/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_stream_encoder.h" #include #include #include #include #include #include #include "absl/algorithm/container.h" #include "api/video/encoded_image.h" #include "api/video/i420_buffer.h" #include "api/video/video_bitrate_allocator_factory.h" #include "api/video/video_codec_constants.h" #include "api/video_codecs/video_encoder.h" #include "modules/video_coding/codecs/vp9/svc_rate_allocator.h" #include "modules/video_coding/include/video_codec_initializer.h" #include "modules/video_coding/utility/default_video_bitrate_allocator.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/alr_experiment.h" #include "rtc_base/experiments/quality_scaling_experiment.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/location.h" #include "rtc_base/logging.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/system/fallthrough.h" #include "rtc_base/time_utils.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { // Time interval for logging frame counts. const int64_t kFrameLogIntervalMs = 60000; const int kMinFramerateFps = 2; // Time to keep a single cached pending frame in paused state. const int64_t kPendingFrameTimeoutMs = 1000; const char kInitialFramedropFieldTrial[] = "WebRTC-InitialFramedrop"; constexpr char kFrameDropperFieldTrial[] = "WebRTC-FrameDropper"; // The maximum number of frames to drop at beginning of stream // to try and achieve desired bitrate. const int kMaxInitialFramedrop = 4; // When the first change in BWE above this threshold occurs, // enable DropFrameDueToSize logic. const float kFramedropThreshold = 0.3; // Averaging window spanning 90 frames at default 30fps, matching old media // optimization module defaults. const int64_t kFrameRateAvergingWindowSizeMs = (1000 / 30) * 90; const size_t kDefaultPayloadSize = 1440; const int64_t kParameterUpdateIntervalMs = 1000; uint32_t abs_diff(uint32_t a, uint32_t b) { return (a < b) ? b - a : a - b; } bool IsResolutionScalingEnabled(DegradationPreference degradation_preference) { return degradation_preference == DegradationPreference::MAINTAIN_FRAMERATE || degradation_preference == DegradationPreference::BALANCED; } bool IsFramerateScalingEnabled(DegradationPreference degradation_preference) { return degradation_preference == DegradationPreference::MAINTAIN_RESOLUTION || degradation_preference == DegradationPreference::BALANCED; } // TODO(pbos): Lower these thresholds (to closer to 100%) when we handle // pipelining encoders better (multiple input frames before something comes // out). This should effectively turn off CPU adaptations for systems that // remotely cope with the load right now. CpuOveruseOptions GetCpuOveruseOptions( const VideoStreamEncoderSettings& settings, bool full_overuse_time) { CpuOveruseOptions options; if (full_overuse_time) { options.low_encode_usage_threshold_percent = 150; options.high_encode_usage_threshold_percent = 200; } if (settings.experiment_cpu_load_estimator) { options.filter_time_ms = 5 * rtc::kNumMillisecsPerSec; } return options; } bool RequiresEncoderReset(const VideoCodec& prev_send_codec, const VideoCodec& new_send_codec, bool was_encode_called_since_last_initialization) { // Does not check max/minBitrate or maxFramerate. if (new_send_codec.codecType != prev_send_codec.codecType || new_send_codec.width != prev_send_codec.width || new_send_codec.height != prev_send_codec.height || new_send_codec.qpMax != prev_send_codec.qpMax || new_send_codec.numberOfSimulcastStreams != prev_send_codec.numberOfSimulcastStreams || new_send_codec.mode != prev_send_codec.mode) { return true; } if (!was_encode_called_since_last_initialization && (new_send_codec.startBitrate != prev_send_codec.startBitrate)) { // If start bitrate has changed reconfigure encoder only if encoding had not // yet started. return true; } switch (new_send_codec.codecType) { case kVideoCodecVP8: if (new_send_codec.VP8() != prev_send_codec.VP8()) { return true; } break; case kVideoCodecVP9: if (new_send_codec.VP9() != prev_send_codec.VP9()) { return true; } break; case kVideoCodecH264: if (new_send_codec.H264() != prev_send_codec.H264()) { return true; } break; default: break; } for (unsigned char i = 0; i < new_send_codec.numberOfSimulcastStreams; ++i) { if (new_send_codec.simulcastStream[i].width != prev_send_codec.simulcastStream[i].width || new_send_codec.simulcastStream[i].height != prev_send_codec.simulcastStream[i].height || new_send_codec.simulcastStream[i].numberOfTemporalLayers != prev_send_codec.simulcastStream[i].numberOfTemporalLayers || new_send_codec.simulcastStream[i].qpMax != prev_send_codec.simulcastStream[i].qpMax || new_send_codec.simulcastStream[i].active != prev_send_codec.simulcastStream[i].active) { return true; } } return false; } std::array GetExperimentGroups() { std::array experiment_groups; absl::optional experiment_settings = AlrExperimentSettings::CreateFromFieldTrial( AlrExperimentSettings::kStrictPacingAndProbingExperimentName); if (experiment_settings) { experiment_groups[0] = experiment_settings->group_id + 1; } else { experiment_groups[0] = 0; } experiment_settings = AlrExperimentSettings::CreateFromFieldTrial( AlrExperimentSettings::kScreenshareProbingBweExperimentName); if (experiment_settings) { experiment_groups[1] = experiment_settings->group_id + 1; } else { experiment_groups[1] = 0; } return experiment_groups; } // Limit allocation across TLs in bitrate allocation according to number of TLs // in EncoderInfo. VideoBitrateAllocation UpdateAllocationFromEncoderInfo( const VideoBitrateAllocation& allocation, const VideoEncoder::EncoderInfo& encoder_info) { if (allocation.get_sum_bps() == 0) { return allocation; } VideoBitrateAllocation new_allocation; for (int si = 0; si < kMaxSpatialLayers; ++si) { if (encoder_info.fps_allocation[si].size() == 1 && allocation.IsSpatialLayerUsed(si)) { // One TL is signalled to be used by the encoder. Do not distribute // bitrate allocation across TLs (use sum at ti:0). new_allocation.SetBitrate(si, 0, allocation.GetSpatialLayerSum(si)); } else { for (int ti = 0; ti < kMaxTemporalStreams; ++ti) { if (allocation.HasBitrate(si, ti)) new_allocation.SetBitrate(si, ti, allocation.GetBitrate(si, ti)); } } } return new_allocation; } } // namespace // VideoSourceProxy is responsible ensuring thread safety between calls to // VideoStreamEncoder::SetSource that will happen on libjingle's worker thread // when a video capturer is connected to the encoder and the encoder task queue // (encoder_queue_) where the encoder reports its VideoSinkWants. class VideoStreamEncoder::VideoSourceProxy { public: explicit VideoSourceProxy(VideoStreamEncoder* video_stream_encoder) : video_stream_encoder_(video_stream_encoder), degradation_preference_(DegradationPreference::DISABLED), source_(nullptr), max_framerate_(std::numeric_limits::max()) {} void SetSource(rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { // Called on libjingle's worker thread. RTC_DCHECK_RUN_ON(&main_checker_); rtc::VideoSourceInterface* old_source = nullptr; rtc::VideoSinkWants wants; { rtc::CritScope lock(&crit_); degradation_preference_ = degradation_preference; old_source = source_; source_ = source; wants = GetActiveSinkWantsInternal(); } if (old_source != source && old_source != nullptr) { old_source->RemoveSink(video_stream_encoder_); } if (!source) { return; } source->AddOrUpdateSink(video_stream_encoder_, wants); } void SetMaxFramerate(int max_framerate) { RTC_DCHECK_GT(max_framerate, 0); rtc::CritScope lock(&crit_); if (max_framerate == max_framerate_) return; RTC_LOG(LS_INFO) << "Set max framerate: " << max_framerate; max_framerate_ = max_framerate; if (source_) { source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); } } void SetWantsRotationApplied(bool rotation_applied) { rtc::CritScope lock(&crit_); sink_wants_.rotation_applied = rotation_applied; if (source_) { source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); } } rtc::VideoSinkWants GetActiveSinkWants() { rtc::CritScope lock(&crit_); return GetActiveSinkWantsInternal(); } void ResetPixelFpsCount() { rtc::CritScope lock(&crit_); sink_wants_.max_pixel_count = std::numeric_limits::max(); sink_wants_.target_pixel_count.reset(); sink_wants_.max_framerate_fps = std::numeric_limits::max(); if (source_) source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); } bool RequestResolutionLowerThan(int pixel_count, int min_pixels_per_frame, bool* min_pixels_reached) { // Called on the encoder task queue. rtc::CritScope lock(&crit_); if (!source_ || !IsResolutionScalingEnabled(degradation_preference_)) { // This