Reland "Unify OOURA implementations in one directory."

This is a reland of 09b439c6f7fa15d7cedbfb74cc22e9512ce3df47

Original change's description:
> Unify OOURA implementations in one directory.
>
> This CL moves the two OOURA implementations present in the WebRTC tree
> in one place.
>
> No functional change is expected.
>
> TBR=kwiberg@webrtc.org
>
> No-Try: True
> Bug: webrtc:11509
> Change-Id: I330a9ec57e3dc65c9c8b43edd4bb295c55920efa
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/173682
> Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org>
> Reviewed-by: Per Åhgren <peah@webrtc.org>
> Cr-Commit-Position: refs/heads/master@{#31106}

TBR=kwiberg@webrtc.org, peah@webrtc.org

No-Tree-Checks: True
No-Try: True
Bug: webrtc:11509
Change-Id: Ifc28b0380062ab5aad5c498700aa3cc7f9c7802c
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/173720
Commit-Queue: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#31111}
This commit is contained in:
Mirko Bonadei
2020-04-17 12:25:19 +02:00
committed by Commit Bot
parent dc4f75f7ee
commit f0d64a5f9b
31 changed files with 89 additions and 78 deletions

View File

@ -55,7 +55,7 @@ rtc_library("common_audio") {
"../rtc_base/system:file_wrapper",
"../system_wrappers",
"../system_wrappers:cpu_features_api",
"third_party/fft4g",
"third_party/ooura/fft_size_256:fft4g",
"//third_party/abseil-cpp/absl/types:optional",
]
@ -185,7 +185,7 @@ rtc_library("common_audio_c") {
"../rtc_base/system:arch",
"../system_wrappers",
"../system_wrappers:cpu_features_api",
"third_party/fft4g",
"third_party/ooura/fft_size_256:fft4g",
"third_party/spl_sqrt_floor",
]
}

View File

@ -13,7 +13,7 @@
#include <algorithm>
#include <cmath>
#include "common_audio/third_party/fft4g/fft4g.h"
#include "common_audio/third_party/ooura/fft_size_256/fft4g.h"
#include "rtc_base/checks.h"
namespace webrtc {

View File

@ -35,7 +35,7 @@ class RealFourierOoura : public RealFourier {
const size_t length_;
const size_t complex_length_;
// These are work arrays for Ooura. The names are based on the comments in
// fft4g.c.
// common_audio/third_party/ooura/fft_size_256/fft4g.cc.
const std::unique_ptr<size_t[]> work_ip_;
const std::unique_ptr<float[]> work_w_;
};

View File

@ -0,0 +1,51 @@
# Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the ../../../LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
import("../../../../webrtc.gni")
rtc_library("ooura_fft") {
sources = [
"ooura_fft.cc",
"ooura_fft.h",
"ooura_fft_tables_common.h",
]
deps = [
"../../../../rtc_base/system:arch",
"../../../../system_wrappers:cpu_features_api",
]
cflags = []
if (current_cpu == "x86" || current_cpu == "x64") {
sources += [
"ooura_fft_sse2.cc",
"ooura_fft_tables_neon_sse2.h",
]
if (is_posix || is_fuchsia) {
cflags += [ "-msse2" ]
}
}
if (rtc_build_with_neon) {
sources += [
"ooura_fft_neon.cc",
"ooura_fft_tables_neon_sse2.h",
]
deps += [ "../../../../common_audio" ]
if (current_cpu != "arm64") {
# Enable compilation for the NEON instruction set.
suppressed_configs += [ "//build/config/compiler:compiler_arm_fpu" ]
cflags += [ "-mfpu=neon" ]
}
}
if (current_cpu == "mipsel" && mips_float_abi == "hard") {
sources += [ "ooura_fft_mips.cc" ]
}
}

