Pull out the PostFilter to its own NonlinearBeamformer API
This is done to avoid having a nonlinear component in the AEC path. Now the linear delay and sum is run before the AEC and the postfilter after it. This change landed originally at: https://codereview.webrtc.org/1982183002/ R=peah@webrtc.org TBR=henrik.lundin@webrtc.org Review URL: https://codereview.webrtc.org/2110593003 . Cr-Commit-Position: refs/heads/master@{#13371}
This commit is contained in:
@ -83,7 +83,7 @@ LappedTransform::LappedTransform(size_t num_in_channels,
|
||||
cplx_post_(num_out_channels,
|
||||
cplx_length_,
|
||||
RealFourier::kFftBufferAlignment) {
|
||||
RTC_CHECK(num_in_channels_ > 0 && num_out_channels_ > 0);
|
||||
RTC_CHECK(num_in_channels_ > 0);
|
||||
RTC_CHECK_GT(block_length_, 0u);
|
||||
RTC_CHECK_GT(chunk_length_, 0u);
|
||||
RTC_CHECK(block_processor_);
|
||||
|
||||
@ -55,7 +55,6 @@ source_set("audio_processing") {
|
||||
"audio_processing_impl.h",
|
||||
"beamformer/array_util.cc",
|
||||
"beamformer/array_util.h",
|
||||
"beamformer/beamformer.h",
|
||||
"beamformer/complex_matrix.h",
|
||||
"beamformer/covariance_matrix_generator.cc",
|
||||
"beamformer/covariance_matrix_generator.h",
|
||||
|
||||
@ -66,7 +66,6 @@
|
||||
'audio_processing_impl.h',
|
||||
'beamformer/array_util.cc',
|
||||
'beamformer/array_util.h',
|
||||
'beamformer/beamformer.h',
|
||||
'beamformer/complex_matrix.h',
|
||||
'beamformer/covariance_matrix_generator.cc',
|
||||
'beamformer/covariance_matrix_generator.h',
|
||||
|
||||
@ -128,10 +128,10 @@ struct AudioProcessingImpl::ApmPublicSubmodules {
|
||||
};
|
||||
|
||||
struct AudioProcessingImpl::ApmPrivateSubmodules {
|
||||
explicit ApmPrivateSubmodules(Beamformer<float>* beamformer)
|
||||
explicit ApmPrivateSubmodules(NonlinearBeamformer* beamformer)
|
||||
: beamformer(beamformer) {}
|
||||
// Accessed internally from capture or during initialization
|
||||
std::unique_ptr<Beamformer<float>> beamformer;
|
||||
std::unique_ptr<NonlinearBeamformer> beamformer;
|
||||
std::unique_ptr<AgcManagerDirect> agc_manager;
|
||||
std::unique_ptr<LevelController> level_controller;
|
||||
};
|
||||
@ -146,7 +146,7 @@ AudioProcessing* AudioProcessing::Create(const Config& config) {
|
||||
}
|
||||
|
||||
AudioProcessing* AudioProcessing::Create(const Config& config,
|
||||
Beamformer<float>* beamformer) {
|
||||
NonlinearBeamformer* beamformer) {
|
||||
AudioProcessingImpl* apm = new AudioProcessingImpl(config, beamformer);
|
||||
if (apm->Initialize() != kNoError) {
|
||||
delete apm;
|
||||
@ -160,7 +160,7 @@ AudioProcessingImpl::AudioProcessingImpl(const Config& config)
|
||||
: AudioProcessingImpl(config, nullptr) {}
|
||||
|
||||
AudioProcessingImpl::AudioProcessingImpl(const Config& config,
|
||||
Beamformer<float>* beamformer)
|
||||
NonlinearBeamformer* beamformer)
|
||||
: public_submodules_(new ApmPublicSubmodules()),
|
||||
private_submodules_(new ApmPrivateSubmodules(beamformer)),
|
||||
constants_(config.Get<ExperimentalAgc>().startup_min_volume,
|
||||
@ -699,8 +699,8 @@ int AudioProcessingImpl::ProcessStreamLocked() {
|
||||
}
|
||||
|
||||
if (capture_nonlocked_.beamformer_enabled) {
|
||||
private_submodules_->beamformer->ProcessChunk(*ca->split_data_f(),
|
||||
ca->split_data_f());
|
||||
private_submodules_->beamformer->AnalyzeChunk(*ca->split_data_f());
|
||||
// Discards all channels by the leftmost one.
|
||||
ca->set_num_channels(1);
|
||||
}
|
||||
|
||||
@ -746,6 +746,10 @@ int AudioProcessingImpl::ProcessStreamLocked() {
|
||||
RETURN_ON_ERR(public_submodules_->echo_control_mobile->ProcessCaptureAudio(
|
||||
ca, stream_delay_ms()));
|
||||
|
||||
if (capture_nonlocked_.beamformer_enabled) {
|
||||
private_submodules_->beamformer->PostFilter(ca->split_data_f());
|
||||
}
|
||||
|
||||
public_submodules_->voice_detection->ProcessCaptureAudio(ca);
|
||||
|
||||
if (constants_.use_experimental_agc &&
|
||||
@ -1223,7 +1227,7 @@ void AudioProcessingImpl::InitializeBeamformer() {
|
||||
if (capture_nonlocked_.beamformer_enabled) {
|
||||
if (!private_submodules_->beamformer) {
|
||||
private_submodules_->beamformer.reset(new NonlinearBeamformer(
|
||||
capture_.array_geometry, capture_.target_direction));
|
||||
capture_.array_geometry, 1u, capture_.target_direction));
|
||||
}
|
||||
private_submodules_->beamformer->Initialize(kChunkSizeMs,
|
||||
capture_nonlocked_.split_rate);
|
||||
|
||||
@ -36,8 +36,7 @@ namespace webrtc {
|
||||
class AgcManagerDirect;
|
||||
class AudioConverter;
|
||||
|
||||
template<typename T>
|
||||
class Beamformer;
|
||||
class NonlinearBeamformer;
|
||||
|
||||
class AudioProcessingImpl : public AudioProcessing {
|
||||
public:
|
||||
@ -45,7 +44,7 @@ class AudioProcessingImpl : public AudioProcessing {
|
||||
// Acquires both the render and capture locks.