can happen since |degradation_preference_| is set on libjingle's // worker thread but the adaptation is done on the encoder task queue. return false; } // The input video frame size will have a resolution less than or equal to // |max_pixel_count| depending on how the source can scale the frame size. const int pixels_wanted = (pixel_count * 3) / 5; if (pixels_wanted >= sink_wants_.max_pixel_count) { return false; } if (pixels_wanted < min_pixels_per_frame) { *min_pixels_reached = true; return false; } RTC_LOG(LS_INFO) << "Scaling down resolution, max pixels: " << pixels_wanted; sink_wants_.max_pixel_count = pixels_wanted; sink_wants_.target_pixel_count = absl::nullopt; source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); return true; } int RequestFramerateLowerThan(int fps) { // Called on the encoder task queue. // The input video frame rate will be scaled down to 2/3, rounding down. int framerate_wanted = (fps * 2) / 3; return RestrictFramerate(framerate_wanted) ? framerate_wanted : -1; } int GetHigherResolutionThan(int pixel_count) const { // On step down we request at most 3/5 the pixel count of the previous // resolution, so in order to take "one step up" we request a resolution // as close as possible to 5/3 of the current resolution. The actual pixel // count selected depends on the capabilities of the source. In order to // not take a too large step up, we cap the requested pixel count to be at // most four time the current number of pixels. return (pixel_count * 5) / 3; } bool RequestHigherResolutionThan(int pixel_count) { // Called on the encoder task queue. rtc::CritScope lock(&crit_); if (!source_ || !IsResolutionScalingEnabled(degradation_preference_)) { // This can happen since |degradation_preference_| is set on libjingle's // worker thread but the adaptation is done on the encoder task queue. return false; } int max_pixels_wanted = pixel_count; if (max_pixels_wanted != std::numeric_limits::max()) max_pixels_wanted = pixel_count * 4; if (max_pixels_wanted <= sink_wants_.max_pixel_count) return false; sink_wants_.max_pixel_count = max_pixels_wanted; if (max_pixels_wanted == std::numeric_limits::max()) { // Remove any constraints. sink_wants_.target_pixel_count.reset(); } else { sink_wants_.target_pixel_count = GetHigherResolutionThan(pixel_count); } RTC_LOG(LS_INFO) << "Scaling up resolution, max pixels: " << max_pixels_wanted; source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); return true; } // Request upgrade in framerate. Returns the new requested frame, or -1 if // no change requested. Note that maxint may be returned if limits due to // adaptation requests are removed completely. In that case, consider // |max_framerate_| to be the current limit (assuming the capturer complies). int RequestHigherFramerateThan(int fps) { // Called on the encoder task queue. // The input frame rate will be scaled up to the last step, with rounding. int framerate_wanted = fps; if (fps != std::numeric_limits::max()) framerate_wanted = (fps * 3) / 2; return IncreaseFramerate(framerate_wanted) ? framerate_wanted : -1; } bool RestrictFramerate(int fps) { // Called on the encoder task queue. rtc::CritScope lock(&crit_); if (!source_ || !IsFramerateScalingEnabled(degradation_preference_)) return false; const int fps_wanted = std::max(kMinFramerateFps, fps); if (fps_wanted >= sink_wants_.max_framerate_fps) return false; RTC_LOG(LS_INFO) << "Scaling down framerate: " << fps_wanted; sink_wants_.max_framerate_fps = fps_wanted; source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); return true; } bool IncreaseFramerate(int fps) { // Called on the encoder task queue. rtc::CritScope lock(&crit_); if (!source_ || !IsFramerateScalingEnabled(degradation_preference_)) return false; const int fps_wanted = std::max(kMinFramerateFps, fps); if (fps_wanted <= sink_wants_.max_framerate_fps) return false; RTC_LOG(LS_INFO) << "Scaling up framerate: " << fps_wanted; sink_wants_.max_framerate_fps = fps_wanted; source_->AddOrUpdateSink(video_stream_encoder_, GetActiveSinkWantsInternal()); return true; } private: rtc::VideoSinkWants GetActiveSinkWantsInternal() RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_) { rtc::VideoSinkWants wants = sink_wants_; // Clear any constraints from the current sink