/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // // Unit tests for intelligibility utils. // #include #include #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/arraysize.h" #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h" using std::complex; using std::vector; namespace webrtc { namespace intelligibility { vector>> GenerateTestData(int freqs, int samples) { vector>> data(samples); for (int i = 0; i < samples; i++) { for (int j = 0; j < freqs; j++) { const float val = 0.99f / ((i + 1) * (j + 1)); data[i].push_back(complex(val, val)); } } return data; } // Tests UpdateFactor. TEST(IntelligibilityUtilsTest, TestUpdateFactor) { EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0)); EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3)); EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1)); EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3)); EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1)); } // Tests zerofudge. TEST(IntelligibilityUtilsTest, TestCplx) { complex t0(1.f, 0.f); t0 = intelligibility::zerofudge(t0); EXPECT_NE(t0.imag(), 0.f); EXPECT_NE(t0.real(), 0.f); } // Tests NewMean and AddToMean. TEST(IntelligibilityUtilsTest, TestMeanUpdate) { const complex data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}}; const complex means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}}; complex mean(3, 8); for (size_t i = 0; i < arraysize(data); i++) { EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1)); AddToMean(data[i], i + 1, &mean); EXPECT_EQ(means[i], mean); } } // Tests VarianceArray, for all variance step types. TEST(IntelligibilityUtilsTest, TestVarianceArray) { const int kFreqs = 10; const int kSamples = 100; const int kWindowSize = 10; // Should pass for all kWindowSize > 1. const float kDecay = 0.5f; vector step_types; step_types.push_back(VarianceArray::kStepInfinite); step_types.push_back(VarianceArray::kStepDecaying); step_types.push_back(VarianceArray::kStepWindowed); step_types.push_back(VarianceArray::kStepBlocked); step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage); const vector>> test_data( GenerateTestData(kFreqs, kSamples)); for (auto step_type : step_types) { VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay); EXPECT_EQ(0, variance_array.variance()[0]); EXPECT_EQ(0, variance_array.array_mean()); variance_array.ApplyScale(2.0f); EXPECT_EQ(0, variance_array.variance()[0]); EXPECT_EQ(0, variance_array.array_mean()); // Makes sure Step is doing something. variance_array.Step(&test_data[0][0]); for (int i = 1; i < kSamples; i++) { variance_array.Step(&test_data[i][0]); EXPECT_GE(variance_array.array_mean(), 0.0f); EXPECT_LE(variance_array.array_mean(), 1.0f); for (int j = 0; j < kFreqs; j++) { EXPECT_GE(variance_array.variance()[j], 0.0f); EXPECT_LE(variance_array.variance()[j], 1.0f); } } variance_array.Clear(); EXPECT_EQ(0, variance_array.variance()[0]); EXPECT_EQ(0, variance_array.array_mean()); } } // Tests exact computation on synthetic data. TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) { // Exact, not unbiased estimates. const float kTestVarianceBufferNotFull = 16.5f; const float kTestVarianceBufferFull1 = 66.5f; const float kTestVarianceBufferFull2 = 333.375f; const int kFreqs = 2; const int kSamples = 50; const int kWindowSize = 2; const float kDecay = 0.5f; const float kMaxError = 0.0001f; VarianceArray variance_array( kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay); vector>> test_data(kSamples); for (int i = 0; i < kSamples; i++) { for (int j = 0; j < kFreqs; j++) { if (i < 30) { test_data[i].push_back(complex(static_cast(kSamples - i), static_cast(i + 1))); } else { test_data[i].push_back(complex(0.f, 0.f)); } } } for (int i = 0; i < kSamples; i++) { variance_array.Step(&test_data[i][0]); for (int j = 0; j < kFreqs; j++) { if (i < 9) { // In utils, kWindowBlockSize = 10. EXPECT_EQ(0, variance_array.variance()[j]); } else if (i < 19) { EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j], kMaxError); } else if (i < 39) { EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j], kMaxError); } else if (i < 49) { EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j], kMaxError); } else { EXPECT_EQ(0, variance_array.variance()[j]); } } } } // Tests gain applier. TEST(IntelligibilityUtilsTest, TestGainApplier) { const int kFreqs = 10; const int kSamples = 100; const float kChangeLimit = 0.1f; GainApplier gain_applier(kFreqs, kChangeLimit); const vector>> in_data( GenerateTestData(kFreqs, kSamples)); vector>> out_data(GenerateTestData(kFreqs, kSamples)); for (int i = 0; i < kSamples; i++) { gain_applier.Apply(&in_data[i][0], &out_data[i][0]); for (int j = 0; j < kFreqs; j++) { EXPECT_GT(out_data[i][j].real(), 0.0f); EXPECT_LT(out_data[i][j].real(), 1.0f); EXPECT_GT(out_data[i][j].imag(), 0.0f); EXPECT_LT(out_data[i][j].imag(), 1.0f); } } } } // namespace intelligibility } // namespace webrtc