|
||||
explicit AudioProcessingImpl(const Config& config);
|
||||
// AudioProcessingImpl takes ownership of beamformer.
|
||||
AudioProcessingImpl(const Config& config, Beamformer<float>* beamformer);
|
||||
AudioProcessingImpl(const Config& config, NonlinearBeamformer* beamformer);
|
||||
virtual ~AudioProcessingImpl();
|
||||
int Initialize() override;
|
||||
int Initialize(int input_sample_rate_hz,
|
||||
|
||||
@ -1284,7 +1284,7 @@ TEST_F(ApmTest, AgcOnlyAdaptsWhenTargetSignalIsPresent) {
|
||||
geometry.push_back(webrtc::Point(0.05f, 0.f, 0.f));
|
||||
config.Set<Beamforming>(new Beamforming(true, geometry));
|
||||
testing::NiceMock<MockNonlinearBeamformer>* beamformer =
|
||||
new testing::NiceMock<MockNonlinearBeamformer>(geometry);
|
||||
new testing::NiceMock<MockNonlinearBeamformer>(geometry, 1u);
|
||||
std::unique_ptr<AudioProcessing> apm(
|
||||
AudioProcessing::Create(config, beamformer));
|
||||
EXPECT_EQ(kNoErr, apm->gain_control()->Enable(true));
|
||||
|
||||
@ -1,48 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_BEAMFORMER_H_
|
||||
#define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_BEAMFORMER_H_
|
||||
|
||||
#include "webrtc/common_audio/channel_buffer.h"
|
||||
#include "webrtc/modules/audio_processing/beamformer/array_util.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
template<typename T>
|
||||
class Beamformer {
|
||||
public:
|
||||
virtual ~Beamformer() {}
|
||||
|
||||
// Process one time-domain chunk of audio. The audio is expected to be split
|
||||
// into frequency bands inside the ChannelBuffer. The number of frames and
|
||||
// channels must correspond to the constructor parameters. The same
|
||||
// ChannelBuffer can be passed in as |input| and |output|.
|
||||
virtual void ProcessChunk(const ChannelBuffer<T>& input,
|
||||
ChannelBuffer<T>* output) = 0;
|
||||
|
||||
// Sample rate corresponds to the lower band.
|
||||
// Needs to be called before the the Beamformer can be used.
|
||||
virtual void Initialize(int chunk_size_ms, int sample_rate_hz) = 0;
|
||||
|
||||
// Aim the beamformer at a point in space.
|
||||
virtual void AimAt(const SphericalPointf& spherical_point) = 0;
|
||||
|
||||
// Indicates whether a given point is inside of the beam.
|
||||
virtual bool IsInBeam(const SphericalPointf& spherical_point) { return true; }
|
||||
|
||||
// Returns true if the current data contains the target signal.
|
||||
// Which signals are considered "targets" is implementation dependent.
|
||||
virtual bool is_target_present() = 0;
|
||||
};
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_BEAMFORMER_H_
|
||||
@ -20,12 +20,13 @@ namespace webrtc {
|
||||
|
||||
class MockNonlinearBeamformer : public NonlinearBeamformer {
|
||||
public:
|
||||
explicit MockNonlinearBeamformer(const std::vector<Point>& array_geometry)
|
||||
: NonlinearBeamformer(array_geometry) {}
|
||||
MockNonlinearBeamformer(const std::vector<Point>& array_geometry,
|
||||
size_t num_postfilter_channels)
|
||||
: NonlinearBeamformer(array_geometry, num_postfilter_channels) {}
|
||||
|
||||
MOCK_METHOD2(Initialize, void(int chunk_size_ms, int sample_rate_hz));
|
||||
MOCK_METHOD2(ProcessChunk, void(const ChannelBuffer<float>& input,
|
||||
ChannelBuffer<float>* output));
|
||||
MOCK_METHOD1(AnalyzeChunk, void(const ChannelBuffer<float>& data));
|
||||
MOCK_METHOD1(PostFilter, void(ChannelBuffer<float>* data));
|
||||
MOCK_METHOD1(IsInBeam, bool(const SphericalPointf& spherical_point));
|
||||
MOCK_METHOD0(is_target_present, bool());
|
||||
};
|
||||
|
||||
@ -122,18 +122,6 @@ size_t Round(float x) {
|
||||
return static_cast<size_t>(std::floor(x + 0.5f));
|
||||
}
|
||||
|
||||
// Calculates the sum of absolute values of a complex matrix.