wants that don't apply to // the used degradation_preference. switch (degradation_preference_) { case DegradationPreference::BALANCED: break; case DegradationPreference::MAINTAIN_FRAMERATE: wants.max_framerate_fps = std::numeric_limits::max(); break; case DegradationPreference::MAINTAIN_RESOLUTION: wants.max_pixel_count = std::numeric_limits::max(); wants.target_pixel_count.reset(); break; case DegradationPreference::DISABLED: wants.max_pixel_count = std::numeric_limits::max(); wants.target_pixel_count.reset(); wants.max_framerate_fps = std::numeric_limits::max(); } // Limit to configured max framerate. wants.max_framerate_fps = std::min(max_framerate_, wants.max_framerate_fps); return wants; } rtc::CriticalSection crit_; SequenceChecker main_checker_; VideoStreamEncoder* const video_stream_encoder_; rtc::VideoSinkWants sink_wants_ RTC_GUARDED_BY(&crit_); DegradationPreference degradation_preference_ RTC_GUARDED_BY(&crit_); rtc::VideoSourceInterface* source_ RTC_GUARDED_BY(&crit_); int max_framerate_ RTC_GUARDED_BY(&crit_); RTC_DISALLOW_COPY_AND_ASSIGN(VideoSourceProxy); }; VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings() : rate_control(), encoder_target(DataRate::Zero()), stable_encoder_target(DataRate::Zero()) {} VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings( const VideoBitrateAllocation& bitrate, double framerate_fps, DataRate bandwidth_allocation, DataRate encoder_target, DataRate stable_encoder_target) : rate_control(bitrate, framerate_fps, bandwidth_allocation), encoder_target(encoder_target), stable_encoder_target(stable_encoder_target) {} bool VideoStreamEncoder::EncoderRateSettings::operator==( const EncoderRateSettings& rhs) const { return rate_control == rhs.rate_control && encoder_target == rhs.encoder_target && stable_encoder_target == rhs.stable_encoder_target; } bool VideoStreamEncoder::EncoderRateSettings::operator!=( const EncoderRateSettings& rhs) const { return !(*this == rhs); } VideoStreamEncoder::VideoStreamEncoder( Clock* clock, uint32_t number_of_cores, VideoStreamEncoderObserver* encoder_stats_observer, const VideoStreamEncoderSettings& settings, std::unique_ptr overuse_detector, TaskQueueFactory* task_queue_factory) : shutdown_event_(true /* manual_reset */, false), number_of_cores_(number_of_cores), initial_framedrop_(0), initial_framedrop_on_bwe_enabled_( webrtc::field_trial::IsEnabled(kInitialFramedropFieldTrial)), quality_rampup_done_(false), quality_rampup_experiment_(QualityRampupExperiment::ParseSettings()), quality_scaling_experiment_enabled_(QualityScalingExperiment::Enabled()), source_proxy_(new VideoSourceProxy(this)), sink_(nullptr), settings_(settings), rate_control_settings_(RateControlSettings::ParseFromFieldTrials()), quality_scaler_settings_(QualityScalerSettings::ParseFromFieldTrials()), overuse_detector_(std::move(overuse_detector)), encoder_stats_observer_(encoder_stats_observer), encoder_initialized_(false), max_framerate_(-1), pending_encoder_reconfiguration_(false), pending_encoder_creation_(false), crop_width_(0), crop_height_(0), encoder_start_bitrate_bps_(0), set_start_bitrate_bps_(0), set_start_bitrate_time_ms_(0), has_seen_first_bwe_drop_(false), max_data_payload_length_(0), encoder_paused_and_dropped_frame_(false), was_encode_called_since_last_initialization_(false), encoder_failed_(false), clock_(clock), degradation_preference_(DegradationPreference::DISABLED), posted_frames_waiting_for_encode_(0), last_captured_timestamp_(0), delta_ntp_internal_ms_(clock_->CurrentNtpInMilliseconds() - clock_->TimeInMilliseconds()), last_frame_log_ms_(clock_->TimeInMilliseconds()), captured_frame_count_(0), dropped_frame_count_(0), pending_frame_post_time_us_(0), accumulated_update_rect_{0, 0, 0, 0}, accumulated_update_rect_is_valid_(true), bitrate_observer_(nullptr), fec_controller_override_(nullptr), force_disable_frame_dropper_(false), input_framerate_(kFrameRateAvergingWindowSizeMs, 1000), pending_frame_drops_(0), next_frame_types_(1, VideoFrameType::kVideoFrameDelta), frame_encode_metadata_writer_(this), experiment_groups_(GetExperimentGroups()), next_frame_id_(0), encoder_switch_experiment_(ParseEncoderSwitchFieldTrial()), encoder_switch_requested_(false), encoder_queue_(task_queue_factory->CreateTaskQueue( "EncoderQueue", TaskQueueFactory::Priority::NORMAL)) { RTC_DCHECK(encoder_stats_observer); RTC_DCHECK(overuse_detector_); RTC_DCHECK_GE(number_of_cores, 