View File

@ -0,0 +1,540 @@
/*
* http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html
* Copyright Takuya OOURA, 1996-2001
*
* You may use, copy, modify and distribute this code for any purpose (include
* commercial use) and without fee. Please refer to this package when you modify
* this code.
*
* Changes by the WebRTC authors:
* - Trivial type modifications.
* - Minimal code subset to do rdft of length 128.
* - Optimizations because of known length.
* - Removed the global variables by moving the code in to a class in order
* to make it thread safe.
*
* All changes are covered by the WebRTC license and IP grant:
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_common.h"
#include "rtc_base/system/arch.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
namespace webrtc {
namespace {
#if !(defined(MIPS_FPU_LE) || defined(WEBRTC_HAS_NEON))
static void cft1st_128_C(float* a) {
const int n = 128;
int j, k1, k2;
float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
// The processing of the first set of elements was simplified in C to avoid
// some operations (multiplication by zero or one, addition of two elements
// multiplied by the same weight, ...).
x0r = a[0] + a[2];
x0i = a[1] + a[3];
x1r = a[0] - a[2];
x1i = a[1] - a[3];
x2r = a[4] + a[6];
x2i = a[5] + a[7];
x3r = a[4] - a[6];
x3i = a[5] - a[7];
a[0] = x0r + x2r;
a[1] = x0i + x2i;
a[4] = x0r - x2r;
a[5] = x0i - x2i;
a[2] = x1r - x3i;
a[3] = x1i + x3r;
a[6] = x1r + x3i;
a[7] = x1i - x3r;
wk1r = rdft_w[2];
x0r = a[8] + a[10];
x0i = a[9] + a[11];
x1r = a[8] - a[10];
x1i = a[9] - a[11];
x2r = a[12] + a[14];
x2i = a[13] + a[15];
x3r = a[12] - a[14];
x3i = a[13] - a[15];
a[8] = x0r + x2r;
a[9] = x0i + x2i;
a[12] = x2i - x0i;
a[13] = x0r - x2r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[10] = wk1r * (x0r - x0i);
a[11] = wk1r * (x0r + x0i);
x0r = x3i + x1r;
x0i = x3r - x1i;
a[14] = wk1r * (x0i - x0r);
a[15] = wk1r * (x0i + x0r);
k1 = 0;
for (j = 16; j < n; j += 16) {
k1 += 2;
k2 = 2 * k1;
wk2r = rdft_w[k1 + 0];
wk2i = rdft_w[k1 + 1];
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
wk3r = rdft_wk3ri_first[k1 + 0];
wk3i = rdft_wk3ri_first[k1 + 1];
x0r = a[j + 0] + a[j + 2];
x0i = a[j + 1] + a[j + 3];
x1r = a[j + 0] - a[j + 2];
x1i = a[j + 1] - a[j + 3];
x2r = a[j + 4] + a[j + 6];
x2i = a[j + 5] + a[j + 7];
x3r = a[j + 4] - a[j + 6];
x3i = a[j + 5] - a[j + 7];
a[j + 0] = x0r + x2r;
a[j + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j + 4] = wk2r * x0r - wk2i * x0i;
a[j + 5] = wk2r * x0i + wk2i * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j + 2] = wk1r * x0r - wk1i * x0i;
a[j + 3] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j + 6] = wk3r * x0r - wk3i * x0i;
a[j + 7] = wk3r * x0i + wk3i * x0r;
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
wk3r = rdft_wk3ri_second[k1 + 0];
wk3i = rdft_wk3ri_second[k1 + 1];
x0r = a[j + 8] + a[j + 10];
x0i = a[j + 9] + a[j + 11];
x1r = a[j + 8] - a[j + 10];
x1i = a[j + 9] - a[j + 11];
x2r = a[j + 12] + a[j + 14];
x2i = a[j + 13] + a[j + 15];
x3r = a[j + 12] - a[j + 14];
x3i = a[j + 13] - a[j + 15];
a[j + 8] = x0r + x2r;
a[j + 9] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j + 12] = -wk2i * x0r - wk2r * x0i;
a[j + 13] = -wk2i * x0i + wk2r * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j + 10] = wk1r * x0r - wk1i * x0i;
a[j + 11] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j + 14] = wk3r * x0r - wk3i * x0i;
a[j + 15] = wk3r * x0i + wk3i * x0r;
}
}
static void cftmdl_128_C(float* a) {
const int l = 8;
const int n = 128;
const int m = 32;
int j0, j1, j2, j3, k, k1, k2, m2;
float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
for (j0 = 0; j0 < l; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
a[j2 + 0] = x0r - x2r;
a[j2 + 1] = x0i - x2i;
a[j1 + 0] = x1r - x3i;
a[j1 + 1] = x1i + x3r;
a[j3 + 0] = x1r + x3i;
a[j3 + 1] = x1i - x3r;
}
wk1r = rdft_w[2];
for (j0 = m; j0 < l + m; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
a[j2 + 0] = x2i - x0i;
a[j2 + 1] = x0r - x2r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * (x0r - x0i);
a[j1 + 1] = wk1r * (x0r + x0i);
x0r = x3i + x1r;
x0i = x3r - x1i;
a[j3 + 0] = wk1r * (x0i - x0r);
a[j3 + 1] = wk1r * (x0i + x0r);
}
k1 = 0;
m2 = 2 * m;
for (k = m2; k < n; k += m2) {
k1 += 2;
k2 = 2 * k1;
wk2r = rdft_w[k1 + 0];
wk2i = rdft_w[k1 + 1];
wk1r = rdft_w[k2 + 0];
wk1i = rdft_w[k2 + 1];
wk3r = rdft_wk3ri_first[k1 + 0];
wk3i = rdft_wk3ri_first[k1 + 1];
for (j0 = k; j0 < l + k; j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j2 + 0] = wk2r * x0r - wk2i * x0i;
a[j2 + 1] = wk2r * x0i + wk2i * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * x0r - wk1i * x0i;
a[j1 + 1] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j3 + 0] = wk3r * x0r - wk3i * x0i;
a[j3 + 1] = wk3r * x0i + wk3i * x0r;
}
wk1r = rdft_w[k2 + 2];
wk1i = rdft_w[k2 + 3];
wk3r = rdft_wk3ri_second[k1 + 0];
wk3i = rdft_wk3ri_second[k1 + 1];
for (j0 = k + m; j0 < l + (k + m); j0 += 2) {
j1 = j0 + 8;
j2 = j0 + 16;
j3 = j0 + 24;
x0r = a[j0 + 0] + a[j1 + 0];
x0i = a[j0 + 1] + a[j1 + 1];
x1r = a[j0 + 0] - a[j1 + 0];
x1i = a[j0 + 1] - a[j1 + 1];
x2r = a[j2 + 0] + a[j3 + 0];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2 + 0] - a[j3 + 0];
x3i = a[j2 + 1] - a[j3 + 1];
a[j0 + 0] = x0r + x2r;
a[j0 + 1] = x0i + x2i;
x0r -= x2r;
x0i -= x2i;
a[j2 + 0] = -wk2i * x0r - wk2r * x0i;
a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
x0r = x1r - x3i;
x0i = x1i + x3r;
a[j1 + 0] = wk1r * x0r - wk1i * x0i;
a[j1 + 1] = wk1r * x0i + wk1i * x0r;
x0r = x1r + x3i;
x0i = x1i - x3r;
a[j3 + 0] = wk3r * x0r - wk3i * x0i;
a[j3 + 1] = wk3r * x0i + wk3i * x0r;
}
}
}
static void rftfsub_128_C(float* a) {
const float* c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
for (j1 = 1, j2 = 2; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
static void rftbsub_128_C(float* a) {
const float* c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
a[1] = -a[1];
for (j1 = 1, j2 = 2; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
#endif
} // namespace
OouraFft::OouraFft() {
#if defined(WEBRTC_ARCH_X86_FAMILY)
use_sse2_ = (WebRtc_GetCPUInfo(kSSE2) != 0);
#else
use_sse2_ = false;
#endif
}
OouraFft::~OouraFft() = default;
void OouraFft::Fft(float* a) const {
float xi;
bitrv2_128(a);
cftfsub_128(a);
rftfsub_128(a);
xi = a[0] - a[1];
a[0] += a[1];
a[1] = xi;
}
void OouraFft::InverseFft(float* a) const {
a[1] = 0.5f * (a[0] - a[1]);
a[0] -= a[1];
rftbsub_128(a);
bitrv2_128(a);
cftbsub_128(a);
}
void OouraFft::cft1st_128(float* a) const {
#if defined(MIPS_FPU_LE)
cft1st_128_mips(a);
#elif defined(WEBRTC_HAS_NEON)
cft1st_128_neon(a);
#elif defined(WEBRTC_ARCH_X86_FAMILY)
if (use_sse2_) {
cft1st_128_SSE2(a);
} else {
cft1st_128_C(a);
}
#else
cft1st_128_C(a);
#endif
}
void OouraFft::cftmdl_128(float* a) const {
#if defined(MIPS_FPU_LE)
cftmdl_128_mips(a);
#elif defined(WEBRTC_HAS_NEON)
cftmdl_128_neon(a);
#elif defined(WEBRTC_ARCH_X86_FAMILY)
if (use_sse2_) {
cftmdl_128_SSE2(a);
} else {
cftmdl_128_C(a);
}
#else
cftmdl_128_C(a);
#endif
}
void OouraFft::rftfsub_128(float* a) const {
#if defined(MIPS_FPU_LE)
rftfsub_128_mips(a);
#elif defined(WEBRTC_HAS_NEON)
rftfsub_128_neon(a);
#elif defined(WEBRTC_ARCH_X86_FAMILY)
if (use_sse2_) {
rftfsub_128_SSE2(a);
} else {
rftfsub_128_C(a);
}
#else
rftfsub_128_C(a);
#endif
}
void OouraFft::rftbsub_128(float* a) const {
#if defined(MIPS_FPU_LE)
rftbsub_128_mips(a);
#elif defined(WEBRTC_HAS_NEON)
rftbsub_128_neon(a);
#elif defined(WEBRTC_ARCH_X86_FAMILY)
if (use_sse2_) {
rftbsub_128_SSE2(a);
} else {
rftbsub_128_C(a);
}
#else
rftbsub_128_C(a);
#endif
}
void OouraFft::cftbsub_128(float* a) const {
int j, j1, j2, j3, l;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
cft1st_128(a);
cftmdl_128(a);
l = 32;
for (j = 0; j < l; j += 2) {
j1 = j + l;
j2 = j1 + l;
j3 = j2 + l;
x0r = a[j] + a[j1];
x0i = -a[j + 1] - a[j1 + 1];
x1r = a[j] - a[j1];
x1i = -a[j + 1] + a[j1 + 1];
x2r = a[j2] + a[j3];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2] - a[j3];
x3i = a[j2 + 1] - a[j3 + 1];
a[j] = x0r + x2r;
a[j + 1] = x0i - x2i;
a[j2] = x0r - x2r;
a[j2 + 1] = x0i + x2i;
a[j1] = x1r - x3i;
a[j1 + 1] = x1i - x3r;
a[j3] = x1r + x3i;
a[j3 + 1] = x1i + x3r;
}
}
void OouraFft::cftfsub_128(float* a) const {
int j, j1, j2, j3, l;
float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
cft1st_128(a);
cftmdl_128(a);
l = 32;
for (j = 0; j < l; j += 2) {
j1 = j + l;
j2 = j1 + l;
j3 = j2 + l;
x0r = a[j] + a[j1];
x0i = a[j + 1] + a[j1 + 1];
x1r = a[j] - a[j1];
x1i = a[j + 1] - a[j1 + 1];
x2r = a[j2] + a[j3];
x2i = a[j2 + 1] + a[j3 + 1];
x3r = a[j2] - a[j3];
x3i = a[j2 + 1] - a[j3 + 1];
a[j] = x0r + x2r;
a[j + 1] = x0i + x2i;
a[j2] = x0r - x2r;
a[j2 + 1] = x0i - x2i;
a[j1] = x1r - x3i;
a[j1 + 1] = x1i + x3r;
a[j3] = x1r + x3i;
a[j3 + 1] = x1i - x3r;
}
}
void OouraFft::bitrv2_128(float* a) const {
/*
Following things have been attempted but are no faster:
(a) Storing the swap indexes in a LUT (index calculations are done
for 'free' while waiting on memory/L1).
(b) Consolidate the load/store of two consecutive floats by a 64 bit
integer (execution is memory/L1 bound).
(c) Do a mix of floats and 64 bit integer to maximize register
utilization (execution is memory/L1 bound).
(d) Replacing ip[i] by ((k<<31)>>25) + ((k >> 1)<<5).
(e) Hard-coding of the offsets to completely eliminates index
calculations.
*/
unsigned int j, j1, k, k1;
float xr, xi, yr, yi;
const int ip[4] = {0, 64, 32, 96};
for (k = 0; k < 4; k++) {
for (j = 0; j < k; j++) {
j1 = 2 * j + ip[k];
k1 = 2 * k + ip[j];
xr = a[j1 + 0];
xi = a[j1 + 1];
yr = a[k1 + 0];
yi = a[k1 + 1];
a[j1 + 0] = yr;
a[j1 + 1] = yi;
a[k1 + 0] = xr;
a[k1 + 1] = xi;
j1 += 8;
k1 += 16;
xr = a[j1 + 0];
xi = a[j1 + 1];
yr = a[k1 + 0];
yi = a[k1 + 1];
a[j1 + 0] = yr;
a[j1 + 1] = yi;
a[k1 + 0] = xr;
a[k1 + 1] = xi;
j1 += 8;
k1 -= 8;
xr = a[j1 + 0];
xi = a[j1 + 1];
yr = a[k1 + 0];
yi = a[k1 + 1];
a[j1 + 0] = yr;
a[j1 + 1] = yi;
a[k1 + 0] = xr;
a[k1 + 1] = xi;
j1 += 8;
k1 += 16;
xr = a[j1 + 0];
xi = a[j1 + 1];
yr = a[k1 + 0];
yi = a[k1 + 1];
a[j1 + 0] = yr;
a[j1 + 1] = yi;
a[k1 + 0] = xr;
a[k1 + 1] = xi;
}
j1 = 2 * k + 8 + ip[k];
k1 = j1 + 8;
xr = a[j1 + 0];
xi = a[j1 + 1];
yr = a[k1 + 0];
yi = a[k1 + 1];
a[j1 + 0] = yr;
a[j1 + 1] = yi;
a[k1 + 0] = xr;
a[k1 + 1] = xi;
}
}
} // namespace webrtc