|
||||
float SumAbs(const ComplexMatrix<float>& mat) {
|
||||
float sum_abs = 0.f;
|
||||
const complex<float>* const* mat_els = mat.elements();
|
||||
for (size_t i = 0; i < mat.num_rows(); ++i) {
|
||||
for (size_t j = 0; j < mat.num_columns(); ++j) {
|
||||
sum_abs += std::abs(mat_els[i][j]);
|
||||
}
|
||||
}
|
||||
return sum_abs;
|
||||
}
|
||||
|
||||
// Calculates the sum of squares of a complex matrix.
|
||||
float SumSquares(const ComplexMatrix<float>& mat) {
|
||||
float sum_squares = 0.f;
|
||||
@ -183,10 +171,46 @@ const float NonlinearBeamformer::kHalfBeamWidthRadians = DegreesToRadians(20.f);
|
||||
// static
|
||||
const size_t NonlinearBeamformer::kNumFreqBins;
|
||||
|
||||
PostFilterTransform::PostFilterTransform(size_t num_channels,
|
||||
size_t chunk_length,
|
||||
float* window,
|
||||
size_t fft_size)
|
||||
: transform_(num_channels,
|
||||
num_channels,
|
||||
chunk_length,
|
||||
window,
|
||||
fft_size,
|
||||
fft_size / 2,
|
||||
this),
|
||||
num_freq_bins_(fft_size / 2 + 1) {}
|
||||
|
||||
void PostFilterTransform::ProcessChunk(float* const* data, float* final_mask) {
|
||||
final_mask_ = final_mask;
|
||||
transform_.ProcessChunk(data, data);
|
||||
}
|
||||
|
||||
void PostFilterTransform::ProcessAudioBlock(const complex<float>* const* input,
|
||||
size_t num_input_channels,
|
||||
size_t num_freq_bins,
|
||||
size_t num_output_channels,
|
||||
complex<float>* const* output) {
|
||||
RTC_DCHECK_EQ(num_freq_bins_, num_freq_bins);
|
||||
RTC_DCHECK_EQ(num_input_channels, num_output_channels);
|
||||
|
||||
for (size_t ch = 0; ch < num_input_channels; ++ch) {
|
||||
for (size_t f_ix = 0; f_ix < num_freq_bins_; ++f_ix) {
|
||||
output[ch][f_ix] =
|
||||
kCompensationGain * final_mask_[f_ix] * input[ch][f_ix];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
NonlinearBeamformer::NonlinearBeamformer(
|
||||
const std::vector<Point>& array_geometry,
|
||||
size_t num_postfilter_channels,
|
||||
SphericalPointf target_direction)
|
||||
: num_input_channels_(array_geometry.size()),
|
||||
num_postfilter_channels_(num_postfilter_channels),
|
||||
array_geometry_(GetCenteredArray(array_geometry)),
|
||||
array_normal_(GetArrayNormalIfExists(array_geometry)),
|
||||
min_mic_spacing_(GetMinimumSpacing(array_geometry)),
|
||||
@ -208,18 +232,21 @@ void NonlinearBeamformer::Initialize(int chunk_size_ms, int sample_rate_hz) {
|
||||
hold_target_blocks_ = kHoldTargetSeconds * 2 * sample_rate_hz / kFftSize;
|
||||
interference_blocks_count_ = hold_target_blocks_;
|
||||
|
||||
lapped_transform_.reset(new LappedTransform(num_input_channels_,
|
||||
1,
|
||||
chunk_length_,
|
||||
window_,
|
||||
kFftSize,
|
||||
kFftSize / 2,
|
||||
this));
|
||||
process_transform_.reset(new LappedTransform(num_input_channels_,
|
||||
0u,
|
||||
chunk_length_,
|
||||
window_,
|
||||
kFftSize,
|
||||
kFftSize / 2,
|
||||
this));
|
||||
postfilter_transform_.reset(new PostFilterTransform(
|
||||
num_postfilter_channels_, chunk_length_, window_, kFftSize));
|
||||
const float wave_number_step =
|
||||
(2.f * M_PI * sample_rate_hz_) / (kFftSize * kSpeedOfSoundMeterSeconds);
|
||||
for (size_t i = 0; i < kNumFreqBins; ++i) {
|
||||
time_smooth_mask_[i] = 1.f;
|
||||
final_mask_[i] = 1.f;
|
||||
float freq_hz = (static_cast<float>(i) / kFftSize) * sample_rate_hz_;
|
||||
wave_numbers_[i] = 2 * M_PI * freq_hz / kSpeedOfSoundMeterSeconds;
|
||||
wave_numbers_[i] = i * wave_number_step;
|
||||
}
|
||||
|
||||
InitLowFrequencyCorrectionRanges();
|
||||
@ -306,9 +333,6 @@ void NonlinearBeamformer::InitDelaySumMasks() {
|
||||
complex_f norm_factor = sqrt(
|
||||
ConjugateDotProduct(delay_sum_masks_[f_ix], delay_sum_masks_[f_ix]));
|
||||
delay_sum_masks_[f_ix].Scale(1.f / norm_factor);
|
||||
normalized_delay_sum_masks_[f_ix].CopyFrom(delay_sum_masks_[f_ix]);
|
||||
normalized_delay_sum_masks_[f_ix].Scale(1.f / SumAbs(
|
||||
normalized_delay_sum_masks_[f_ix]));
|
||||
}
|
||||
}
|
||||
|
||||
@ -366,30 +390,49 @@ void NonlinearBeamformer::NormalizeCovMats() {
|
||||
}
|
||||
}
|
||||
|
||||
void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input,
|
||||
ChannelBuffer<float>* output) {
|
||||
RTC_DCHECK_EQ(input.num_channels(), num_input_channels_);
|
||||
RTC_DCHECK_EQ(input.num_frames_per_band(), chunk_length_);
|
||||
void NonlinearBeamformer::AnalyzeChunk(const ChannelBuffer<float>& data) {
|
||||
RTC_DCHECK_EQ(data.num_channels(), num_input_channels_);
|
||||
RTC_DCHECK_EQ(data.num_frames_per_band(), chunk_length_);
|
||||
|
||||
float old_high_pass_mask = high_pass_postfilter_mask_;
|
||||
lapped_transform_->ProcessChunk(input.channels(0), output->channels(0));
|
||||
// Ramp up/down for smoothing. 1 mask per 10ms results in audible
|
||||
// discontinuities.