1); for (auto& state : encoder_buffer_state_) state.fill(std::numeric_limits::max()); } VideoStreamEncoder::~VideoStreamEncoder() { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_DCHECK(shutdown_event_.Wait(0)) << "Must call ::Stop() before destruction."; } void VideoStreamEncoder::Stop() { RTC_DCHECK_RUN_ON(&thread_checker_); source_proxy_->SetSource(nullptr, DegradationPreference()); encoder_queue_.PostTask([this] { RTC_DCHECK_RUN_ON(&encoder_queue_); overuse_detector_->StopCheckForOveruse(); rate_allocator_ = nullptr; bitrate_observer_ = nullptr; ReleaseEncoder(); quality_scaler_ = nullptr; shutdown_event_.Set(); }); shutdown_event_.Wait(rtc::Event::kForever); } void VideoStreamEncoder::SetBitrateAllocationObserver( VideoBitrateAllocationObserver* bitrate_observer) { RTC_DCHECK_RUN_ON(&thread_checker_); encoder_queue_.PostTask([this, bitrate_observer] { RTC_DCHECK_RUN_ON(&encoder_queue_); RTC_DCHECK(!bitrate_observer_); bitrate_observer_ = bitrate_observer; }); } void VideoStreamEncoder::SetFecControllerOverride( FecControllerOverride* fec_controller_override) { encoder_queue_.PostTask([this, fec_controller_override] { RTC_DCHECK_RUN_ON(&encoder_queue_); RTC_DCHECK(!fec_controller_override_); fec_controller_override_ = fec_controller_override; if (encoder_) { encoder_->SetFecControllerOverride(fec_controller_override_); } }); } void VideoStreamEncoder::SetSource( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { RTC_DCHECK_RUN_ON(&thread_checker_); source_proxy_->SetSource(source, degradation_preference); encoder_queue_.PostTask([this, degradation_preference] { RTC_DCHECK_RUN_ON(&encoder_queue_); if (degradation_preference_ != degradation_preference) { // Reset adaptation state, so that we're not tricked into thinking there's // an already pending request of the same type. last_adaptation_request_.reset(); if (degradation_preference == DegradationPreference::BALANCED || degradation_preference_ == DegradationPreference::BALANCED) { // TODO(asapersson): Consider removing |adapt_counters_| map and use one // AdaptCounter for all modes. source_proxy_->ResetPixelFpsCount(); adapt_counters_.clear(); } } degradation_preference_ = degradation_preference; if (encoder_) ConfigureQualityScaler(encoder_->GetEncoderInfo()); if (!IsFramerateScalingEnabled(degradation_preference) && max_framerate_ != -1) { // If frame rate scaling is no longer allowed, remove any potential // allowance for longer frame intervals. overuse_detector_->OnTargetFramerateUpdated(max_framerate_); } }); } void VideoStreamEncoder::SetSink(EncoderSink* sink, bool rotation_applied) { source_proxy_->SetWantsRotationApplied(rotation_applied); encoder_queue_.PostTask([this, sink] { RTC_DCHECK_RUN_ON(&encoder_queue_); sink_ = sink; }); } void VideoStreamEncoder::SetStartBitrate(int start_bitrate_bps) { encoder_queue_.PostTask([this, start_bitrate_bps] { RTC_DCHECK_RUN_ON(&encoder_queue_); encoder_start_bitrate_bps_ = start_bitrate_bps; set_start_bitrate_bps_ = start_bitrate_bps; set_start_bitrate_time_ms_ = clock_->TimeInMilliseconds(); }); } void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config, size_t max_data_payload_length) { encoder_queue_.PostTask( [this, config = std::move(config), max_data_payload_length]() mutable { RTC_DCHECK_RUN_ON(&encoder_queue_); RTC_DCHECK(sink_); RTC_LOG(LS_INFO) << "ConfigureEncoder requested."; pending_encoder_creation_ = (!encoder_ || encoder_config_.video_format != config.video_format || max_data_payload_length_ != max_data_payload_length); encoder_config_ = std::move(config); max_data_payload_length_ = max_data_payload_length; pending_encoder_reconfiguration_ = true; // Reconfigure the encoder now if the encoder has an internal source or // if the frame resolution is known. Otherwise, the reconfiguration is // deferred until the next frame to minimize the number of // reconfigurations. The codec configuration depends on incoming video // frame size. if (last_frame_info_) { ReconfigureEncoder(); } else { codec_info_ = settings_.encoder_factory->QueryVideoEncoder( encoder_config_.video_format); if (HasInternalSource()) { last_frame_info_ = VideoFrameInfo(176, 