This adds the final piece, which makes the socket and the retransmission
queue generate the callbacks.
Bug: webrtc:5696
Change-Id: I1e28c98e9660bd018e817a3ba0fa6b03940fcd33
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264125
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37455}
Before this CL, some components, e.g. the SendQueue, was first created
and then later restored from handover state, while some were created from
the handover state, as an optional parameter to their constructors.
This CL will make it consistent, by always creating the components in a
pristine state, and then modifying it when restoring them from handover
state. The name "RestoreFromState" was used to be consistent with SendQueue
and the socket.
This is just refactoring.
Bug: None
Change-Id: Ifad2d2e84a74a12a93abbfb0fe1027ebb9580e73
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/267006
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37384}
RFC 4960, 7.2.4. Fast Retransmit on Gap Reports
4) Restart the T3-rtx timer only if the last SACK acknowledged the
lowest outstanding TSN number sent to that address, or the
endpoint is retransmitting the first outstanding DATA chunk sent
to that address.
The second part of this sentence, "or the endpoint is retransmitting the
first outstanding DATA chunk sent to that address."
This means that on fast retransmit, and if the retransmitted chunks
weren't quickly acknowledged by the peer, the retransmission timer would
expire too quickly. With this CL, it will restart, as it should.
Bug: webrtc:12943
Change-Id: I7627253718530876acc516460562e66bfcc79533
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/265620
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37193}
Before this CL, fast retransmission didn't follow the SHOULDs:
https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.4
* "the sender SHOULD ignore the value of cwnd (...)"
* "(...) and SHOULD NOT delay retransmission for this single
packet."
With this CL, chunks that are eligible for fast retransmission (limited
to what can fit in a single packet) will be sent just after having
received the SACK that reported them missing and transitioned the socket
into fast recovery, and they will be sent even if the congestion window
is full.
Bug: webrtc:13969
Change-Id: I12c7e191a8ffd67973db7f083bad8a6061549fa2
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/259866
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36724}
Context: The timer precision of PostDelayedTask() is about to be lowered
to include up to 17 ms leeway. In order not to break use cases that
require high precision timers, PostDelayedHighPrecisionTask() will
continue to have the same precision that PostDelayedTask() has today.
webrtc::TaskQueueBase has an enum (kLow, kHigh) to decide which
precision to use when calling PostDelayedTaskWithPrecision().
See go/postdelayedtask-precision-in-webrtc for motivation and a table of
delayed task use cases in WebRTC that are "high" or "low" precision.
Most timers in DCSCTP are believed to only be needing low precision (see
table), but the delayed_ack_timer_ of DataTracker[1] is an example of a
use case that is likely to break if the timer precision is lowered (if
ACK is sent too late, retransmissions may occur). So this is considered
a high precision use case.
This CL makes it possible to specify the precision of dcsctp::Timer.
In a follow-up CL we will update delayed_ack_timer_ to kHigh precision.
[1] https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/net/dcsctp/rx/data_tracker.cc;l=340
Bug: webrtc:13604
Change-Id: I8eec5ce37044096978b5dd1985fbb00bc0d8fb7e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/249081
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Tomas Gunnarsson <tommi@webrtc.org>
Commit-Queue: Henrik Boström <hbos@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35809}
It's put in the public folder since the intention is to expose it in
SendOptions.
Additionally, use TimeMs::InfiniteFuture() to represent sending a
message with no limited lifetime (i.e. to send it reliably).
One benefit for these two is avoiding using absl::optional more than
necessary, as it results in larger struct sizes for the outstanding
data chunks.
Bug: webrtc:12943
Change-Id: I87a340f0e0905342878fe9d2a74869bfcd6b0076
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/235984
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35323}
This is explained in RFC 4960, section 6.1, A.
... However, regardless of the value of rwnd (including if it
is 0), the data sender can always have one DATA chunk in flight to
the receiver if allowed by cwnd ... This rule
allows the sender to probe for a change in rwnd that the sender
missed due to the SACK's having been lost in transit from the data
receiver to the data sender.
Before this change, when a receiver has advertised a zero receiver
window size (a_rwnd=0) and a subsequent SACK advertising a non-zero
receiver window was lost, the sender was blocked from sending and since
SACKs are only sent when a DATA chunk is received, it would be
deadlocked. The retransmission timer would fire, but nothing would be
retransmitted (as it respected the zero receiver window).
With this change, when the retransmission timer fires (after RTO), it
would send a single packet with DATA chunk(s) and then SACKs would
eventually be received, with the non-zero receiver window and the socket
would recover.
Bug: chromium:1258225
Change-Id: I1ea62fb3c002150eeada28d3e703dbc09cfd038e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/235280
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35215}
dcSCTP library users can set their custom
g_handover_state_transformer_for_test that can serialize and
deserialize the state. All dcSCTP handover tests call
g_handover_state_transformer_for_test. If some part of the state is
serialized incorrectly or is forgotten, high chance that it will
fail the tests.