|
||||
old_high_pass_mask_ = high_pass_postfilter_mask_;
|
||||
process_transform_->ProcessChunk(data.channels(0), nullptr);
|
||||
}
|
||||
|
||||
void NonlinearBeamformer::PostFilter(ChannelBuffer<float>* data) {
|
||||
RTC_DCHECK_EQ(data->num_frames_per_band(), chunk_length_);
|
||||
// TODO(aluebs): Change to RTC_CHECK_EQ once the ChannelBuffer is updated.
|
||||
RTC_DCHECK_GE(data->num_channels(), num_postfilter_channels_);
|
||||
|
||||
postfilter_transform_->ProcessChunk(data->channels(0), final_mask_);
|
||||
|
||||
// Ramp up/down for smoothing is needed in order to avoid discontinuities in
|
||||
// the transitions between 10 ms frames.
|
||||
const float ramp_increment =
|
||||
(high_pass_postfilter_mask_ - old_high_pass_mask) /
|
||||
input.num_frames_per_band();
|
||||
// Apply the smoothed high-pass mask to the first channel of each band.
|
||||
// This can be done because the effect of the linear beamformer is negligible
|
||||
// compared to the post-filter.
|
||||
for (size_t i = 1; i < input.num_bands(); ++i) {
|
||||
float smoothed_mask = old_high_pass_mask;
|
||||
for (size_t j = 0; j < input.num_frames_per_band(); ++j) {
|
||||
(high_pass_postfilter_mask_ - old_high_pass_mask_) /
|
||||
data->num_frames_per_band();
|
||||
for (size_t i = 1; i < data->num_bands(); ++i) {
|
||||
float smoothed_mask = old_high_pass_mask_;
|
||||
for (size_t j = 0; j < data->num_frames_per_band(); ++j) {
|
||||
smoothed_mask += ramp_increment;
|
||||
output->channels(i)[0][j] = input.channels(i)[0][j] * smoothed_mask;
|
||||
for (size_t k = 0; k < num_postfilter_channels_; ++k) {
|
||||
data->channels(i)[k][j] *= smoothed_mask;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NonlinearBeamformer::ProcessChunk(const ChannelBuffer<float>& input,
|
||||
ChannelBuffer<float>* output) {
|
||||
RTC_DCHECK_GT(output->num_channels(), 0u);
|
||||
RTC_DCHECK_EQ(output->num_frames_per_band(), input.num_frames_per_band());
|
||||
AnalyzeChunk(input);
|
||||
for (size_t i = 0u; i < input.num_bands(); ++i) {
|
||||
std::memcpy(output->channels(i)[0], input.channels(i)[0],
|
||||
sizeof(input.channels(0)[0][0]) * input.num_frames_per_band());
|
||||
}
|
||||
PostFilter(output);
|
||||
}
|
||||
|
||||
void NonlinearBeamformer::AimAt(const SphericalPointf& target_direction) {
|
||||
target_angle_radians_ = target_direction.azimuth();
|
||||
InitHighFrequencyCorrectionRanges();
|
||||
@ -414,7 +457,7 @@ void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input,
|
||||
complex_f* const* output) {
|
||||
RTC_CHECK_EQ(kNumFreqBins, num_freq_bins);
|
||||
RTC_CHECK_EQ(num_input_channels_, num_input_channels);
|
||||
RTC_CHECK_EQ(1u, num_output_channels);
|
||||
RTC_CHECK_EQ(0u, num_output_channels);
|
||||
|
||||
// Calculating the post-filter masks. Note that we need two for each
|
||||
// frequency bin to account for the positive and negative interferer
|
||||
@ -456,7 +499,6 @@ void NonlinearBeamformer::ProcessAudioBlock(const complex_f* const* input,
|
||||
ApplyLowFrequencyCorrection();
|
||||
ApplyHighFrequencyCorrection();
|
||||
ApplyMaskFrequencySmoothing();
|
||||
ApplyMasks(input, output);
|
||||
}
|
||||
|
||||
float NonlinearBeamformer::CalculatePostfilterMask(
|
||||
@ -484,22 +526,6 @@ float NonlinearBeamformer::CalculatePostfilterMask(
|
||||
return numerator / denominator;
|
||||
}
|
||||
|
||||
void NonlinearBeamformer::ApplyMasks(const complex_f* const* input,
|
||||
complex_f* const* output) {
|
||||
complex_f* output_channel = output[0];
|
||||
for (size_t f_ix = 0; f_ix < kNumFreqBins; ++f_ix) {
|
||||
output_channel[f_ix] = complex_f(0.f, 0.f);
|
||||
|
||||
const complex_f* delay_sum_mask_els =
|
||||
normalized_delay_sum_masks_[f_ix].elements()[0];
|
||||
for (size_t c_ix = 0; c_ix < num_input_channels_; ++c_ix) {
|
||||
output_channel[f_ix] += input[c_ix][f_ix] * delay_sum_mask_els[c_ix];
|
||||
}
|
||||
|
||||
output_channel[f_ix] *= kCompensationGain * final_mask_[f_ix];
|
||||
}
|
||||
}
|
||||
|
||||
// Smooth new_mask_ into time_smooth_mask_.