View File

@ -0,0 +1,60 @@
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_H_
#include "rtc_base/system/arch.h"
namespace webrtc {
#if defined(WEBRTC_ARCH_X86_FAMILY)
void cft1st_128_SSE2(float* a);
void cftmdl_128_SSE2(float* a);
void rftfsub_128_SSE2(float* a);
void rftbsub_128_SSE2(float* a);
#endif
#if defined(MIPS_FPU_LE)
void cft1st_128_mips(float* a);
void cftmdl_128_mips(float* a);
void rftfsub_128_mips(float* a);
void rftbsub_128_mips(float* a);
#endif
#if defined(WEBRTC_HAS_NEON)
void cft1st_128_neon(float* a);
void cftmdl_128_neon(float* a);
void rftfsub_128_neon(float* a);
void rftbsub_128_neon(float* a);
#endif
class OouraFft {
public:
OouraFft();
~OouraFft();
void Fft(float* a) const;
void InverseFft(float* a) const;
private:
void cft1st_128(float* a) const;
void cftmdl_128(float* a) const;
void rftfsub_128(float* a) const;
void rftbsub_128(float* a) const;
void cftfsub_128(float* a) const;
void cftbsub_128(float* a) const;
void bitrv2_128(float* a) const;
bool use_sse2_;
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_H_

