandidates > 0);
return (numBoundingSet == 1) ? 1 : -1;
}
// 1. Sort by increasing packetOH
for (int i = candidateSet.sizeOfSet() - 1; i >= 0; i--)
{
for (int j = 1; j <= i; j++)
{
if (candidateSet.PacketOH(j-1) > candidateSet.PacketOH(j))
{
candidateSet.SwapEntries(j-1, j);
}
}
}
// 2. For tuples with same OH, keep the one w/ the lowest bitrate
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0)
{
// get min bitrate for packets w/ same OH
uint32_t currentPacketOH = candidateSet.PacketOH(i);
uint32_t currentMinTMMBR = candidateSet.Tmmbr(i);
uint32_t currentMinIndexTMMBR = i;
for (uint32_t j = i+1; j < candidateSet.sizeOfSet(); j++)
{
if(candidateSet.PacketOH(j) == currentPacketOH)
{
if(candidateSet.Tmmbr(j) < currentMinTMMBR)
{
currentMinTMMBR = candidateSet.Tmmbr(j);
currentMinIndexTMMBR = j;
}
}
}
// keep lowest bitrate
for (uint32_t j = 0; j < candidateSet.sizeOfSet(); j++)
{
if(candidateSet.PacketOH(j) == currentPacketOH
&& j != currentMinIndexTMMBR)
{
candidateSet.ClearEntry(j);
}
}
}
}
// 3. Select and remove tuple w/ lowest tmmbr.
// (If more than 1, choose the one w/ highest OH).
uint32_t minTMMBR = 0;
uint32_t minIndexTMMBR = 0;
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0)
{
minTMMBR = candidateSet.Tmmbr(i);
minIndexTMMBR = i;
break;
}
}
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0 && candidateSet.Tmmbr(i) <= minTMMBR)
{
// get min bitrate
minTMMBR = candidateSet.Tmmbr(i);
minIndexTMMBR = i;
}
}
// first member of selected list
_boundingSet.SetEntry(numBoundingSet,
candidateSet.Tmmbr(minIndexTMMBR),
candidateSet.PacketOH(minIndexTMMBR),
candidateSet.Ssrc(minIndexTMMBR));
// set intersection value
_ptrIntersectionBoundingSet[numBoundingSet] = 0;
// calculate its maximum packet rate (where its line crosses x-axis)
_ptrMaxPRBoundingSet[numBoundingSet]
= _boundingSet.Tmmbr(numBoundingSet) * 1000
/ float(8 * _boundingSet.PacketOH(numBoundingSet));
numBoundingSet++;
// remove from candidate list
candidateSet.ClearEntry(minIndexTMMBR);
numCandidates--;
// 4. Discard from candidate list all tuple w/ lower OH
// (next tuple must be steeper)
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if(candidateSet.Tmmbr(i) > 0
&& candidateSet.PacketOH(i) < _boundingSet.PacketOH(0))
{
candidateSet.ClearEntry(i);
numCandidates--;
}
}
if (numCandidates == 0)
{
// Should be true already:_boundingSet.lengthOfSet = numBoundingSet;
assert(_boundingSet.lengthOfSet() == numBoundingSet);
return numBoundingSet;
}
bool getNewCandidate = true;
int curCandidateTMMBR = 0;
int curCandidateIndex = 0;
int curCandidatePacketOH = 0;
int curCandidateSSRC = 0;
do
{
if (getNewCandidate)
{
// 5. Remove first remaining tuple from candidate list
for (uint32_t i = 0; i < candidateSet.sizeOfSet(); i++)
{
if (candidateSet.Tmmbr(i) > 0)
{
curCandidateTMMBR = candidateSet.Tmmbr(i);
curCandidatePacketOH = candidateSet.PacketOH(i);
curCandidateSSRC = candidateSet.Ssrc(i);
curCandidateIndex = i;
candidateSet.ClearEntry(curCandidateIndex);
break;
}
}
}
// 6. Calculate packet rate and intersection of the current
// line with line of last tuple in selected list
float packetRate
= float(curCandidateTMMBR
- _boundingSet.Tmmbr(numBoundingSet-1))*1000
/ (8*(curCandidatePacketOH
- _boundingSet.PacketOH(numBoundingSet-1)));
// 7. If the packet rate is equal or lower than intersection of
// last tuple in selected list,
// remove last tuple in selected list & go back to step 6
if(packetRate <= _ptrIntersectionBoundingSet[numBoundingSet-1])
{
// remove last tuple and goto step 6
numBoundingSet--;
_boundingSet.ClearEntry(numBoundingSet);
_ptrIntersectionBoundingSet[numBoundingSet] = 0;
_ptrMaxPRBoundingSet[numBoundingSet] = 0;
getNewCandidate = false;
} else
{
// 8. If packet rate is lower than maximum packet rate of
// last tuple in selected list, add current tuple to selected
// list
if (packetRate < _ptrMaxPRBoundingSet[numBoundingSet-1])
{
_boundingSet.SetEntry(numBoundingSet,
curCandidateTMMBR,
curCandidatePacketOH,
curCandidateSSRC);
_ptrIntersectionBoundingSet[numBoundingSet] = packetRate;
_ptrMaxPRBoundingSet[numBoundingSet]
= _boundingSet.Tmmbr(numBoundingSet)*1000
/ float(8*_boundingSet.PacketOH(numBoundingSet));
numBoundingSet++;
}
numCandidates--;
getNewCandidate = true;
}
// 9. Go back to step 5 if any tuple remains in candidate list
} while (numCandidates > 0);
return numBoundingSet;
}