|
||||
void NonlinearBeamformer::ApplyMaskTimeSmoothing() {
|
||||
for (size_t i = low_mean_start_bin_; i <= high_mean_end_bin_; ++i) {
|
||||
|
||||
@ -21,48 +21,76 @@
|
||||
|
||||
#include "webrtc/common_audio/lapped_transform.h"
|
||||
#include "webrtc/common_audio/channel_buffer.h"
|
||||
#include "webrtc/modules/audio_processing/beamformer/beamformer.h"
|
||||
#include "webrtc/modules/audio_processing/beamformer/array_util.h"
|
||||
#include "webrtc/modules/audio_processing/beamformer/complex_matrix.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
class PostFilterTransform : public LappedTransform::Callback {
|
||||
public:
|
||||
PostFilterTransform(size_t num_channels,
|
||||
size_t chunk_length,
|
||||
float* window,
|
||||
size_t fft_size);
|
||||
|
||||
void ProcessChunk(float* const* data, float* final_mask);
|
||||
|
||||
protected:
|
||||
void ProcessAudioBlock(const complex<float>* const* input,
|
||||
size_t num_input_channels,
|
||||
size_t num_freq_bins,
|
||||
size_t num_output_channels,
|
||||
complex<float>* const* output) override;
|
||||
|
||||
private:
|
||||
LappedTransform transform_;
|
||||
const size_t num_freq_bins_;
|
||||
float* final_mask_;
|
||||
};
|
||||
|
||||
// Enhances sound sources coming directly in front of a uniform linear array
|
||||
// and suppresses sound sources coming from all other directions. Operates on
|
||||
// multichannel signals and produces single-channel output.
|
||||
//
|
||||
// The implemented nonlinear postfilter algorithm taken from "A Robust Nonlinear
|
||||
// Beamforming Postprocessor" by Bastiaan Kleijn.
|
||||
class NonlinearBeamformer
|
||||
: public Beamformer<float>,
|
||||
public LappedTransform::Callback {
|
||||
class NonlinearBeamformer : public LappedTransform::Callback {
|
||||
public:
|
||||
static const float kHalfBeamWidthRadians;
|
||||
|
||||
explicit NonlinearBeamformer(
|
||||
const std::vector<Point>& array_geometry,
|
||||
size_t num_postfilter_channels = 1u,
|
||||
SphericalPointf target_direction =
|
||||
SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f));
|
||||
|
||||
// Sample rate corresponds to the lower band.
|
||||
// Needs to be called before the NonlinearBeamformer can be used.
|
||||
void Initialize(int chunk_size_ms, int sample_rate_hz) override;
|
||||
virtual void Initialize(int chunk_size_ms, int sample_rate_hz);
|
||||
|
||||
// Process one time-domain chunk of audio. The audio is expected to be split
|
||||
// Analyzes one time-domain chunk of audio. The audio is expected to be split
|
||||
// into frequency bands inside the ChannelBuffer. The number of frames and
|
||||
// channels must correspond to the constructor parameters. The same
|
||||
// ChannelBuffer can be passed in as |input| and |output|.
|
||||
void ProcessChunk(const ChannelBuffer<float>& input,
|
||||
ChannelBuffer<float>* output) override;
|
||||
// channels must correspond to the constructor parameters.
|
||||
virtual void AnalyzeChunk(const ChannelBuffer<float>& data);
|
||||
|
||||
void AimAt(const SphericalPointf& target_direction) override;
|
||||
// Applies the postfilter mask to one chunk of audio. The audio is expected to
|
||||
// be split into frequency bands inside the ChannelBuffer. The number of
|
||||
// frames and channels must correspond to the constructor parameters.
|
||||
virtual void PostFilter(ChannelBuffer<float>* data);
|
||||
|
||||
bool IsInBeam(const SphericalPointf& spherical_point) override;
|
||||
// TODO(aluebs): Remove once the dependencies have moved to new API.
|
||||
virtual void ProcessChunk(const ChannelBuffer<float>& input,
|
||||
ChannelBuffer<float>* output);
|
||||
|
||||
virtual void AimAt(const SphericalPointf& target_direction);
|
||||
|
||||
virtual bool IsInBeam(const SphericalPointf& spherical_point);
|
||||
|
||||
// After processing each block |is_target_present_| is set to true if the
|
||||
// target signal es present and to false otherwise. This methods can be called
|
||||
// to know if the data is target signal or interference and process it
|
||||
// accordingly.
|
||||
bool is_target_present() override { return is_target_present_; }
|
||||
virtual bool is_target_present() { return is_target_present_; }
|
||||
|
||||
protected:
|
||||
// Process one frequency-domain block of audio. This is where the fun
|
||||
@ -116,8 +144,8 @@ class NonlinearBeamformer
|
||||
// Compute the means needed for the above frequency correction.
|
||||
float MaskRangeMean(size_t start_bin, size_t end_bin);
|
||||
|
||||
// Applies both sets of masks to |input| and store in |output|.