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,351 @@
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* The rdft AEC algorithm, neon version of speed-critical functions.
*
* Based on the sse2 version.
*/
#include <arm_neon.h>
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_common.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_neon_sse2.h"
namespace webrtc {
#if defined(WEBRTC_HAS_NEON)
void cft1st_128_neon(float* a) {
const float32x4_t vec_swap_sign = vld1q_f32((float32_t*)k_swap_sign);
int j, k2;
for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
float32x4_t a00v = vld1q_f32(&a[j + 0]);
float32x4_t a04v = vld1q_f32(&a[j + 4]);
float32x4_t a08v = vld1q_f32(&a[j + 8]);
float32x4_t a12v = vld1q_f32(&a[j + 12]);
float32x4_t a01v = vcombine_f32(vget_low_f32(a00v), vget_low_f32(a08v));
float32x4_t a23v = vcombine_f32(vget_high_f32(a00v), vget_high_f32(a08v));
float32x4_t a45v = vcombine_f32(vget_low_f32(a04v), vget_low_f32(a12v));
float32x4_t a67v = vcombine_f32(vget_high_f32(a04v), vget_high_f32(a12v));
const float32x4_t wk1rv = vld1q_f32(&rdft_wk1r[k2]);
const float32x4_t wk1iv = vld1q_f32(&rdft_wk1i[k2]);
const float32x4_t wk2rv = vld1q_f32(&rdft_wk2r[k2]);
const float32x4_t wk2iv = vld1q_f32(&rdft_wk2i[k2]);
const float32x4_t wk3rv = vld1q_f32(&rdft_wk3r[k2]);
const float32x4_t wk3iv = vld1q_f32(&rdft_wk3i[k2]);
float32x4_t x0v = vaddq_f32(a01v, a23v);
const float32x4_t x1v = vsubq_f32(a01v, a23v);
const float32x4_t x2v = vaddq_f32(a45v, a67v);
const float32x4_t x3v = vsubq_f32(a45v, a67v);
const float32x4_t x3w = vrev64q_f32(x3v);
float32x4_t x0w;
a01v = vaddq_f32(x0v, x2v);
x0v = vsubq_f32(x0v, x2v);
x0w = vrev64q_f32(x0v);
a45v = vmulq_f32(wk2rv, x0v);
a45v = vmlaq_f32(a45v, wk2iv, x0w);
x0v = vmlaq_f32(x1v, x3w, vec_swap_sign);
x0w = vrev64q_f32(x0v);
a23v = vmulq_f32(wk1rv, x0v);
a23v = vmlaq_f32(a23v, wk1iv, x0w);
x0v = vmlsq_f32(x1v, x3w, vec_swap_sign);
x0w = vrev64q_f32(x0v);
a67v = vmulq_f32(wk3rv, x0v);
a67v = vmlaq_f32(a67v, wk3iv, x0w);
a00v = vcombine_f32(vget_low_f32(a01v), vget_low_f32(a23v));
a04v = vcombine_f32(vget_low_f32(a45v), vget_low_f32(a67v));
a08v = vcombine_f32(vget_high_f32(a01v), vget_high_f32(a23v));
a12v = vcombine_f32(vget_high_f32(a45v), vget_high_f32(a67v));
vst1q_f32(&a[j + 0], a00v);
vst1q_f32(&a[j + 4], a04v);
vst1q_f32(&a[j + 8], a08v);
vst1q_f32(&a[j + 12], a12v);
}
}
void cftmdl_128_neon(float* a) {
int j;
const int l = 8;
const float32x4_t vec_swap_sign = vld1q_f32((float32_t*)k_swap_sign);
float32x4_t wk1rv = vld1q_f32(cftmdl_wk1r);
for (j = 0; j < l; j += 2) {
const float32x2_t a_00 = vld1_f32(&a[j + 0]);
const float32x2_t a_08 = vld1_f32(&a[j + 8]);
const float32x2_t a_32 = vld1_f32(&a[j + 32]);
const float32x2_t a_40 = vld1_f32(&a[j + 40]);
const float32x4_t a_00_32 = vcombine_f32(a_00, a_32);
const float32x4_t a_08_40 = vcombine_f32(a_08, a_40);
const float32x4_t x0r0_0i0_0r1_x0i1 = vaddq_f32(a_00_32, a_08_40);
const float32x4_t x1r0_1i0_1r1_x1i1 = vsubq_f32(a_00_32, a_08_40);
const float32x2_t a_16 = vld1_f32(&a[j + 16]);
const float32x2_t a_24 = vld1_f32(&a[j + 24]);
const float32x2_t a_48 = vld1_f32(&a[j + 48]);
const float32x2_t a_56 = vld1_f32(&a[j + 56]);
const float32x4_t a_16_48 = vcombine_f32(a_16, a_48);
const float32x4_t a_24_56 = vcombine_f32(a_24, a_56);
const float32x4_t x2r0_2i0_2r1_x2i1 = vaddq_f32(a_16_48, a_24_56);
const float32x4_t x3r0_3i0_3r1_x3i1 = vsubq_f32(a_16_48, a_24_56);
const float32x4_t xx0 = vaddq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const float32x4_t xx1 = vsubq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const float32x4_t x3i0_3r0_3i1_x3r1 = vrev64q_f32(x3r0_3i0_3r1_x3i1);
const float32x4_t x1_x3_add =
vmlaq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
const float32x4_t x1_x3_sub =
vmlsq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
const float32x2_t yy0_a = vdup_lane_f32(vget_high_f32(x1_x3_add), 0);
const float32x2_t yy0_s = vdup_lane_f32(vget_high_f32(x1_x3_sub), 0);
const float32x4_t yy0_as = vcombine_f32(yy0_a, yy0_s);
const float32x2_t yy1_a = vdup_lane_f32(vget_high_f32(x1_x3_add), 1);
const float32x2_t yy1_s = vdup_lane_f32(vget_high_f32(x1_x3_sub), 1);
const float32x4_t yy1_as = vcombine_f32(yy1_a, yy1_s);
const float32x4_t yy0 = vmlaq_f32(yy0_as, vec_swap_sign, yy1_as);
const float32x4_t yy4 = vmulq_f32(wk1rv, yy0);
const float32x4_t xx1_rev = vrev64q_f32(xx1);
const float32x4_t yy4_rev = vrev64q_f32(yy4);
vst1_f32(&a[j + 0], vget_low_f32(xx0));
vst1_f32(&a[j + 32], vget_high_f32(xx0));
vst1_f32(&a[j + 16], vget_low_f32(xx1));
vst1_f32(&a[j + 48], vget_high_f32(xx1_rev));
a[j + 48] = -a[j + 48];
vst1_f32(&a[j + 8], vget_low_f32(x1_x3_add));
vst1_f32(&a[j + 24], vget_low_f32(x1_x3_sub));
vst1_f32(&a[j + 40], vget_low_f32(yy4));
vst1_f32(&a[j + 56], vget_high_f32(yy4_rev));
}
{
const int k = 64;
const int k1 = 2;
const int k2 = 2 * k1;
const float32x4_t wk2rv = vld1q_f32(&rdft_wk2r[k2 + 0]);
const float32x4_t wk2iv = vld1q_f32(&rdft_wk2i[k2 + 0]);
const float32x4_t wk1iv = vld1q_f32(&rdft_wk1i[k2 + 0]);
const float32x4_t wk3rv = vld1q_f32(&rdft_wk3r[k2 + 0]);
const float32x4_t wk3iv = vld1q_f32(&rdft_wk3i[k2 + 0]);
wk1rv = vld1q_f32(&rdft_wk1r[k2 + 0]);
for (j = k; j < l + k; j += 2) {
const float32x2_t a_00 = vld1_f32(&a[j + 0]);
const float32x2_t a_08 = vld1_f32(&a[j + 8]);
const float32x2_t a_32 = vld1_f32(&a[j + 32]);
const float32x2_t a_40 = vld1_f32(&a[j + 40]);
const float32x4_t a_00_32 = vcombine_f32(a_00, a_32);
const float32x4_t a_08_40 = vcombine_f32(a_08, a_40);
const float32x4_t x0r0_0i0_0r1_x0i1 = vaddq_f32(a_00_32, a_08_40);
const float32x4_t x1r0_1i0_1r1_x1i1 = vsubq_f32(a_00_32, a_08_40);
const float32x2_t a_16 = vld1_f32(&a[j + 16]);
const float32x2_t a_24 = vld1_f32(&a[j + 24]);
const float32x2_t a_48 = vld1_f32(&a[j + 48]);
const float32x2_t a_56 = vld1_f32(&a[j + 56]);
const float32x4_t a_16_48 = vcombine_f32(a_16, a_48);
const float32x4_t a_24_56 = vcombine_f32(a_24, a_56);
const float32x4_t x2r0_2i0_2r1_x2i1 = vaddq_f32(a_16_48, a_24_56);
const float32x4_t x3r0_3i0_3r1_x3i1 = vsubq_f32(a_16_48, a_24_56);
const float32x4_t xx = vaddq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const float32x4_t xx1 = vsubq_f32(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const float32x4_t x3i0_3r0_3i1_x3r1 = vrev64q_f32(x3r0_3i0_3r1_x3i1);
const float32x4_t x1_x3_add =
vmlaq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
const float32x4_t x1_x3_sub =
vmlsq_f32(x1r0_1i0_1r1_x1i1, vec_swap_sign, x3i0_3r0_3i1_x3r1);
float32x4_t xx4 = vmulq_f32(wk2rv, xx1);
float32x4_t xx12 = vmulq_f32(wk1rv, x1_x3_add);
float32x4_t xx22 = vmulq_f32(wk3rv, x1_x3_sub);
xx4 = vmlaq_f32(xx4, wk2iv, vrev64q_f32(xx1));
xx12 = vmlaq_f32(xx12, wk1iv, vrev64q_f32(x1_x3_add));
xx22 = vmlaq_f32(xx22, wk3iv, vrev64q_f32(x1_x3_sub));
vst1_f32(&a[j + 0], vget_low_f32(xx));
vst1_f32(&a[j + 32], vget_high_f32(xx));
vst1_f32(&a[j + 16], vget_low_f32(xx4));
vst1_f32(&a[j + 48], vget_high_f32(xx4));
vst1_f32(&a[j + 8], vget_low_f32(xx12));
vst1_f32(&a[j + 40], vget_high_f32(xx12));
vst1_f32(&a[j + 24], vget_low_f32(xx22));
vst1_f32(&a[j + 56], vget_high_f32(xx22));
}
}
}
__inline static float32x4_t reverse_order_f32x4(float32x4_t in) {
// A B C D -> C D A B
const float32x4_t rev = vcombine_f32(vget_high_f32(in), vget_low_f32(in));
// C D A B -> D C B A
return vrev64q_f32(rev);
}
void rftfsub_128_neon(float* a) {
const float* c = rdft_w + 32;
int j1, j2;
const float32x4_t mm_half = vdupq_n_f32(0.5f);
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const float32x4_t c_j1 = vld1q_f32(&c[j1]); // 1, 2, 3, 4,
const float32x4_t c_k1 = vld1q_f32(&c[29 - j1]); // 28, 29, 30, 31,
const float32x4_t wkrt = vsubq_f32(mm_half, c_k1); // 28, 29, 30, 31,
const float32x4_t wkr_ = reverse_order_f32x4(wkrt); // 31, 30, 29, 28,
const float32x4_t wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
// 2, 4, 6, 8, 3, 5, 7, 9
float32x4x2_t a_j2_p = vld2q_f32(&a[0 + j2]);
// 120, 122, 124, 126, 121, 123, 125, 127,
const float32x4x2_t k2_0_4 = vld2q_f32(&a[122 - j2]);
// 126, 124, 122, 120
const float32x4_t a_k2_p0 = reverse_order_f32x4(k2_0_4.val[0]);
// 127, 125, 123, 121
const float32x4_t a_k2_p1 = reverse_order_f32x4(k2_0_4.val[1]);
// Calculate 'x'.
const float32x4_t xr_ = vsubq_f32(a_j2_p.val[0], a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const float32x4_t xi_ = vaddq_f32(a_j2_p.val[1], a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr - wki * xi;
// yi = wkr * xi + wki * xr;
const float32x4_t a_ = vmulq_f32(wkr_, xr_);
const float32x4_t b_ = vmulq_f32(wki_, xi_);
const float32x4_t c_ = vmulq_f32(wkr_, xi_);
const float32x4_t d_ = vmulq_f32(wki_, xr_);
const float32x4_t yr_ = vsubq_f32(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const float32x4_t yi_ = vaddq_f32(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] -= yr;
// a[j2 + 1] -= yi;
// a[k2 + 0] += yr;
// a[k2 + 1] -= yi;
// 126, 124, 122, 120,
const float32x4_t a_k2_p0n = vaddq_f32(a_k2_p0, yr_);
// 127, 125, 123, 121,
const float32x4_t a_k2_p1n = vsubq_f32(a_k2_p1, yi_);
// Shuffle in right order and store.
const float32x4_t a_k2_p0nr = vrev64q_f32(a_k2_p0n);
const float32x4_t a_k2_p1nr = vrev64q_f32(a_k2_p1n);
// 124, 125, 126, 127, 120, 121, 122, 123
const float32x4x2_t a_k2_n = vzipq_f32(a_k2_p0nr, a_k2_p1nr);
// 2, 4, 6, 8,
a_j2_p.val[0] = vsubq_f32(a_j2_p.val[0], yr_);
// 3, 5, 7, 9,
a_j2_p.val[1] = vsubq_f32(a_j2_p.val[1], yi_);
// 2, 3, 4, 5, 6, 7, 8, 9,
vst2q_f32(&a[0 + j2], a_j2_p);
vst1q_f32(&a[122 - j2], a_k2_n.val[1]);
vst1q_f32(&a[126 - j2], a_k2_n.val[0]);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
const int k2 = 128 - j2;
const int k1 = 32 - j1;
const float wkr = 0.5f - c[k1];
const float wki = c[j1];
const float xr = a[j2 + 0] - a[k2 + 0];
const float xi = a[j2 + 1] + a[k2 + 1];
const float yr = wkr * xr - wki * xi;
const float yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
void rftbsub_128_neon(float* a) {
const float* c = rdft_w + 32;
int j1, j2;
const float32x4_t mm_half = vdupq_n_f32(0.5f);
a[1] = -a[1];
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const float32x4_t c_j1 = vld1q_f32(&c[j1]); // 1, 2, 3, 4,
const float32x4_t c_k1 = vld1q_f32(&c[29 - j1]); // 28, 29, 30, 31,
const float32x4_t wkrt = vsubq_f32(mm_half, c_k1); // 28, 29, 30, 31,
const float32x4_t wkr_ = reverse_order_f32x4(wkrt); // 31, 30, 29, 28,
const float32x4_t wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
// 2, 4, 6, 8, 3, 5, 7, 9
float32x4x2_t a_j2_p = vld2q_f32(&a[0 + j2]);
// 120, 122, 124, 126, 121, 123, 125, 127,
const float32x4x2_t k2_0_4 = vld2q_f32(&a[122 - j2]);
// 126, 124, 122, 120
const float32x4_t a_k2_p0 = reverse_order_f32x4(k2_0_4.val[0]);
// 127, 125, 123, 121
const float32x4_t a_k2_p1 = reverse_order_f32x4(k2_0_4.val[1]);
// Calculate 'x'.
const float32x4_t xr_ = vsubq_f32(a_j2_p.val[0], a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const float32x4_t xi_ = vaddq_f32(a_j2_p.val[1], a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr - wki * xi;
// yi = wkr * xi + wki * xr;
const float32x4_t a_ = vmulq_f32(wkr_, xr_);
const float32x4_t b_ = vmulq_f32(wki_, xi_);
const float32x4_t c_ = vmulq_f32(wkr_, xi_);
const float32x4_t d_ = vmulq_f32(wki_, xr_);
const float32x4_t yr_ = vaddq_f32(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const float32x4_t yi_ = vsubq_f32(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] -= yr;
// a[j2 + 1] -= yi;
// a[k2 + 0] += yr;
// a[k2 + 1] -= yi;
// 126, 124, 122, 120,
const float32x4_t a_k2_p0n = vaddq_f32(a_k2_p0, yr_);
// 127, 125, 123, 121,
const float32x4_t a_k2_p1n = vsubq_f32(yi_, a_k2_p1);
// Shuffle in right order and store.
// 2, 3, 4, 5, 6, 7, 8, 9,
const float32x4_t a_k2_p0nr = vrev64q_f32(a_k2_p0n);
const float32x4_t a_k2_p1nr = vrev64q_f32(a_k2_p1n);
// 124, 125, 126, 127, 120, 121, 122, 123
const float32x4x2_t a_k2_n = vzipq_f32(a_k2_p0nr, a_k2_p1nr);
// 2, 4, 6, 8,
a_j2_p.val[0] = vsubq_f32(a_j2_p.val[0], yr_);
// 3, 5, 7, 9,
a_j2_p.val[1] = vsubq_f32(yi_, a_j2_p.val[1]);
// 2, 3, 4, 5, 6, 7, 8, 9,
vst2q_f32(&a[0 + j2], a_j2_p);
vst1q_f32(&a[122 - j2], a_k2_n.val[1]);
vst1q_f32(&a[126 - j2], a_k2_n.val[0]);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
const int k2 = 128 - j2;
const int k1 = 32 - j1;
const float wkr = 0.5f - c[k1];
const float wki = c[j1];
const float xr = a[j2 + 0] - a[k2 + 0];
const float xi = a[j2 + 1] + a[k2 + 1];
const float yr = wkr * xr + wki * xi;
const float yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
#endif
} // namespace webrtc

