Reland "Moved congestion controller to goog_cc folder."
This is a reland of e6cefdf9c572cdce55ff0497ad6e516c76132ee8. Original change's description: > Moved congestion controller to goog_cc folder. > > Bug: webrtc:8415 > Change-Id: I2070da0cacf1dbfc4b6a89285af3e68fd03497ab > Reviewed-on: https://webrtc-review.googlesource.com/43841 > Commit-Queue: Sebastian Jansson <srte@webrtc.org> > Reviewed-by: Björn Terelius <terelius@webrtc.org> > Reviewed-by: Stefan Holmer <stefan@webrtc.org> > Cr-Commit-Position: refs/heads/master@{#21928} Bug: webrtc:8415 Change-Id: Ib5cf8641466655d64ac80f720561817f4cab49a9 Reviewed-on: https://webrtc-review.googlesource.com/53062 Commit-Queue: Sebastian Jansson <srte@webrtc.org> Reviewed-by: Björn Terelius <terelius@webrtc.org> Cr-Commit-Position: refs/heads/master@{#22244}
This commit is contained in:
committed by
Commit Bot
parent
cdff887238
commit
fc7ec8e9f8
310
modules/congestion_controller/goog_cc/probe_controller.cc
Normal file
310
modules/congestion_controller/goog_cc/probe_controller.cc
Normal file
@ -0,0 +1,310 @@
|
||||
/*
|
||||
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license
|
||||
* that can be found in the LICENSE file in the root of the source
|
||||
* tree. An additional intellectual property rights grant can be found
|
||||
* in the file PATENTS. All contributing project authors may
|
||||
* be found in the AUTHORS file in the root of the source tree.
|
||||
*/
|
||||
|
||||
#include "modules/congestion_controller/goog_cc/probe_controller.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <initializer_list>
|
||||
|
||||
#include "rtc_base/logging.h"
|
||||
#include "rtc_base/numerics/safe_conversions.h"
|
||||
#include "system_wrappers/include/field_trial.h"
|
||||
#include "system_wrappers/include/metrics.h"
|
||||
|
||||
namespace webrtc {
|
||||
namespace webrtc_cc {
|
||||
|
||||
namespace {
|
||||
// The minimum number probing packets used.
|
||||
constexpr int kMinProbePacketsSent = 5;
|
||||
|
||||
// The minimum probing duration in ms.
|
||||
constexpr int kMinProbeDurationMs = 15;
|
||||
|
||||
// Maximum waiting time from the time of initiating probing to getting
|
||||
// the measured results back.
|
||||
constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000;
|
||||
|
||||
// Value of |min_bitrate_to_probe_further_bps_| that indicates
|
||||
// further probing is disabled.
|
||||
constexpr int kExponentialProbingDisabled = 0;
|
||||
|
||||
// Default probing bitrate limit. Applied only when the application didn't
|
||||
// specify max bitrate.
|
||||
constexpr int64_t kDefaultMaxProbingBitrateBps = 5000000;
|
||||
|
||||
// Interval between probes when ALR periodic probing is enabled.
|
||||
constexpr int64_t kAlrPeriodicProbingIntervalMs = 5000;
|
||||
|
||||
// Minimum probe bitrate percentage to probe further for repeated probes,
|
||||
// relative to the previous probe. For example, if 1Mbps probe results in
|
||||
// 80kbps, then we'll probe again at 1.6Mbps. In that case second probe won't be
|
||||
// sent if we get 600kbps from the first one.
|
||||
constexpr int kRepeatedProbeMinPercentage = 70;
|
||||
|
||||
// If the bitrate drops to a factor |kBitrateDropThreshold| or lower
|
||||
// and we recover within |kBitrateDropTimeoutMs|, then we'll send
|
||||
// a probe at a fraction |kProbeFractionAfterDrop| of the original bitrate.
|
||||
constexpr double kBitrateDropThreshold = 0.66;
|
||||
constexpr int kBitrateDropTimeoutMs = 5000;
|
||||
constexpr double kProbeFractionAfterDrop = 0.85;
|
||||
|
||||
// Timeout for probing after leaving ALR. If the bitrate drops significantly,
|
||||
// (as determined by the delay based estimator) and we leave ALR, then we will
|
||||
// send a probe if we recover within |kLeftAlrTimeoutMs| ms.
