Formalized Real 16-bit FFT for APM.
It also prepares for introducing Real 16-bit FFT Neon code from Openmax to SPL. CL https://webrtc-codereview.appspot.com/1819004/ takes care of that, but this CL is a prerequisite of that one. Tested audioproc with an offline file. Bit exact. R=andrew@webrtc.org, rtoy@google.com Review URL: https://webrtc-codereview.appspot.com/1830004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@4390 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
@ -17,9 +17,17 @@
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
const int kOrder = 4;
|
||||
const int kLength = 1 << (kOrder + 1); // +1 to hold complex data.
|
||||
const int16_t kRefData[kLength] = {
|
||||
// FFT order.
|
||||
const int kOrder = 5;
|
||||
// Lengths for real FFT's time and frequency bufffers.
|
||||
// For N-point FFT, the length requirements from API are N and N+2 respectively.
|
||||
const int kTimeDataLength = 1 << kOrder;
|
||||
const int kFreqDataLength = (1 << kOrder) + 2;
|
||||
// For complex FFT's time and freq buffer. The implementation requires
|
||||
// 2*N 16-bit words.
|
||||
const int kComplexFftDataLength = 2 << kOrder;
|
||||
// Reference data for time signal.
|
||||
const int16_t kRefData[kTimeDataLength] = {
|
||||
11739, 6848, -8688, 31980, -30295, 25242, 27085, 19410,
|
||||
-26299, 15607, -10791, 11778, -23819, 14498, -25772, 10076,
|
||||
1173, 6848, -8688, 31980, -30295, 2522, 27085, 19410,
|
||||
@ -40,36 +48,58 @@ TEST_F(RealFFTTest, CreateFailsOnBadInput) {
|
||||
EXPECT_TRUE(fft == NULL);
|
||||
}
|
||||
|
||||
// TODO(andrew): This won't always be the case, but verifies the current code
|
||||
// at least.
|
||||
TEST_F(RealFFTTest, RealAndComplexAreIdentical) {
|
||||
int16_t real_data[kLength] = {0};
|
||||
int16_t real_data_out[kLength] = {0};
|
||||
int16_t complex_data[kLength] = {0};
|
||||
memcpy(real_data, kRefData, sizeof(kRefData));
|
||||
memcpy(complex_data, kRefData, sizeof(kRefData));
|
||||
TEST_F(RealFFTTest, RealAndComplexMatch) {
|
||||
int i = 0;
|
||||
int j = 0;
|
||||
int16_t real_fft_time[kTimeDataLength] = {0};
|
||||
int16_t real_fft_freq[kFreqDataLength] = {0};
|
||||
// One common buffer for complex FFT's time and frequency data.
|
||||
int16_t complex_fft_buff[kComplexFftDataLength] = {0};
|
||||
|
||||
// Prepare the inputs to forward FFT's.
|
||||
memcpy(real_fft_time, kRefData, sizeof(kRefData));
|
||||
for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
|
||||
complex_fft_buff[j] = kRefData[i];
|
||||
complex_fft_buff[j + 1] = 0; // Insert zero's to imaginary parts.
|
||||
};
|
||||
|
||||
// Create and run real forward FFT.
|
||||
RealFFT* fft = WebRtcSpl_CreateRealFFT(kOrder);
|
||||
EXPECT_TRUE(fft != NULL);
|
||||
EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_fft_time, real_fft_freq));
|
||||
|
||||
EXPECT_EQ(0, WebRtcSpl_RealForwardFFT(fft, real_data, real_data_out));
|
||||
WebRtcSpl_ComplexBitReverse(complex_data, kOrder);
|
||||
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_data, kOrder, 1));
|
||||
// Run complex forward FFT.
|
||||
WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
|
||||
EXPECT_EQ(0, WebRtcSpl_ComplexFFT(complex_fft_buff, kOrder, 1));
|
||||
|
||||
for (int i = 0; i < kLength; i++) {
|
||||
EXPECT_EQ(real_data_out[i], complex_data[i]);
|
||||
// Verify the results between complex and real forward FFT.
|
||||
for (i = 0; i < kFreqDataLength; i++) {
|
||||
EXPECT_EQ(real_fft_freq[i], complex_fft_buff[i]);
|
||||
}
|
||||
|
||||
memcpy(complex_data, kRefData, sizeof(kRefData));
|
||||
// Prepare the inputs to inverse real FFT.
|
||||
// We use whatever data in complex_fft_buff[] since we don't care
|
||||
// about data contents. Only kFreqDataLength 16-bit words are copied
|
||||
// from complex_fft_buff to real_fft_freq since remaining words (2nd half)
|
||||
// are conjugate-symmetric to the first half in theory.
|
||||
memcpy(real_fft_freq, complex_fft_buff, sizeof(real_fft_freq));
|
||||
|
||||
int real_scale = WebRtcSpl_RealInverseFFT(fft, real_data, real_data_out);
|
||||
// Run real inverse FFT.
|
||||
int real_scale = WebRtcSpl_RealInverseFFT(fft, real_fft_freq, real_fft_time);
|
||||
EXPECT_GE(real_scale, 0);
|
||||
WebRtcSpl_ComplexBitReverse(complex_data, kOrder);
|
||||
int complex_scale = WebRtcSpl_ComplexIFFT(complex_data, kOrder, 1);
|
||||
|
||||
// Run complex inverse FFT.
|
||||
WebRtcSpl_ComplexBitReverse(complex_fft_buff, kOrder);
|
||||
int complex_scale = WebRtcSpl_ComplexIFFT(complex_fft_buff, kOrder, 1);
|
||||
|
||||
// Verify the results between complex and real inverse FFT.
|
||||
// They are not bit-exact, since complex IFFT doesn't produce
|
||||
// exactly conjugate-symmetric data (between first and second half).
|
||||
EXPECT_EQ(real_scale, complex_scale);
|
||||
for (int i = 0; i < kLength; i++) {
|
||||
EXPECT_EQ(real_data_out[i], complex_data[i]);
|
||||
for (i = 0, j = 0; i < kTimeDataLength; i += 1, j += 2) {
|
||||
EXPECT_LE(abs(real_fft_time[i] - complex_fft_buff[j]), 1);
|
||||
}
|
||||
|
||||
WebRtcSpl_FreeRealFFT(fft);
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user