View File

@ -0,0 +1,439 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <emmintrin.h>
#include <xmmintrin.h>
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_common.h"
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft_tables_neon_sse2.h"
#include "rtc_base/system/arch.h"
namespace webrtc {
#if defined(WEBRTC_ARCH_X86_FAMILY)
namespace {
// These intrinsics were unavailable before VS 2008.
// TODO(andrew): move to a common file.
#if defined(_MSC_VER) && _MSC_VER < 1500
static __inline __m128 _mm_castsi128_ps(__m128i a) {
return *(__m128*)&a;
}
static __inline __m128i _mm_castps_si128(__m128 a) {
return *(__m128i*)&a;
}
#endif
} // namespace
void cft1st_128_SSE2(float* a) {
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j, k2;
for (k2 = 0, j = 0; j < 128; j += 16, k2 += 4) {
__m128 a00v = _mm_loadu_ps(&a[j + 0]);
__m128 a04v = _mm_loadu_ps(&a[j + 4]);
__m128 a08v = _mm_loadu_ps(&a[j + 8]);
__m128 a12v = _mm_loadu_ps(&a[j + 12]);
__m128 a01v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(1, 0, 1, 0));
__m128 a23v = _mm_shuffle_ps(a00v, a08v, _MM_SHUFFLE(3, 2, 3, 2));
__m128 a45v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(1, 0, 1, 0));
__m128 a67v = _mm_shuffle_ps(a04v, a12v, _MM_SHUFFLE(3, 2, 3, 2));
const __m128 wk1rv = _mm_load_ps(&rdft_wk1r[k2]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2]);
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2]);
__m128 x0v = _mm_add_ps(a01v, a23v);
const __m128 x1v = _mm_sub_ps(a01v, a23v);
const __m128 x2v = _mm_add_ps(a45v, a67v);
const __m128 x3v = _mm_sub_ps(a45v, a67v);
__m128 x0w;
a01v = _mm_add_ps(x0v, x2v);
x0v = _mm_sub_ps(x0v, x2v);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0, 1));
{
const __m128 a45_0v = _mm_mul_ps(wk2rv, x0v);
const __m128 a45_1v = _mm_mul_ps(wk2iv, x0w);
a45v = _mm_add_ps(a45_0v, a45_1v);
}
{
__m128 a23_0v, a23_1v;
const __m128 x3w = _mm_shuffle_ps(x3v, x3v, _MM_SHUFFLE(2, 3, 0, 1));
const __m128 x3s = _mm_mul_ps(mm_swap_sign, x3w);
x0v = _mm_add_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0, 1));
a23_0v = _mm_mul_ps(wk1rv, x0v);
a23_1v = _mm_mul_ps(wk1iv, x0w);
a23v = _mm_add_ps(a23_0v, a23_1v);
x0v = _mm_sub_ps(x1v, x3s);
x0w = _mm_shuffle_ps(x0v, x0v, _MM_SHUFFLE(2, 3, 0, 1));
}
{
const __m128 a67_0v = _mm_mul_ps(wk3rv, x0v);
const __m128 a67_1v = _mm_mul_ps(wk3iv, x0w);
a67v = _mm_add_ps(a67_0v, a67_1v);
}
a00v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(1, 0, 1, 0));
a04v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(1, 0, 1, 0));
a08v = _mm_shuffle_ps(a01v, a23v, _MM_SHUFFLE(3, 2, 3, 2));
a12v = _mm_shuffle_ps(a45v, a67v, _MM_SHUFFLE(3, 2, 3, 2));
_mm_storeu_ps(&a[j + 0], a00v);
_mm_storeu_ps(&a[j + 4], a04v);
_mm_storeu_ps(&a[j + 8], a08v);
_mm_storeu_ps(&a[j + 12], a12v);
}
}
void cftmdl_128_SSE2(float* a) {
const int l = 8;
const __m128 mm_swap_sign = _mm_load_ps(k_swap_sign);
int j0;
__m128 wk1rv = _mm_load_ps(cftmdl_wk1r);
for (j0 = 0; j0 < l; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 =
_mm_shuffle_ps(_mm_castsi128_ps(a_00), _mm_castsi128_ps(a_32),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_08_40 =
_mm_shuffle_ps(_mm_castsi128_ps(a_08), _mm_castsi128_ps(a_40),
_MM_SHUFFLE(1, 0, 1, 0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 =
_mm_shuffle_ps(_mm_castsi128_ps(a_16), _mm_castsi128_ps(a_48),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_24_56 =
_mm_shuffle_ps(_mm_castsi128_ps(a_24), _mm_castsi128_ps(a_56),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx0 = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 x3i0_3r0_3i1_x3r1 = _mm_castsi128_ps(_mm_shuffle_epi32(
_mm_castps_si128(x3r0_3i0_3r1_x3i1), _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 yy0 =
_mm_shuffle_ps(x1_x3_add, x1_x3_sub, _MM_SHUFFLE(2, 2, 2, 2));
const __m128 yy1 =
_mm_shuffle_ps(x1_x3_add, x1_x3_sub, _MM_SHUFFLE(3, 3, 3, 3));
const __m128 yy2 = _mm_mul_ps(mm_swap_sign, yy1);
const __m128 yy3 = _mm_add_ps(yy0, yy2);
const __m128 yy4 = _mm_mul_ps(wk1rv, yy3);
_mm_storel_epi64((__m128i*)&a[j0 + 0], _mm_castps_si128(xx0));
_mm_storel_epi64(
(__m128i*)&a[j0 + 32],
_mm_shuffle_epi32(_mm_castps_si128(xx0), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 16], _mm_castps_si128(xx1));
_mm_storel_epi64(
(__m128i*)&a[j0 + 48],
_mm_shuffle_epi32(_mm_castps_si128(xx1), _MM_SHUFFLE(2, 3, 2, 3)));
a[j0 + 48] = -a[j0 + 48];
_mm_storel_epi64((__m128i*)&a[j0 + 8], _mm_castps_si128(x1_x3_add));
_mm_storel_epi64((__m128i*)&a[j0 + 24], _mm_castps_si128(x1_x3_sub));
_mm_storel_epi64((__m128i*)&a[j0 + 40], _mm_castps_si128(yy4));
_mm_storel_epi64(
(__m128i*)&a[j0 + 56],
_mm_shuffle_epi32(_mm_castps_si128(yy4), _MM_SHUFFLE(2, 3, 2, 3)));
}
{
int k = 64;
int k1 = 2;
int k2 = 2 * k1;
const __m128 wk2rv = _mm_load_ps(&rdft_wk2r[k2 + 0]);
const __m128 wk2iv = _mm_load_ps(&rdft_wk2i[k2 + 0]);
const __m128 wk1iv = _mm_load_ps(&rdft_wk1i[k2 + 0]);
const __m128 wk3rv = _mm_load_ps(&rdft_wk3r[k2 + 0]);
const __m128 wk3iv = _mm_load_ps(&rdft_wk3i[k2 + 0]);
wk1rv = _mm_load_ps(&rdft_wk1r[k2 + 0]);
for (j0 = k; j0 < l + k; j0 += 2) {
const __m128i a_00 = _mm_loadl_epi64((__m128i*)&a[j0 + 0]);
const __m128i a_08 = _mm_loadl_epi64((__m128i*)&a[j0 + 8]);
const __m128i a_32 = _mm_loadl_epi64((__m128i*)&a[j0 + 32]);
const __m128i a_40 = _mm_loadl_epi64((__m128i*)&a[j0 + 40]);
const __m128 a_00_32 =
_mm_shuffle_ps(_mm_castsi128_ps(a_00), _mm_castsi128_ps(a_32),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_08_40 =
_mm_shuffle_ps(_mm_castsi128_ps(a_08), _mm_castsi128_ps(a_40),
_MM_SHUFFLE(1, 0, 1, 0));
__m128 x0r0_0i0_0r1_x0i1 = _mm_add_ps(a_00_32, a_08_40);
const __m128 x1r0_1i0_1r1_x1i1 = _mm_sub_ps(a_00_32, a_08_40);
const __m128i a_16 = _mm_loadl_epi64((__m128i*)&a[j0 + 16]);
const __m128i a_24 = _mm_loadl_epi64((__m128i*)&a[j0 + 24]);
const __m128i a_48 = _mm_loadl_epi64((__m128i*)&a[j0 + 48]);
const __m128i a_56 = _mm_loadl_epi64((__m128i*)&a[j0 + 56]);
const __m128 a_16_48 =
_mm_shuffle_ps(_mm_castsi128_ps(a_16), _mm_castsi128_ps(a_48),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 a_24_56 =
_mm_shuffle_ps(_mm_castsi128_ps(a_24), _mm_castsi128_ps(a_56),
_MM_SHUFFLE(1, 0, 1, 0));
const __m128 x2r0_2i0_2r1_x2i1 = _mm_add_ps(a_16_48, a_24_56);
const __m128 x3r0_3i0_3r1_x3i1 = _mm_sub_ps(a_16_48, a_24_56);
const __m128 xx = _mm_add_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx1 = _mm_sub_ps(x0r0_0i0_0r1_x0i1, x2r0_2i0_2r1_x2i1);
const __m128 xx2 = _mm_mul_ps(xx1, wk2rv);