|
||||
constexpr int kAlrEndedTimeoutMs = 3000;
|
||||
|
||||
// The expected uncertainty of probe result (as a fraction of the target probe
|
||||
// This is a limit on how often probing can be done when there is a BW
|
||||
// drop detected in ALR.
|
||||
constexpr int64_t kMinTimeBetweenAlrProbesMs = 5000;
|
||||
|
||||
// bitrate). Used to avoid probing if the probe bitrate is close to our current
|
||||
// estimate.
|
||||
constexpr double kProbeUncertainty = 0.05;
|
||||
|
||||
// Use probing to recover faster after large bitrate estimate drops.
|
||||
constexpr char kBweRapidRecoveryExperiment[] =
|
||||
"WebRTC-BweRapidRecoveryExperiment";
|
||||
|
||||
} // namespace
|
||||
|
||||
ProbeController::ProbeController(NetworkControllerObserver* observer)
|
||||
: observer_(observer), enable_periodic_alr_probing_(false) {
|
||||
Reset(0);
|
||||
in_rapid_recovery_experiment_ = webrtc::field_trial::FindFullName(
|
||||
kBweRapidRecoveryExperiment) == "Enabled";
|
||||
}
|
||||
|
||||
ProbeController::~ProbeController() {}
|
||||
|
||||
void ProbeController::SetBitrates(int64_t min_bitrate_bps,
|
||||
int64_t start_bitrate_bps,
|
||||
int64_t max_bitrate_bps,
|
||||
int64_t at_time_ms) {
|
||||
if (start_bitrate_bps > 0) {
|
||||
start_bitrate_bps_ = start_bitrate_bps;
|
||||
estimated_bitrate_bps_ = start_bitrate_bps;
|
||||
} else if (start_bitrate_bps_ == 0) {
|
||||
start_bitrate_bps_ = min_bitrate_bps;
|
||||
}
|
||||
|
||||
// The reason we use the variable |old_max_bitrate_pbs| is because we
|
||||
// need to set |max_bitrate_bps_| before we call InitiateProbing.
|
||||
int64_t old_max_bitrate_bps = max_bitrate_bps_;
|
||||
max_bitrate_bps_ = max_bitrate_bps;
|
||||
|
||||
switch (state_) {
|
||||
case State::kInit:
|
||||
if (network_available_)
|
||||
InitiateExponentialProbing(at_time_ms);
|
||||
break;
|
||||
|
||||
case State::kWaitingForProbingResult:
|
||||
break;
|
||||
|
||||
case State::kProbingComplete:
|
||||
// If the new max bitrate is higher than the old max bitrate and the
|
||||
// estimate is lower than the new max bitrate then initiate probing.
|
||||
if (estimated_bitrate_bps_ != 0 &&
|
||||
old_max_bitrate_bps < max_bitrate_bps_ &&
|
||||
estimated_bitrate_bps_ < max_bitrate_bps_) {
|
||||
// The assumption is that if we jump more than 20% in the bandwidth
|
||||
// estimate or if the bandwidth estimate is within 90% of the new
|
||||
// max bitrate then the probing attempt was successful.
|
||||
mid_call_probing_succcess_threshold_ =
|
||||
std::min(estimated_bitrate_bps_ * 1.2, max_bitrate_bps_ * 0.9);
|
||||
mid_call_probing_waiting_for_result_ = true;
|
||||
mid_call_probing_bitrate_bps_ = max_bitrate_bps_;
|
||||
|
||||
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Initiated",
|
||||
max_bitrate_bps_ / 1000);
|
||||
|
||||
InitiateProbing(at_time_ms, {max_bitrate_bps}, false);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ProbeController::OnNetworkAvailability(NetworkAvailability msg) {
|
||||
network_available_ = msg.network_available;
|
||||
if (network_available_ && state_ == State::kInit && start_bitrate_bps_ > 0)
|
||||
InitiateExponentialProbing(msg.at_time.ms());
|
||||
}
|
||||
|
||||
void ProbeController::InitiateExponentialProbing(int64_t at_time_ms) {
|
||||
RTC_DCHECK(network_available_);
|
||||
RTC_DCHECK(state_ == State::kInit);
|
||||
RTC_DCHECK_GT(start_bitrate_bps_, 0);
|
||||
|
||||
// When probing at 1.8 Mbps ( 6x 300), this represents a threshold of
|
||||
// 1.2 Mbps to continue probing.
