/* * Copyright 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ package org.webrtc; import android.opengl.GLES11Ext; import android.opengl.GLES20; import java.nio.ByteBuffer; import java.nio.FloatBuffer; import org.webrtc.VideoFrame.I420Buffer; import org.webrtc.VideoFrame.TextureBuffer; /** * Class for converting OES textures to a YUV ByteBuffer. It should be constructed on a thread with * an active EGL context, and only be used from that thread. */ public class YuvConverter { // Vertex coordinates in Normalized Device Coordinates, i.e. // (-1, -1) is bottom-left and (1, 1) is top-right. private static final FloatBuffer DEVICE_RECTANGLE = GlUtil.createFloatBuffer(new float[] { -1.0f, -1.0f, // Bottom left. 1.0f, -1.0f, // Bottom right. -1.0f, 1.0f, // Top left. 1.0f, 1.0f, // Top right. }); // Texture coordinates - (0, 0) is bottom-left and (1, 1) is top-right. private static final FloatBuffer TEXTURE_RECTANGLE = GlUtil.createFloatBuffer(new float[] { 0.0f, 0.0f, // Bottom left. 1.0f, 0.0f, // Bottom right. 0.0f, 1.0f, // Top left. 1.0f, 1.0f // Top right. }); // clang-format off private static final String VERTEX_SHADER = "varying vec2 interp_tc;\n" + "attribute vec4 in_pos;\n" + "attribute vec4 in_tc;\n" + "\n" + "uniform mat4 texMatrix;\n" + "\n" + "void main() {\n" + " gl_Position = in_pos;\n" + " interp_tc = (texMatrix * in_tc).xy;\n" + "}\n"; private static final String OES_FRAGMENT_SHADER = "#extension GL_OES_EGL_image_external : require\n" + "precision mediump float;\n" + "varying vec2 interp_tc;\n" + "\n" + "uniform samplerExternalOES tex;\n" // Difference in texture coordinate corresponding to one // sub-pixel in the x direction. + "uniform vec2 xUnit;\n" // Color conversion coefficients, including constant term + "uniform vec4 coeffs;\n" + "\n" + "void main() {\n" // Since the alpha read from the texture is always 1, this could // be written as a mat4 x vec4 multiply. However, that seems to // give a worse framerate, possibly because the additional // multiplies by 1.0 consume resources. TODO(nisse): Could also // try to do it as a vec3 x mat3x4, followed by an add in of a // constant vector. + " gl_FragColor.r = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc - 1.5 * xUnit).rgb);\n" + " gl_FragColor.g = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc - 0.5 * xUnit).rgb);\n" + " gl_FragColor.b = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc + 0.5 * xUnit).rgb);\n" + " gl_FragColor.a = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc + 1.5 * xUnit).rgb);\n" + "}\n"; private static final String RGB_FRAGMENT_SHADER = "precision mediump float;\n" + "varying vec2 interp_tc;\n" + "\n" + "uniform sampler2D tex;\n" // Difference in texture coordinate corresponding to one // sub-pixel in the x direction. + "uniform vec2 xUnit;\n" // Color conversion coefficients, including constant term + "uniform vec4 coeffs;\n" + "\n" + "void main() {\n" // Since the alpha read from the texture is always 1, this could // be written as a mat4 x vec4 multiply. However, that seems to // give a worse framerate, possibly because the additional // multiplies by 1.0 consume resources. TODO(nisse): Could also // try to do it as a vec3 x mat3x4, followed by an add in of a // constant vector. + " gl_FragColor.r = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc - 1.5 * xUnit).rgb);\n" + " gl_FragColor.g = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc - 0.5 * xUnit).rgb);\n" + " gl_FragColor.b = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc + 0.5 * xUnit).rgb);\n" + " gl_FragColor.a = coeffs.a + dot(coeffs.rgb,\n" + " texture2D(tex, interp_tc + 1.5 * xUnit).rgb);\n" + "}\n"; // clang-format on private final ThreadUtils.ThreadChecker threadChecker = new