const __m128 xx3 = _mm_mul_ps(
wk2iv, _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xx1),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx4 = _mm_add_ps(xx2, xx3);
const __m128 x3i0_3r0_3i1_x3r1 = _mm_castsi128_ps(_mm_shuffle_epi32(
_mm_castps_si128(x3r0_3i0_3r1_x3i1), _MM_SHUFFLE(2, 3, 0, 1)));
const __m128 x3_swapped = _mm_mul_ps(mm_swap_sign, x3i0_3r0_3i1_x3r1);
const __m128 x1_x3_add = _mm_add_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 x1_x3_sub = _mm_sub_ps(x1r0_1i0_1r1_x1i1, x3_swapped);
const __m128 xx10 = _mm_mul_ps(x1_x3_add, wk1rv);
const __m128 xx11 = _mm_mul_ps(
wk1iv, _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(x1_x3_add),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx12 = _mm_add_ps(xx10, xx11);
const __m128 xx20 = _mm_mul_ps(x1_x3_sub, wk3rv);
const __m128 xx21 = _mm_mul_ps(
wk3iv, _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(x1_x3_sub),
_MM_SHUFFLE(2, 3, 0, 1))));
const __m128 xx22 = _mm_add_ps(xx20, xx21);
_mm_storel_epi64((__m128i*)&a[j0 + 0], _mm_castps_si128(xx));
_mm_storel_epi64(
(__m128i*)&a[j0 + 32],
_mm_shuffle_epi32(_mm_castps_si128(xx), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 16], _mm_castps_si128(xx4));
_mm_storel_epi64(
(__m128i*)&a[j0 + 48],
_mm_shuffle_epi32(_mm_castps_si128(xx4), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 8], _mm_castps_si128(xx12));
_mm_storel_epi64(
(__m128i*)&a[j0 + 40],
_mm_shuffle_epi32(_mm_castps_si128(xx12), _MM_SHUFFLE(3, 2, 3, 2)));
_mm_storel_epi64((__m128i*)&a[j0 + 24], _mm_castps_si128(xx22));
_mm_storel_epi64(
(__m128i*)&a[j0 + 56],
_mm_shuffle_epi32(_mm_castps_si128(xx22), _MM_SHUFFLE(3, 2, 3, 2)));
}
}
}
void rftfsub_128_SSE2(float* a) {
const float* c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] = {0.5f, 0.5f, 0.5f,
0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(2, 0, 2, 0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(3, 1, 3, 1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(0, 2, 0, 2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(1, 3, 1, 3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr - wki * xi;
// yi = wkr * xi + wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_sub_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_add_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] -= yr;
// a[j2 + 1] -= yi;
// a[k2 + 0] += yr;
// a[k2 + 1] -= yi;
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(a_j2_p1, yi_); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(a_k2_p1, yi_); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(
a_k2_0nt, a_k2_0nt, _MM_SHUFFLE(1, 0, 3, 2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(
a_k2_4nt, a_k2_4nt, _MM_SHUFFLE(1, 0, 3, 2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr - wki * xi;
yi = wkr * xi + wki * xr;
a[j2 + 0] -= yr;
a[j2 + 1] -= yi;
a[k2 + 0] += yr;
a[k2 + 1] -= yi;
}
}
void rftbsub_128_SSE2(float* a) {
const float* c = rdft_w + 32;
int j1, j2, k1, k2;
float wkr, wki, xr, xi, yr, yi;
static const ALIGN16_BEG float ALIGN16_END k_half[4] = {0.5f, 0.5f, 0.5f,
0.5f};
const __m128 mm_half = _mm_load_ps(k_half);
a[1] = -a[1];
// Vectorized code (four at once).
// Note: commented number are indexes for the first iteration of the loop.
for (j1 = 1, j2 = 2; j2 + 7 < 64; j1 += 4, j2 += 8) {
// Load 'wk'.
const __m128 c_j1 = _mm_loadu_ps(&c[j1]); // 1, 2, 3, 4,
const __m128 c_k1 = _mm_loadu_ps(&c[29 - j1]); // 28, 29, 30, 31,
const __m128 wkrt = _mm_sub_ps(mm_half, c_k1); // 28, 29, 30, 31,
const __m128 wkr_ =
_mm_shuffle_ps(wkrt, wkrt, _MM_SHUFFLE(0, 1, 2, 3)); // 31, 30, 29, 28,
const __m128 wki_ = c_j1; // 1, 2, 3, 4,
// Load and shuffle 'a'.
const __m128 a_j2_0 = _mm_loadu_ps(&a[0 + j2]); // 2, 3, 4, 5,
const __m128 a_j2_4 = _mm_loadu_ps(&a[4 + j2]); // 6, 7, 8, 9,
const __m128 a_k2_0 = _mm_loadu_ps(&a[122 - j2]); // 120, 121, 122, 123,
const __m128 a_k2_4 = _mm_loadu_ps(&a[126 - j2]); // 124, 125, 126, 127,
const __m128 a_j2_p0 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(2, 0, 2, 0)); // 2, 4, 6, 8,
const __m128 a_j2_p1 = _mm_shuffle_ps(
a_j2_0, a_j2_4, _MM_SHUFFLE(3, 1, 3, 1)); // 3, 5, 7, 9,
const __m128 a_k2_p0 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(0, 2, 0, 2)); // 126, 124, 122, 120,
const __m128 a_k2_p1 = _mm_shuffle_ps(
a_k2_4, a_k2_0, _MM_SHUFFLE(1, 3, 1, 3)); // 127, 125, 123, 121,
// Calculate 'x'.
const __m128 xr_ = _mm_sub_ps(a_j2_p0, a_k2_p0);
// 2-126, 4-124, 6-122, 8-120,
const __m128 xi_ = _mm_add_ps(a_j2_p1, a_k2_p1);
// 3-127, 5-125, 7-123, 9-121,
// Calculate product into 'y'.
// yr = wkr * xr + wki * xi;
// yi = wkr * xi - wki * xr;
const __m128 a_ = _mm_mul_ps(wkr_, xr_);
const __m128 b_ = _mm_mul_ps(wki_, xi_);
const __m128 c_ = _mm_mul_ps(wkr_, xi_);
const __m128 d_ = _mm_mul_ps(wki_, xr_);
const __m128 yr_ = _mm_add_ps(a_, b_); // 2-126, 4-124, 6-122, 8-120,
const __m128 yi_ = _mm_sub_ps(c_, d_); // 3-127, 5-125, 7-123, 9-121,
// Update 'a'.
// a[j2 + 0] = a[j2 + 0] - yr;
// a[j2 + 1] = yi - a[j2 + 1];
// a[k2 + 0] = yr + a[k2 + 0];
// a[k2 + 1] = yi - a[k2 + 1];
const __m128 a_j2_p0n = _mm_sub_ps(a_j2_p0, yr_); // 2, 4, 6, 8,
const __m128 a_j2_p1n = _mm_sub_ps(yi_, a_j2_p1); // 3, 5, 7, 9,
const __m128 a_k2_p0n = _mm_add_ps(a_k2_p0, yr_); // 126, 124, 122, 120,
const __m128 a_k2_p1n = _mm_sub_ps(yi_, a_k2_p1); // 127, 125, 123, 121,
// Shuffle in right order and store.
const __m128 a_j2_0n = _mm_unpacklo_ps(a_j2_p0n, a_j2_p1n);
// 2, 3, 4, 5,
const __m128 a_j2_4n = _mm_unpackhi_ps(a_j2_p0n, a_j2_p1n);
// 6, 7, 8, 9,
const __m128 a_k2_0nt = _mm_unpackhi_ps(a_k2_p0n, a_k2_p1n);
// 122, 123, 120, 121,
const __m128 a_k2_4nt = _mm_unpacklo_ps(a_k2_p0n, a_k2_p1n);
// 126, 127, 124, 125,
const __m128 a_k2_0n = _mm_shuffle_ps(
a_k2_0nt, a_k2_0nt, _MM_SHUFFLE(1, 0, 3, 2)); // 120, 121, 122, 123,
const __m128 a_k2_4n = _mm_shuffle_ps(
a_k2_4nt, a_k2_4nt, _MM_SHUFFLE(1, 0, 3, 2)); // 124, 125, 126, 127,
_mm_storeu_ps(&a[0 + j2], a_j2_0n);
_mm_storeu_ps(&a[4 + j2], a_j2_4n);
_mm_storeu_ps(&a[122 - j2], a_k2_0n);
_mm_storeu_ps(&a[126 - j2], a_k2_4n);
}
// Scalar code for the remaining items.
for (; j2 < 64; j1 += 1, j2 += 2) {
k2 = 128 - j2;
k1 = 32 - j1;
wkr = 0.5f - c[k1];
wki = c[j1];
xr = a[j2 + 0] - a[k2 + 0];
xi = a[j2 + 1] + a[k2 + 1];
yr = wkr * xr + wki * xi;
yi = wkr * xi - wki * xr;
a[j2 + 0] = a[j2 + 0] - yr;
a[j2 + 1] = yi - a[j2 + 1];
a[k2 + 0] = yr + a[k2 + 0];
a[k2 + 1] = yi - a[k2 + 1];
}
a[65] = -a[65];
}
#endif
} // namespace webrtc