|
||||
void ApplyMasks(const complex_f* const* input, complex_f* const* output);
|
||||
// Applies post-filter mask to |input| and store in |output|.
|
||||
void ApplyPostFilter(const complex_f* input, complex_f* output);
|
||||
|
||||
void EstimateTargetPresence();
|
||||
|
||||
@ -126,11 +154,13 @@ class NonlinearBeamformer
|
||||
|
||||
// Deals with the fft transform and blocking.
|
||||
size_t chunk_length_;
|
||||
std::unique_ptr<LappedTransform> lapped_transform_;
|
||||
std::unique_ptr<LappedTransform> process_transform_;
|
||||
std::unique_ptr<PostFilterTransform> postfilter_transform_;
|
||||
float window_[kFftSize];
|
||||
|
||||
// Parameters exposed to the user.
|
||||
const size_t num_input_channels_;
|
||||
const size_t num_postfilter_channels_;
|
||||
int sample_rate_hz_;
|
||||
|
||||
const std::vector<Point> array_geometry_;
|
||||
@ -161,7 +191,6 @@ class NonlinearBeamformer
|
||||
|
||||
// Array of length |kNumFreqBins|, Matrix of size |1| x |num_channels_|.
|
||||
ComplexMatrixF delay_sum_masks_[kNumFreqBins];
|
||||
ComplexMatrixF normalized_delay_sum_masks_[kNumFreqBins];
|
||||
|
||||
// Arrays of length |kNumFreqBins|, Matrix of size |num_input_channels_| x
|
||||
// |num_input_channels_|.
|
||||
@ -186,6 +215,7 @@ class NonlinearBeamformer
|
||||
|
||||
// For processing the high-frequency input signal.
|
||||
float high_pass_postfilter_mask_;
|
||||
float old_high_pass_mask_;
|
||||
|
||||
// True when the target signal is present.
|
||||
bool is_target_present_;
|
||||
|
||||
@ -43,14 +43,14 @@ int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
|
||||
WavReader in_file(FLAGS_i);
|
||||
WavWriter out_file(FLAGS_o, in_file.sample_rate(), 1);
|
||||
WavWriter out_file(FLAGS_o, in_file.sample_rate(), in_file.num_channels());
|
||||
|
||||
const size_t num_mics = in_file.num_channels();
|
||||
const std::vector<Point> array_geometry =
|
||||
ParseArrayGeometry(FLAGS_mic_positions, num_mics);
|
||||
RTC_CHECK_EQ(array_geometry.size(), num_mics);
|
||||
|
||||
NonlinearBeamformer bf(array_geometry);
|
||||
NonlinearBeamformer bf(array_geometry, array_geometry.size());
|
||||
bf.Initialize(kChunkSizeMs, in_file.sample_rate());
|
||||
|
||||
printf("Input file: %s\nChannels: %" PRIuS ", Sample rate: %d Hz\n\n",
|
||||
@ -58,24 +58,22 @@ int main(int argc, char* argv[]) {
|
||||
printf("Output file: %s\nChannels: %" PRIuS ", Sample rate: %d Hz\n\n",
|
||||
FLAGS_o.c_str(), out_file.num_channels(), out_file.sample_rate());
|
||||
|
||||
ChannelBuffer<float> in_buf(
|
||||
ChannelBuffer<float> buf(
|
||||
rtc::CheckedDivExact(in_file.sample_rate(), kChunksPerSecond),
|
||||
in_file.num_channels());
|
||||
ChannelBuffer<float> out_buf(
|
||||
rtc::CheckedDivExact(out_file.sample_rate(), kChunksPerSecond),
|
||||
out_file.num_channels());
|
||||
|
||||
std::vector<float> interleaved(in_buf.size());
|
||||
std::vector<float> interleaved(buf.size());
|
||||
while (in_file.ReadSamples(interleaved.size(),
|
||||
&interleaved[0]) == interleaved.size()) {
|
||||
FloatS16ToFloat(&interleaved[0], interleaved.size(), &interleaved[0]);
|
||||
Deinterleave(&interleaved[0], in_buf.num_frames(),
|
||||
in_buf.num_channels(), in_buf.channels());
|
||||
Deinterleave(&interleaved[0], buf.num_frames(),
|
||||
buf.num_channels(), buf.channels());
|
||||
|
||||
bf.ProcessChunk(in_buf, &out_buf);
|
||||
bf.AnalyzeChunk(buf);
|
||||
bf.PostFilter(&buf);
|
||||
|
||||
Interleave(out_buf.channels(), out_buf.num_frames(),
|
||||
out_buf.num_channels(), &interleaved[0]);
|
||||
Interleave(buf.channels(), buf.num_frames(),
|
||||
buf.num_channels(), &interleaved[0]);
|
||||
FloatToFloatS16(&interleaved[0], interleaved.size(), &interleaved[0]);
|
||||
out_file.WriteSamples(&interleaved[0], interleaved.size());
|
||||
}
|
||||
|
||||
@ -57,14 +57,14 @@ const size_t kNumFramesToProcess = 1000;
|
||||
|
||||
void ProcessOneFrame(int sample_rate_hz,
|
||||
AudioBuffer* capture_audio_buffer,
|
||||
Beamformer<float>* beamformer) {
|
||||
NonlinearBeamformer* beamformer) {
|
||||
if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
|
||||
capture_audio_buffer->SplitIntoFrequencyBands();
|
||||
}
|
||||
|
||||
beamformer->ProcessChunk(*capture_audio_buffer->split_data_f(),
|
||||
capture_audio_buffer->split_data_f());
|
||||
beamformer->AnalyzeChunk(*capture_audio_buffer->split_data_f());
|
||||
capture_audio_buffer->set_num_channels(1);