|
||||
InitiateProbing(at_time_ms, {3 * start_bitrate_bps_, 6 * start_bitrate_bps_},
|
||||
true);
|
||||
}
|
||||
|
||||
void ProbeController::SetEstimatedBitrate(int64_t bitrate_bps,
|
||||
int64_t at_time_ms) {
|
||||
int64_t now_ms = at_time_ms;
|
||||
|
||||
if (mid_call_probing_waiting_for_result_ &&
|
||||
bitrate_bps >= mid_call_probing_succcess_threshold_) {
|
||||
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.Success",
|
||||
mid_call_probing_bitrate_bps_ / 1000);
|
||||
RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.MidCallProbing.ProbedKbps",
|
||||
bitrate_bps / 1000);
|
||||
mid_call_probing_waiting_for_result_ = false;
|
||||
}
|
||||
|
||||
if (state_ == State::kWaitingForProbingResult) {
|
||||
// Continue probing if probing results indicate channel has greater
|
||||
// capacity.
|
||||
RTC_LOG(LS_INFO) << "Measured bitrate: " << bitrate_bps
|
||||
<< " Minimum to probe further: "
|
||||
<< min_bitrate_to_probe_further_bps_;
|
||||
|
||||
if (min_bitrate_to_probe_further_bps_ != kExponentialProbingDisabled &&
|
||||
bitrate_bps > min_bitrate_to_probe_further_bps_) {
|
||||
// Double the probing bitrate.
|
||||
InitiateProbing(now_ms, {2 * bitrate_bps}, true);
|
||||
}
|
||||
}
|
||||
|
||||
if (bitrate_bps < kBitrateDropThreshold * estimated_bitrate_bps_) {
|
||||
time_of_last_large_drop_ms_ = now_ms;
|
||||
bitrate_before_last_large_drop_bps_ = estimated_bitrate_bps_;
|
||||
}
|
||||
|
||||
estimated_bitrate_bps_ = bitrate_bps;
|
||||
}
|
||||
|
||||
void ProbeController::EnablePeriodicAlrProbing(bool enable) {
|
||||
enable_periodic_alr_probing_ = enable;
|
||||
}
|
||||
|
||||
void ProbeController::SetAlrStartTimeMs(
|
||||
rtc::Optional<int64_t> alr_start_time_ms) {
|
||||
alr_start_time_ms_ = alr_start_time_ms;
|
||||
}
|
||||
void ProbeController::SetAlrEndedTimeMs(int64_t alr_end_time_ms) {
|
||||
alr_end_time_ms_.emplace(alr_end_time_ms);
|
||||
}
|
||||
|
||||
void ProbeController::RequestProbe(int64_t at_time_ms) {
|
||||
// Called once we have returned to normal state after a large drop in
|
||||
// estimated bandwidth. The current response is to initiate a single probe
|
||||
// session (if not already probing) at the previous bitrate.
|
||||
//
|
||||
// If the probe session fails, the assumption is that this drop was a
|
||||
// real one from a competing flow or a network change.
|
||||
bool in_alr = alr_start_time_ms_.has_value();
|
||||
bool alr_ended_recently =
|
||||
(alr_end_time_ms_.has_value() &&
|
||||
at_time_ms - alr_end_time_ms_.value() < kAlrEndedTimeoutMs);
|
||||
if (in_alr || alr_ended_recently || in_rapid_recovery_experiment_) {
|
||||
if (state_ == State::kProbingComplete) {
|
||||
uint32_t suggested_probe_bps =
|
||||
kProbeFractionAfterDrop * bitrate_before_last_large_drop_bps_;
|
||||
uint32_t min_expected_probe_result_bps =
|
||||
(1 - kProbeUncertainty) * suggested_probe_bps;
|
||||
int64_t time_since_drop_ms = at_time_ms - time_of_last_large_drop_ms_;
|
||||
int64_t time_since_probe_ms = at_time_ms - last_bwe_drop_probing_time_ms_;
|
||||
if (min_expected_probe_result_bps > estimated_bitrate_bps_ &&
|
||||
time_since_drop_ms < kBitrateDropTimeoutMs &&
|
||||
time_since_probe_ms > kMinTimeBetweenAlrProbesMs) {
|
||||
RTC_LOG(LS_INFO) << "Detected big bandwidth drop, start probing.";
|
||||
// Track how often we probe in response to bandwidth drop in ALR.