View File

@ -0,0 +1,54 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_TABLES_COMMON_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_TABLES_COMMON_H_
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft.h"
namespace webrtc {
// This tables used to be computed at run-time. For example, refer to:
// https://code.google.com/p/webrtc/source/browse/trunk/webrtc/modules/audio_processing/utility/apm_rdft.c?r=6564
// to see the initialization code.
// Constants shared by all paths (C, SSE2, NEON).
const float rdft_w[64] = {
1.0000000000f, 0.0000000000f, 0.7071067691f, 0.7071067691f, 0.9238795638f,
0.3826834559f, 0.3826834559f, 0.9238795638f, 0.9807852507f, 0.1950903237f,
0.5555702448f, 0.8314695954f, 0.8314695954f, 0.5555702448f, 0.1950903237f,
0.9807852507f, 0.9951847196f, 0.0980171412f, 0.6343933344f, 0.7730104327f,
0.8819212914f, 0.4713967443f, 0.2902846634f, 0.9569403529f, 0.9569403529f,
0.2902846634f, 0.4713967443f, 0.8819212914f, 0.7730104327f, 0.6343933344f,
0.0980171412f, 0.9951847196f, 0.7071067691f, 0.4993977249f, 0.4975923598f,
0.4945882559f, 0.4903926253f, 0.4850156307f, 0.4784701765f, 0.4707720280f,
0.4619397819f, 0.4519946277f, 0.4409606457f, 0.4288643003f, 0.4157347977f,
0.4016037583f, 0.3865052164f, 0.3704755902f, 0.3535533845f, 0.3357794881f,
0.3171966672f, 0.2978496552f, 0.2777851224f, 0.2570513785f, 0.2356983721f,
0.2137775421f, 0.1913417280f, 0.1684449315f, 0.1451423317f, 0.1214900985f,
0.0975451618f, 0.0733652338f, 0.0490085706f, 0.0245338380f,
};
// Constants used by the C and MIPS paths.
const float rdft_wk3ri_first[16] = {
1.000000000f, 0.000000000f, 0.382683456f, 0.923879564f,
0.831469536f, 0.555570245f, -0.195090353f, 0.980785251f,
0.956940353f, 0.290284693f, 0.098017156f, 0.995184720f,
0.634393334f, 0.773010492f, -0.471396863f, 0.881921172f,
};
const float rdft_wk3ri_second[16] = {
-0.707106769f, 0.707106769f, -0.923879564f, -0.382683456f,
-0.980785251f, 0.195090353f, -0.555570245f, -0.831469536f,
-0.881921172f, 0.471396863f, -0.773010492f, -0.634393334f,
-0.995184720f, -0.098017156f, -0.290284693f, -0.956940353f,
};
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_TABLES_COMMON_H_