ThreadUtils.ThreadChecker(); private final GlTextureFrameBuffer textureFrameBuffer; private TextureBuffer.Type shaderTextureType; private GlShader shader; private int texMatrixLoc; private int xUnitLoc; private int coeffsLoc; private boolean released = false; /** * This class should be constructed on a thread that has an active EGL context. */ public YuvConverter() { threadChecker.checkIsOnValidThread(); textureFrameBuffer = new GlTextureFrameBuffer(GLES20.GL_RGBA); } /** Converts the texture buffer to I420. */ public I420Buffer convert(TextureBuffer textureBuffer) { final int width = textureBuffer.getWidth(); final int height = textureBuffer.getHeight(); // SurfaceTextureHelper requires a stride that is divisible by 8. Round width up. // See SurfaceTextureHelper for details on the size and format. final int stride = ((width + 7) / 8) * 8; final int uvHeight = (height + 1) / 2; // Due to the layout used by SurfaceTextureHelper, vPos + stride * uvHeight would overrun the // buffer. Add one row at the bottom to compensate for this. There will never be data in the // extra row, but now other code does not have to deal with v stride * v height exceeding the // buffer's capacity. final int size = stride * (height + uvHeight + 1); ByteBuffer buffer = JniCommon.allocateNativeByteBuffer(size); convert(buffer, width, height, stride, textureBuffer.getTextureId(), RendererCommon.convertMatrixFromAndroidGraphicsMatrix(textureBuffer.getTransformMatrix()), textureBuffer.getType()); final int yPos = 0; final int uPos = yPos + stride * height; // Rows of U and V alternate in the buffer, so V data starts after the first row of U. final int vPos = uPos + stride / 2; buffer.position(yPos); buffer.limit(yPos + stride * height); ByteBuffer dataY = buffer.slice(); buffer.position(uPos); buffer.limit(uPos + stride * uvHeight); ByteBuffer dataU = buffer.slice(); buffer.position(vPos); buffer.limit(vPos + stride * uvHeight); ByteBuffer dataV = buffer.slice(); // SurfaceTextureHelper uses the same stride for Y, U, and V data. return JavaI420Buffer.wrap(width, height, dataY, stride, dataU, stride, dataV, stride, () -> { JniCommon.freeNativeByteBuffer(buffer); }); } /** Deprecated, use convert(TextureBuffer). */ @Deprecated void convert(ByteBuffer buf, int width, int height, int stride, int srcTextureId, float[] transformMatrix) { convert(buf, width, height, stride, srcTextureId, transformMatrix, TextureBuffer.Type.OES); } private void initShader(TextureBuffer.Type textureType) { if (shader != null) { shader.release(); } final String fragmentShader; switch (textureType) { case OES: fragmentShader = OES_FRAGMENT_SHADER; break; case RGB: fragmentShader = RGB_FRAGMENT_SHADER; break; default: throw new IllegalArgumentException("Unsupported texture type."); } shaderTextureType = textureType; shader = new GlShader(VERTEX_SHADER, fragmentShader); shader.useProgram(); texMatrixLoc = shader.getUniformLocation("texMatrix"); xUnitLoc = shader.getUniformLocation("xUnit"); coeffsLoc = shader.getUniformLocation("coeffs"); GLES20.glUniform1i(shader.getUniformLocation("tex"), 0); GlUtil.checkNoGLES2Error("Initialize fragment shader uniform values."); // Initialize vertex shader attributes. shader.setVertexAttribArray("in_pos", 2, DEVICE_RECTANGLE); // If the width is not a multiple of 4 pixels, the texture // will be scaled up slightly and clipped at the right border. shader.setVertexAttribArray("in_tc", 2, TEXTURE_RECTANGLE); } private void convert(ByteBuffer buf, int width, int height, int stride, int srcTextureId, float[] transformMatrix, TextureBuffer.Type textureType) { threadChecker.checkIsOnValidThread(); if (released) { throw new IllegalStateException("YuvConverter.convert called on released object"); } if (textureType != shaderTextureType) { initShader(textureType); } shader.useProgram(); // We draw into a buffer laid out like // // +---------+ // | | // | Y | // | | // | | // +----+----+ // | U | V | // | | | // +----+----+ // // In memory, we use the same stride for all of Y, U and V. The // U data starts at offset |height| * |stride| from the Y data, // and the V data starts at at offset |stride/2| from the U // data, with rows of U and V data alternating. // // Now, it would have made sense to allocate a pixel buffer with // a single byte per pixel (EGL10.EGL_COLOR_BUFFER_TYPE, // EGL10.EGL_LUMINANCE_BUFFER,), but that seems to be // unsupported by devices. So do the following hack: Allocate an // RGBA buffer, of width |stride|/4. To render each of these // large pixels, sample the texture at 4 different x coordinates // and store the results in the four components. // // Since the V data needs to start on a boundary of such a // larger pixel, it is not sufficient that |stride| is even, it // has to be a multiple of 8 pixels. if (stride % 8 != 0) { throw new IllegalArgumentException("Invalid stride, must be a multiple of 8"); } if (stride < width) { throw new IllegalArgumentException("Invalid stride, must >= width"); } int y_width = (width + 3) / 4; int uv_width = (width + 7) / 8; int uv_height = (height + 1) / 2; int total_height = height + uv_height; int size = stride * total_height; if (buf.capacity() < size) { throw new IllegalArgumentException("YuvConverter.convert called with too small buffer"); } // Produce a frame buffer starting at top-left corner, not // bottom-left. transformMatrix = RendererCommon.multiplyMatrices(transformMatrix, RendererCommon.verticalFlipMatrix()); final int frameBufferWidth = stride / 4; final int frameBufferHeight = total_height; textureFrameBuffer.setSize(frameBufferWidth, frameBufferHeight); // Bind our framebuffer. GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, textureFrameBuffer.getFrameBufferId()); GlUtil.checkNoGLES2Error("glBindFramebuffer"); GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(textureType.getGlTarget(), srcTextureId); GLES20.glUniformMatrix4fv(texMatrixLoc, 1, false, transformMatrix, 0); // Draw Y GLES20.glViewport(0, 0, y_width, height); // Matrix * (1;0;0;0) / width. Note that opengl uses column major order. GLES20.glUniform2f(xUnitLoc, transformMatrix[0] / width, transformMatrix[1] / width); // Y'UV444 to RGB888, see // https://en.wikipedia.org/wiki/YUV#Y.27UV444_to_RGB888_conversion. // We use the ITU-R coefficients for U and V */ GLES20.glUniform4f(coeffsLoc, 0.299f, 0.587f, 0.114f, 0.0f); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); // Draw U GLES20.glViewport(0, height, uv_width, uv_height); // Matrix * (1;0;0;0) / (width / 2). Note that opengl uses column major order. GLES20.glUniform2f( xUnitLoc, 2.0f * transformMatrix[0] / width, 2.0f * transformMatrix[1] / width); GLES20.glUniform4f(coeffsLoc, -0.169f, -0.331f, 0.499f, 0.5f); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); // Draw V GLES20.glViewport(stride / 8, height, uv_width, uv_height); GLES20.glUniform4f(coeffsLoc, 0.499f, -0.418f, -0.0813f, 0.5f); GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4); GLES20.glReadPixels( 0, 0, frameBufferWidth, frameBufferHeight, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, buf); GlUtil.checkNoGLES2Error("YuvConverter.convert"); // Restore normal framebuffer. GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); // Unbind texture. Reportedly needed on some devices to get // the texture updated from the camera. GLES20.glBindTexture(textureType.getGlTarget(), 0); } public void release() { threadChecker.checkIsOnValidThread(); released = true; if (shader != null) { shader.release(); } textureFrameBuffer.release(); } }