|
||||
beamformer->PostFilter(capture_audio_buffer->split_data_f());
|
||||
|
||||
if (sample_rate_hz > AudioProcessing::kSampleRate16kHz) {
|
||||
capture_audio_buffer->MergeFrequencyBands();
|
||||
@ -81,7 +81,7 @@ void RunBitExactnessTest(int sample_rate_hz,
|
||||
const std::vector<Point>& array_geometry,
|
||||
const SphericalPointf& target_direction,
|
||||
rtc::ArrayView<const float> output_reference) {
|
||||
NonlinearBeamformer beamformer(array_geometry, target_direction);
|
||||
NonlinearBeamformer beamformer(array_geometry, 1u, target_direction);
|
||||
beamformer.Initialize(AudioProcessing::kChunkSizeMs,
|
||||
BeamformerSampleRate(sample_rate_hz));
|
||||
|
||||
@ -159,7 +159,7 @@ TEST(NonlinearBeamformerTest, AimingModifiesBeam) {
|
||||
std::vector<Point> array_geometry;
|
||||
array_geometry.push_back(Point(-0.025f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.025f, 0.f, 0.f));
|
||||
NonlinearBeamformer bf(array_geometry);
|
||||
NonlinearBeamformer bf(array_geometry, 1u);
|
||||
bf.Initialize(kChunkSizeMs, kSampleRateHz);
|
||||
// The default constructor parameter sets the target angle to PI / 2.
|
||||
Verify(&bf, static_cast<float>(M_PI) / 2.f);
|
||||
@ -176,7 +176,7 @@ TEST(NonlinearBeamformerTest, InterfAnglesTakeAmbiguityIntoAccount) {
|
||||
array_geometry.push_back(Point(-0.1f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.2f, 0.f, 0.f));
|
||||
NonlinearBeamformer bf(array_geometry);
|
||||
NonlinearBeamformer bf(array_geometry, 1u);
|
||||
bf.Initialize(kChunkSizeMs, kSampleRateHz);
|
||||
EXPECT_EQ(2u, bf.interf_angles_radians_.size());
|
||||
EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
|
||||
@ -197,7 +197,7 @@ TEST(NonlinearBeamformerTest, InterfAnglesTakeAmbiguityIntoAccount) {
|
||||
array_geometry.push_back(Point(0.2f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.1f, 0.f, 0.2f));
|
||||
array_geometry.push_back(Point(0.f, 0.f, -0.1f));
|
||||
NonlinearBeamformer bf(array_geometry);
|
||||
NonlinearBeamformer bf(array_geometry, 1u);
|
||||
bf.Initialize(kChunkSizeMs, kSampleRateHz);
|
||||
EXPECT_EQ(2u, bf.interf_angles_radians_.size());
|
||||
EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
|
||||
@ -216,7 +216,7 @@ TEST(NonlinearBeamformerTest, InterfAnglesTakeAmbiguityIntoAccount) {
|
||||
array_geometry.push_back(Point(0.f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.2f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.f, 0.1f, -0.2f));
|
||||
NonlinearBeamformer bf(array_geometry);
|
||||
NonlinearBeamformer bf(array_geometry, 1u);
|
||||
bf.Initialize(kChunkSizeMs, kSampleRateHz);
|
||||
EXPECT_EQ(2u, bf.interf_angles_radians_.size());
|
||||
EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
|
||||
@ -235,7 +235,7 @@ TEST(NonlinearBeamformerTest, InterfAnglesTakeAmbiguityIntoAccount) {
|
||||
array_geometry.push_back(Point(0.1f, 0.f, 0.f));
|
||||
array_geometry.push_back(Point(0.f, 0.2f, 0.f));
|
||||
array_geometry.push_back(Point(0.f, 0.f, 0.3f));
|
||||
NonlinearBeamformer bf(array_geometry);
|
||||
NonlinearBeamformer bf(array_geometry, 1u);
|
||||
bf.Initialize(kChunkSizeMs, kSampleRateHz);
|
||||
EXPECT_EQ(2u, bf.interf_angles_radians_.size());
|
||||
EXPECT_FLOAT_EQ(M_PI / 2.f - bf.away_radians_,
|
||||
@ -262,8 +262,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo16kHz_ArrayGeometry1_TargetDirection1) {
|
||||
const float kOutputReference[] = {0.000064f, 0.000211f, 0.000075f,
|
||||
0.000064f, 0.000211f, 0.000075f};
|
||||
const float kOutputReference[] = {-0.000077f, -0.000147f, -0.000138f,
|
||||
-0.000077f, -0.000147f, -0.000138f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate16kHz, CreateArrayGeometry(1),
|
||||
TargetDirection1, kOutputReference);
|
||||
@ -271,8 +271,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo32kHz_ArrayGeometry1_TargetDirection1) {
|
||||
const float kOutputReference[] = {0.000183f, 0.000183f, 0.000183f,
|
||||
0.000183f, 0.000183f, 0.000183f};
|
||||
const float kOutputReference[] = {-0.000061f, -0.000061f, -0.000061f,
|
||||
-0.000061f, -0.000061f, -0.000061f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate32kHz, CreateArrayGeometry(1),
|
||||
TargetDirection1, kOutputReference);
|
||||
@ -280,8 +280,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo48kHz_ArrayGeometry1_TargetDirection1) {
|
||||
const float kOutputReference[] = {0.000155f, 0.000152f, 0.000159f,