View File

@ -0,0 +1,98 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_TABLES_NEON_SSE2_H_
#define MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_TABLES_NEON_SSE2_H_
#include "common_audio/third_party/ooura/fft_size_128/ooura_fft.h"
#include "rtc_base/system/arch.h"
#ifdef _MSC_VER /* visual c++ */
#define ALIGN16_BEG __declspec(align(16))
#define ALIGN16_END
#else /* gcc or icc */
#define ALIGN16_BEG
#define ALIGN16_END __attribute__((aligned(16)))
#endif
namespace webrtc {
// These tables used to be computed at run-time. For example, refer to:
// https://code.google.com/p/webrtc/source/browse/trunk/webrtc/modules/audio_processing/utility/apm_rdft.c?r=6564
// to see the initialization code.
#if defined(WEBRTC_ARCH_X86_FAMILY) || defined(WEBRTC_HAS_NEON)
// Constants used by SSE2 and NEON but initialized in the C path.
const ALIGN16_BEG float ALIGN16_END k_swap_sign[4] = {-1.f, 1.f, -1.f, 1.f};
ALIGN16_BEG const float ALIGN16_END rdft_wk1r[32] = {
1.000000000f, 1.000000000f, 0.707106769f, 0.707106769f, 0.923879564f,
0.923879564f, 0.382683456f, 0.382683456f, 0.980785251f, 0.980785251f,
0.555570245f, 0.555570245f, 0.831469595f, 0.831469595f, 0.195090324f,
0.195090324f, 0.995184720f, 0.995184720f, 0.634393334f, 0.634393334f,
0.881921291f, 0.881921291f, 0.290284663f, 0.290284663f, 0.956940353f,
0.956940353f, 0.471396744f, 0.471396744f, 0.773010433f, 0.773010433f,
0.098017141f, 0.098017141f,
};
ALIGN16_BEG const float ALIGN16_END rdft_wk2r[32] = {
1.000000000f, 1.000000000f, -0.000000000f, -0.000000000f, 0.707106769f,
0.707106769f, -0.707106769f, -0.707106769f, 0.923879564f, 0.923879564f,
-0.382683456f, -0.382683456f, 0.382683456f, 0.382683456f, -0.923879564f,
-0.923879564f, 0.980785251f, 0.980785251f, -0.195090324f, -0.195090324f,
0.555570245f, 0.555570245f, -0.831469595f, -0.831469595f, 0.831469595f,
0.831469595f, -0.555570245f, -0.555570245f, 0.195090324f, 0.195090324f,
-0.980785251f, -0.980785251f,
};
ALIGN16_BEG const float ALIGN16_END rdft_wk3r[32] = {
1.000000000f, 1.000000000f, -0.707106769f, -0.707106769f, 0.382683456f,
0.382683456f, -0.923879564f, -0.923879564f, 0.831469536f, 0.831469536f,
-0.980785251f, -0.980785251f, -0.195090353f, -0.195090353f, -0.555570245f,
-0.555570245f, 0.956940353f, 0.956940353f, -0.881921172f, -0.881921172f,
0.098017156f, 0.098017156f, -0.773010492f, -0.773010492f, 0.634393334f,
0.634393334f, -0.995184720f, -0.995184720f, -0.471396863f, -0.471396863f,
-0.290284693f, -0.290284693f,
};
ALIGN16_BEG const float ALIGN16_END rdft_wk1i[32] = {
-0.000000000f, 0.000000000f, -0.707106769f, 0.707106769f, -0.382683456f,
0.382683456f, -0.923879564f, 0.923879564f, -0.195090324f, 0.195090324f,
-0.831469595f, 0.831469595f, -0.555570245f, 0.555570245f, -0.980785251f,
0.980785251f, -0.098017141f, 0.098017141f, -0.773010433f, 0.773010433f,
-0.471396744f, 0.471396744f, -0.956940353f, 0.956940353f, -0.290284663f,
0.290284663f, -0.881921291f, 0.881921291f, -0.634393334f, 0.634393334f,
-0.995184720f, 0.995184720f,
};
ALIGN16_BEG const float ALIGN16_END rdft_wk2i[32] = {
-0.000000000f, 0.000000000f, -1.000000000f, 1.000000000f, -0.707106769f,
0.707106769f, -0.707106769f, 0.707106769f, -0.382683456f, 0.382683456f,
-0.923879564f, 0.923879564f, -0.923879564f, 0.923879564f, -0.382683456f,
0.382683456f, -0.195090324f, 0.195090324f, -0.980785251f, 0.980785251f,
-0.831469595f, 0.831469595f, -0.555570245f, 0.555570245f, -0.555570245f,
0.555570245f, -0.831469595f, 0.831469595f, -0.980785251f, 0.980785251f,
-0.195090324f, 0.195090324f,
};
ALIGN16_BEG const float ALIGN16_END rdft_wk3i[32] = {
-0.000000000f, 0.000000000f, -0.707106769f, 0.707106769f, -0.923879564f,
0.923879564f, 0.382683456f, -0.382683456f, -0.555570245f, 0.555570245f,
-0.195090353f, 0.195090353f, -0.980785251f, 0.980785251f, 0.831469536f,
-0.831469536f, -0.290284693f, 0.290284693f, -0.471396863f, 0.471396863f,
-0.995184720f, 0.995184720f, 0.634393334f, -0.634393334f, -0.773010492f,
0.773010492f, 0.098017156f, -0.098017156f, -0.881921172f, 0.881921172f,
0.956940353f, -0.956940353f,
};
ALIGN16_BEG const float ALIGN16_END cftmdl_wk1r[4] = {
0.707106769f,
0.707106769f,
0.707106769f,
-0.707106769f,
};
#endif
} // namespace webrtc
#endif // MODULES_AUDIO_PROCESSING_UTILITY_OOURA_FFT_TABLES_NEON_SSE2_H_

View File

@ -1,4 +1,4 @@
# Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
# Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the ../../../LICENSE file in the root of the source
@ -6,7 +6,7 @@
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
import("../../../webrtc.gni")
import("../../../../webrtc.gni")
rtc_library("fft4g") {
sources = [

View File

@ -289,6 +289,8 @@ Appendix :
#include <math.h>
#include <stddef.h>
#include "common_audio/third_party/ooura/fft_size_256/fft4g.h"
namespace webrtc {
namespace {

View File

@ -8,8 +8,8 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef COMMON_AUDIO_THIRD_PARTY_FFT4G_FFT4G_H_
#define COMMON_AUDIO_THIRD_PARTY_FFT4G_FFT4G_H_
#ifndef COMMON_AUDIO_THIRD_PARTY_OOURA_FFT_SIZE_256_FFT4G_H_
#define COMMON_AUDIO_THIRD_PARTY_OOURA_FFT_SIZE_256_FFT4G_H_
namespace webrtc {
@ -18,4 +18,4 @@ void WebRtc_rdft(size_t n, int isgn, float* a, size_t* ip, float* w);
} // namespace webrtc
#endif /* COMMON_AUDIO_THIRD_PARTY_FFT4G_FFT4G_H_ */
#endif // COMMON_AUDIO_THIRD_PARTY_OOURA_FFT_SIZE_256_FFT4G_H_