|
||||
RTC_HISTOGRAM_COUNTS_10000(
|
||||
"WebRTC.BWE.BweDropProbingIntervalInS",
|
||||
(at_time_ms - last_bwe_drop_probing_time_ms_) / 1000);
|
||||
InitiateProbing(at_time_ms, {suggested_probe_bps}, false);
|
||||
last_bwe_drop_probing_time_ms_ = at_time_ms;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ProbeController::Reset(int64_t at_time_ms) {
|
||||
network_available_ = true;
|
||||
state_ = State::kInit;
|
||||
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
||||
time_last_probing_initiated_ms_ = 0;
|
||||
estimated_bitrate_bps_ = 0;
|
||||
start_bitrate_bps_ = 0;
|
||||
max_bitrate_bps_ = 0;
|
||||
int64_t now_ms = at_time_ms;
|
||||
last_bwe_drop_probing_time_ms_ = now_ms;
|
||||
alr_end_time_ms_.reset();
|
||||
mid_call_probing_waiting_for_result_ = false;
|
||||
time_of_last_large_drop_ms_ = now_ms;
|
||||
bitrate_before_last_large_drop_bps_ = 0;
|
||||
}
|
||||
|
||||
void ProbeController::Process(int64_t at_time_ms) {
|
||||
int64_t now_ms = at_time_ms;
|
||||
|
||||
if (now_ms - time_last_probing_initiated_ms_ >
|
||||
kMaxWaitingTimeForProbingResultMs) {
|
||||
mid_call_probing_waiting_for_result_ = false;
|
||||
|
||||
if (state_ == State::kWaitingForProbingResult) {
|
||||
RTC_LOG(LS_INFO) << "kWaitingForProbingResult: timeout";
|
||||
state_ = State::kProbingComplete;
|
||||
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
||||
}
|
||||
}
|
||||
|
||||
if (state_ != State::kProbingComplete || !enable_periodic_alr_probing_)
|
||||
return;
|
||||
|
||||
// Probe bandwidth periodically when in ALR state.
|
||||
if (alr_start_time_ms_ && estimated_bitrate_bps_ > 0) {
|
||||
int64_t next_probe_time_ms =
|
||||
std::max(*alr_start_time_ms_, time_last_probing_initiated_ms_) +
|
||||
kAlrPeriodicProbingIntervalMs;
|
||||
if (now_ms >= next_probe_time_ms) {
|
||||
InitiateProbing(now_ms, {estimated_bitrate_bps_ * 2}, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ProbeController::InitiateProbing(
|
||||
int64_t now_ms,
|
||||
std::initializer_list<int64_t> bitrates_to_probe,
|
||||
bool probe_further) {
|
||||
for (int64_t bitrate : bitrates_to_probe) {
|
||||
RTC_DCHECK_GT(bitrate, 0);
|
||||
int64_t max_probe_bitrate_bps =
|
||||
max_bitrate_bps_ > 0 ? max_bitrate_bps_ : kDefaultMaxProbingBitrateBps;
|
||||
if (bitrate > max_probe_bitrate_bps) {
|
||||
bitrate = max_probe_bitrate_bps;
|
||||
probe_further = false;
|
||||
}
|
||||
|
||||
ProbeClusterConfig config;
|
||||
config.at_time = Timestamp::ms(now_ms);
|
||||
config.target_data_rate = DataRate::bps(rtc::dchecked_cast<int>(bitrate));
|
||||
config.target_duration = TimeDelta::ms(kMinProbeDurationMs);
|
||||
config.target_probe_count = kMinProbePacketsSent;
|
||||
observer_->OnProbeClusterConfig(config);
|
||||
}
|
||||
time_last_probing_initiated_ms_ = now_ms;
|
||||
if (probe_further) {
|
||||
state_ = State::kWaitingForProbingResult;
|
||||
min_bitrate_to_probe_further_bps_ =
|
||||
(*(bitrates_to_probe.end() - 1)) * kRepeatedProbeMinPercentage / 100;
|
||||
} else {
|
||||
state_ = State::kProbingComplete;
|
||||
min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc_cc
|
||||
} // namespace webrtc
|
||||
Reference in New Issue
Block a user