|
||||
0.000155f, 0.000152f, 0.000159f};
|
||||
const float kOutputReference[] = {0.000450f, 0.000436f, 0.000433f,
|
||||
0.000450f, 0.000436f, 0.000433f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate48kHz, CreateArrayGeometry(1),
|
||||
TargetDirection1, kOutputReference);
|
||||
@ -300,8 +300,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo16kHz_ArrayGeometry1_TargetDirection2) {
|
||||
const float kOutputReference[] = {0.001144f, -0.001026f, 0.001074f,
|
||||
0.001144f, -0.001026f, 0.001074f};
|
||||
const float kOutputReference[] = {0.000221f, -0.000249f, 0.000140f,
|
||||
0.000221f, -0.000249f, 0.000140f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate16kHz, CreateArrayGeometry(1),
|
||||
TargetDirection2, kOutputReference);
|
||||
@ -309,8 +309,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo32kHz_ArrayGeometry1_TargetDirection2) {
|
||||
const float kOutputReference[] = {0.000732f, -0.000397f, 0.000610f,
|
||||
0.000732f, -0.000397f, 0.000610f};
|
||||
const float kOutputReference[] = {0.000763f, -0.000336f, 0.000549f,
|
||||
0.000763f, -0.000336f, 0.000549f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate32kHz, CreateArrayGeometry(1),
|
||||
TargetDirection2, kOutputReference);
|
||||
@ -318,8 +318,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo48kHz_ArrayGeometry1_TargetDirection2) {
|
||||
const float kOutputReference[] = {0.000106f, -0.000464f, 0.000188f,
|
||||
0.000106f, -0.000464f, 0.000188f};
|
||||
const float kOutputReference[] = {-0.000004f, -0.000494f, 0.000255f,
|
||||
-0.000004f, -0.000494f, 0.000255f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate48kHz, CreateArrayGeometry(1),
|
||||
TargetDirection2, kOutputReference);
|
||||
@ -327,8 +327,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo8kHz_ArrayGeometry2_TargetDirection2) {
|
||||
const float kOutputReference[] = {-0.000649f, 0.000576f, -0.000148f,
|
||||
-0.000649f, 0.000576f, -0.000148f};
|
||||
const float kOutputReference[] = {-0.000914f, 0.002170f, -0.002382f,
|
||||
-0.000914f, 0.002170f, -0.002382f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate8kHz, CreateArrayGeometry(2),
|
||||
TargetDirection2, kOutputReference);
|
||||
@ -336,8 +336,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo16kHz_ArrayGeometry2_TargetDirection2) {
|
||||
const float kOutputReference[] = {0.000808f, -0.000695f, 0.000739f,
|
||||
0.000808f, -0.000695f, 0.000739f};
|
||||
const float kOutputReference[] = {0.000179f, -0.000179f, 0.000081f,
|
||||
0.000179f, -0.000179f, 0.000081f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate16kHz, CreateArrayGeometry(2),
|
||||
TargetDirection2, kOutputReference);
|
||||
@ -345,8 +345,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo32kHz_ArrayGeometry2_TargetDirection2) {
|
||||
const float kOutputReference[] = {0.000580f, -0.000183f, 0.000458f,
|
||||
0.000580f, -0.000183f, 0.000458f};
|
||||
const float kOutputReference[] = {0.000549f, -0.000214f, 0.000366f,
|
||||
0.000549f, -0.000214f, 0.000366f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate32kHz, CreateArrayGeometry(2),
|
||||
TargetDirection2, kOutputReference);
|
||||
@ -354,8 +354,8 @@ TEST(BeamformerBitExactnessTest,
|
||||
|
||||
TEST(BeamformerBitExactnessTest,
|
||||
Stereo48kHz_ArrayGeometry2_TargetDirection2) {
|
||||
const float kOutputReference[] = {0.000075f, -0.000288f, 0.000156f,
|
||||
0.000075f, -0.000288f, 0.000156f};
|
||||
const float kOutputReference[] = {0.000019f, -0.000310f, 0.000182f,
|
||||
0.000019f, -0.000310f, 0.000182f};
|
||||
|
||||
RunBitExactnessTest(AudioProcessing::kSampleRate48kHz, CreateArrayGeometry(2),
|
||||
TargetDirection2, kOutputReference);
|
||||
|
||||
@ -31,8 +31,7 @@ struct AecCore;
|
||||
|
||||
class AudioFrame;
|
||||
|
||||
template<typename T>
|
||||
class Beamformer;
|
||||
class NonlinearBeamformer;
|
||||
|
||||
class StreamConfig;
|
||||
class ProcessingConfig;
|
||||
@ -275,7 +274,7 @@ class AudioProcessing {
|
||||
static AudioProcessing* Create(const Config& config);
|
||||
// Only for testing.
|
||||
static AudioProcessing* Create(const Config& config,
|
||||
Beamformer<float>* beamformer);
|
||||
NonlinearBeamformer* beamformer);
|
||||
virtual ~AudioProcessing() {}
|
||||
|
||||
// Initializes internal states, while retaining all user settings. This
|
||||
|
||||
Reference in New Issue
Block a user