Bug: webrtc:13154
Change-Id: I251a099be04dda7611e9df868d36e3a76dc7d1e1
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/232325
Commit-Queue: Sergey Sukhanov <sergeysu@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35035}
The congestion window is unlikely to be even divisible by the size
of a packet, so when the congestion window is almost full, there is
often just a few bytes remaining in it. Before this change, a small
packet was created to fill the remaining bytes in the congestion window,
to make it really full.
Small packets don't add much. The cost of sending a small packet is
often the same as sending a large one, and you usually get lower
throughput sending many small packets compared to few larger ones.'
This mode will only be enabled when the congestion window is large, so
if the congestion window is small - e.g. due to poor network conditions,
it will allow packets to become fragmented into small parts, in order to
fully utilize the congestion window.
Bug: webrtc:12943
Change-Id: I8522459174bc72df569edd57f5cc4a494a4b93a8
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/228526
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34778}
For symmetry, as the outstanding_bytes is increased/decreased by
the serialized chunk size (not just the payload) - which is compared
to the congestion window, the congestion window should be increased
by the serialized size of chunks acked - not just their payload.
Bug: webrtc:12943
Change-Id: I0a06033e8ca0d58433138df6442ca80494918cf2
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/228525
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34775}
This corresponds to one part of sstat_unackdata in RFC6458. The
remaining part is the data in the send queue, which isn't packetized
yet, so it must be estimated. But the DATA items in the retransmission
queue is already determined, so it can be easily tracked and retrieved.
Bug: webrtc:13052
Change-Id: I16c3b5b61eb6b3022d7104e6457d943d5df3d6b9
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/228240
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34706}
The previous logic to abandon chunks when partial reliability was used
was a bit too eager and trigger happy.
* Chunks with limited retransmissions should only be abandoned when a
chunk is really considered lost. It should follow the same rules as
for retransmitting chunks - that it must be nacked three times or
due to a T3-RTX expiration. Before this change, a single SACK not
referencing it would be enough to abandon it. This resulted in a lot
of unnecessary sent FORWARD-TSN and undelivered messages - especially
if running with zero retransmissions.
The logic to expire chunks by limited retransmissions will now only
be applied when a chunk is actually nacked.
* The second partial reliability trigger - expiration time - wasn't
evaluated when producing a middle chunk of a larger message.
A number of test cases were added and updated as chunks will now be
abandoned immediately instead of first scheduled for retransmission and
later abandoned.
Bug: webrtc:12961
Change-Id: I0ae17b2672568bdbdc32073a99d4c24b09ff5fe9
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/225548
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34458}
If a not fully sent message is abandoned, there must be a TSN
representing the end of that message (even if that fragment is never
sent), as the receiver can otherwise reject the next sent message as it
hasn't seen any end of the previous one.
A long explanation can be found at
https://github.com/sctplab/usrsctp/issues/592#issuecomment-849047689
Bug: webrtc:12812
Change-Id: I09c571bd6dd2774b0c147d4e5ddac67d2aa64fea
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/220361
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34140}
Recalculating outstanding bytes is expensive when the congestion window
is large, as it iterates over all inflight data chunks. By doing it
incrementally, it will be a constant operation in most cases, and
in the remaining cases, a function of the number of chunks acked in a
single SACK, which is typically just a few chunks.
Implementing this fix required some refactoring to calculate it
correctly (and to be honest, it was likely done incorrectly previously).
Previously, the state of an item in the retransmission queue was
simplified as "in flight", "acked", "nacked", "abandoned", but these
were not completely orthogonal. A chunk could be abandoned while it was
in-flight or it could be abandoned because it was lost. The difference
between these if that chunk should be accounted for in
outstanding_bytes() or not.
Unit tests have been added to verify this.
Bug: webrtc:12799
Change-Id: I72341538bb0c4f8f89555b08f0c8a28815f0f828
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/219623
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34139}
The Retransmission Queue contain all message fragments (DATA chunks)
that have once been sent, but not yet ACKed by the receiver. It will
process incoming SACK chunks, which informs it which chunks that the
receiver has seen (ACKed) and which that are lost (NACKed), and will
retransmit chunks when it's time.
If a message has been sent with partial reliability, e.g. to have a
limited number of retransmissions or a limited lifetime, the
Retransmission Queue may discard a partially sent and expired message
and will instruct the receiver that "don't expect this message - it's
expired" by sending a FORWARD-TSN chunk.
This currently also includes the congestion control algorithm as it's
tightly coupled with the state of the retransmission queue. This is
a fairly complicated piece of logic which decides how much data that
can be in-flight, depending on the available bandwidth. This is not done
by any bandwidth estimation, but similar to TCP, where data is sent
until it's lost, and then "we dial down a knob" and take it more
carefully from here on.
Future refactoring will try to separate the logic regarding fragment
retransmission and the congestion control algorithm.
Bug: webrtc:12614
Change-Id: I8678250abb766e567c3450634686919936ea077b
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/214046
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33833}