144, false); ReconfigureEncoder(); } } }); } static absl::optional GetEncoderBitrateLimits(const VideoEncoder::EncoderInfo& encoder_info, int frame_size_pixels) { std::vector bitrate_limits = encoder_info.resolution_bitrate_limits; // Sort the list of bitrate limits by resolution. sort(bitrate_limits.begin(), bitrate_limits.end(), [](const VideoEncoder::ResolutionBitrateLimits& lhs, const VideoEncoder::ResolutionBitrateLimits& rhs) { return lhs.frame_size_pixels < rhs.frame_size_pixels; }); for (size_t i = 0; i < bitrate_limits.size(); ++i) { RTC_DCHECK_GT(bitrate_limits[i].min_bitrate_bps, 0); RTC_DCHECK_GT(bitrate_limits[i].min_start_bitrate_bps, 0); RTC_DCHECK_GE(bitrate_limits[i].max_bitrate_bps, bitrate_limits[i].min_bitrate_bps); if (i > 0) { // The bitrate limits aren't expected to decrease with resolution. RTC_DCHECK_GE(bitrate_limits[i].min_bitrate_bps, bitrate_limits[i - 1].min_bitrate_bps); RTC_DCHECK_GE(bitrate_limits[i].min_start_bitrate_bps, bitrate_limits[i - 1].min_start_bitrate_bps); RTC_DCHECK_GE(bitrate_limits[i].max_bitrate_bps, bitrate_limits[i - 1].max_bitrate_bps); } if (bitrate_limits[i].frame_size_pixels >= frame_size_pixels) { return absl::optional( bitrate_limits[i]); } } return absl::nullopt; } // TODO(bugs.webrtc.org/8807): Currently this always does a hard // reconfiguration, but this isn't always necessary. Add in logic to only update // the VideoBitrateAllocator and call OnEncoderConfigurationChanged with a // "soft" reconfiguration. void VideoStreamEncoder::ReconfigureEncoder() { RTC_DCHECK(pending_encoder_reconfiguration_); if (encoder_switch_experiment_.IsPixelCountBelowThreshold( last_frame_info_->width * last_frame_info_->height) && !encoder_switch_requested_ && settings_.encoder_switch_request_callback) { EncoderSwitchRequestCallback::Config conf; conf.codec_name = encoder_switch_experiment_.to_codec; conf.param = encoder_switch_experiment_.to_param; conf.value = encoder_switch_experiment_.to_value; settings_.encoder_switch_request_callback->RequestEncoderSwitch(conf); encoder_switch_requested_ = true; } std::vector streams = encoder_config_.video_stream_factory->CreateEncoderStreams( last_frame_info_->width, last_frame_info_->height, encoder_config_); // TODO(ilnik): If configured resolution is significantly less than provided, // e.g. because there are not enough SSRCs for all simulcast streams, // signal new resolutions via SinkWants to video source. // Stream dimensions may be not equal to given because of a simulcast // restrictions. auto highest_stream = absl::c_max_element( streams, [](const webrtc::VideoStream& a, const webrtc::VideoStream& b) { return std::tie(a.width, a.height) < std::tie(b.width, b.height); }); int highest_stream_width = static_cast(highest_stream->width); int highest_stream_height = static_cast(highest_stream->height); // Dimension may be reduced to be, e.g. divisible by 4. RTC_CHECK_GE(last_frame_info_->width, highest_stream_width); RTC_CHECK_GE(last_frame_info_->height, highest_stream_height); crop_width_ = last_frame_info_->width - highest_stream_width; crop_height_ = last_frame_info_->height - highest_stream_height; bool encoder_reset_required = false; if (pending_encoder_creation_) { // Destroy existing encoder instance before creating a new one. Otherwise // attempt to create another instance will fail if encoder factory // supports only single instance of encoder of given type. encoder_.reset(); encoder_ = settings_.encoder_factory->CreateVideoEncoder( encoder_config_.video_format); // TODO(nisse): What to do if creating the encoder fails? Crash, // or just discard incoming frames? RTC_CHECK(encoder_); encoder_->SetFecControllerOverride(fec_controller_override_); codec_info_ = settings_.encoder_factory->QueryVideoEncoder( encoder_config_.video_format); encoder_reset_required = true; } encoder_bitrate_limits_ = GetEncoderBitrateLimits( encoder_->GetEncoderInfo(), last_frame_info_->width * last_frame_info_->height); if (streams.size() == 1 && encoder_bitrate_limits_) { // Use bitrate limits recommended by encoder only if app didn't set any of // them. if (encoder_config_.max_bitrate_bps <= 0 && (encoder_config_.simulcast_layers.empty() || encoder_config_.simulcast_layers[0].min_bitrate_bps <= 0)) { streams.back().min_bitrate_bps = encoder_bitrate_limits_->min_bitrate_bps; streams.back().max_bitrate_bps = encoder_bitrate_limits_->max_bitrate_bps; streams.back().target_bitrate_bps = std::min(streams.back().target_bitrate_bps, encoder_bitrate_limits_->max_bitrate_bps); } } VideoCodec codec; if (!VideoCodecInitializer::SetupCodec(encoder_config_, streams, &codec)) { RTC_LOG(LS_ERROR) << "Failed to create encoder configuration."; } // Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9. if (encoder_config_.codec_type == kVideoCodecVP9) { // Lower max bitrate to the level codec actually can produce. streams[0].max_bitrate_bps = std::min(streams[0].max_bitrate_bps, SvcRateAllocator::GetMaxBitrate(codec).bps()); streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000; // target_bitrate_bps specifies the maximum padding bitrate. streams[0].target_bitrate_bps = SvcRateAllocator::GetPaddingBitrate(codec).bps(); } char log_stream_buf[4 * 1024]; rtc::SimpleStringBuilder log_stream(log_stream_buf); log_stream << "ReconfigureEncoder:\n"; log_stream << "Simulcast streams:\n"; for (size_t i = 0; i < codec.numberOfSimulcastStreams; ++i) { log_stream << i << ": " << codec.simulcastStream[i].width << "x" << codec.simulcastStream[i].height << " fps: " << codec.simulcastStream[i].maxFramerate << " min_bps: " << codec.simulcastStream[i].minBitrate << " target_bps: " << codec.simulcastStream[i].targetBitrate << " max_bps: " << codec.simulcastStream[i].maxBitrate << " max_qp: " << codec.simulcastStream[i].qpMax << " num_tl: " << codec.simulcastStream[i].numberOfTemporalLayers << " active: " << (codec.simulcastStream[i].active ? "true" : "false") << "\n"; } if (encoder_config_.codec_type == kVideoCodecVP9) { size_t num_spatial_layers = codec.VP9()->numberOfSpatialLayers; log_stream << "Spatial layers:\n"; for (size_t i = 0; i < num_spatial_layers; ++i) { log_stream << i << ": " << codec.spatialLayers[i].width << "x" << codec.spatialLayers[i].height << " fps: " << codec.spatialLayers[i].maxFramerate << " min_bps: " << codec.spatialLayers[i].minBitrate << " target_bps: " << codec.spatialLayers[i].targetBitrate << " max_bps: " << codec.spatialLayers[i].maxBitrate << " max_qp: " << codec.spatialLayers[i].qpMax << " num_tl: " << codec.spatialLayers[i].numberOfTemporalLayers << " active: " << (codec.spatialLayers[i].active ? "true" : "false") << "\n"; } } RTC_LOG(LS_INFO) << log_stream.str(); codec.startBitrate = std::max(encoder_start_bitrate_bps_ / 1000, codec.minBitrate); codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate); codec.expect_encode_from_texture = last_frame_info_->is_texture; // Make sure the start bit rate is sane... RTC_DCHECK_LE(codec.startBitrate, 1000000); max_framerate_ = codec.maxFramerate; // Inform source about max configured framerate. int max_framerate = 0; for (const auto& stream : streams) { max_framerate = std::max(stream.max_framerate, max_framerate); } source_proxy_->SetMaxFramerate(max_framerate); if (codec.maxBitrate == 0) { // max is one bit per pixel codec.maxBitrate = (static_cast(codec.height) * static_cast(codec.width) * static_cast(codec.maxFramerate)) / 1000; if (codec.startBitrate > codec.maxBitrate) { // But if the user tries to set a higher start bit rate we will // increase the max accordingly. codec.maxBitrate = codec.startBitrate; } } if (codec.startBitrate > codec.maxBitrate) { codec.startBitrate = codec.maxBitrate; } rate_allocator_ = settings_.bitrate_allocator_factory->CreateVideoBitrateAllocator(codec); // Reset (release existing encoder) if one exists and anything except // start bitrate or max framerate has changed. if (!encoder_reset_required) { encoder_reset_required = RequiresEncoderReset( codec, send_codec_, was_encode_called_since_last_initialization_); } send_codec_ = codec; encoder_switch_experiment_.SetCodec(send_codec_.codecType); quality_rampup_experiment_.SetMaxBitrate( last_frame_info_->width * last_frame_info_->height, codec.maxBitrate); // Keep the same encoder, as long as the video_format is unchanged. // Encoder creation block is split in two since EncoderInfo needed to start // CPU adaptation with the correct settings should be polled after // encoder_->InitEncode(). bool success = true; if (encoder_reset_required) { ReleaseEncoder(); const size_t max_data_payload_length = max_data_payload_length_ > 0 ? max_data_payload_length_ : kDefaultPayloadSize; if (encoder_->InitEncode( &send_codec_, VideoEncoder::Settings(settings_.capabilities, number_of_cores_, max_data_payload_length)) != 0) { RTC_LOG(LS_ERROR) << "Failed to initialize the encoder associated with " "codec type: " << CodecTypeToPayloadString(send_codec_.codecType) << " (" << send_codec_.codecType << ")"; ReleaseEncoder(); success = false; } else { encoder_initialized_ = true; encoder_->RegisterEncodeCompleteCallback(this); frame_encode_metadata_writer_.OnEncoderInit(send_codec_, HasInternalSource()); } frame_encode_metadata_writer_.Reset(); last_encode_info_ms_ = absl::nullopt; was_encode_called_since_last_initialization_ = false; } if (success) { next_frame_types_.clear(); next_frame_types_.resize( std::max(static_cast(codec.numberOfSimulcastStreams), 1), VideoFrameType::kVideoFrameKey); RTC_LOG(LS_VERBOSE) << " max bitrate " << codec.maxBitrate << " start bitrate " << codec.startBitrate << " max frame rate " << codec.maxFramerate << " max payload size " << max_data_payload_length_; } else { RTC_LOG(LS_ERROR) << "Failed to configure encoder."; rate_allocator_ = nullptr; } if (pending_encoder_creation_) { overuse_detector_->StopCheckForOveruse(); overuse_detector_->StartCheckForOveruse( &encoder_queue_, GetCpuOveruseOptions( settings_, encoder_->GetEncoderInfo().is_hardware_accelerated), this); pending_encoder_creation_ = false; } int num_layers; if (codec.codecType == kVideoCodecVP8) { num_layers = codec.VP8()->numberOfTemporalLayers; } else if (codec.codecType == kVideoCodecVP9) { num_layers = codec.VP9()->numberOfTemporalLayers; } else if (codec.codecType == kVideoCodecH264) { num_layers = codec.H264()->numberOfTemporalLayers; } else if (codec.codecType == kVideoCodecGeneric && codec.numberOfSimulcastStreams > 0) { // This is mainly for unit testing, disabling frame dropping. // TODO(sprang): Add a better way to disable frame dropping. num_layers = codec.simulcastStream[0].numberOfTemporalLayers; } else { num_layers = 1; } frame_dropper_.Reset(); frame_dropper_.SetRates(codec.startBitrate, max_framerate_); // Force-disable frame dropper if either: // * We have screensharing with layers. // * "WebRTC-FrameDropper" field trial is "Disabled". force_disable_frame_dropper_ = field_trial::IsDisabled(kFrameDropperFieldTrial) || (num_layers > 1 && codec.mode == VideoCodecMode::kScreensharing); VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo(); if (rate_control_settings_.UseEncoderBitrateAdjuster()) { bitrate_adjuster_ = std::make_unique(codec); bitrate_adjuster_->OnEncoderInfo(info); } if (rate_allocator_ && last_encoder_rate_settings_) { // We have a new rate allocator instance and already configured target // bitrate. Update the rate allocation and notify observers. // We must invalidate the last_encoder_rate_settings_ to ensure // the changes get propagated to all listeners. EncoderRateSettings rate_settings = *last_encoder_rate_settings_; last_encoder_rate_settings_.reset(); rate_settings.rate_control.framerate_fps = GetInputFramerateFps(); SetEncoderRates(UpdateBitrateAllocationAndNotifyObserver(rate_settings)); } encoder_stats_observer_->OnEncoderReconfigured(encoder_config_, streams); pending_encoder_reconfiguration_ = false; sink_->OnEncoderConfigurationChanged( std::move(streams), encoder_config_.content_type, encoder_config_.min_transmit_bitrate_bps); // Get the current target framerate, ie the maximum framerate as specified by // the current codec configuration, or any limit imposed by cpu adaption in // maintain-resolution or balanced mode. This is used to make sure overuse // detection doesn't needlessly trigger in low and/or variable framerate // scenarios. int target_framerate = std::min( max_framerate_, source_proxy_->GetActiveSinkWants().max_framerate_fps); overuse_detector_->OnTargetFramerateUpdated(target_framerate); ConfigureQualityScaler(info); } void VideoStreamEncoder::ConfigureQualityScaler( const VideoEncoder::EncoderInfo& encoder_info) { RTC_DCHECK_RUN_ON(&encoder_queue_); const auto scaling_settings = encoder_info.scaling_settings; const bool quality_scaling_allowed = IsResolutionScalingEnabled(degradation_preference_) && scaling_settings.thresholds; if (quality_scaling_allowed) { if (quality_scaler_ == nullptr) { // Quality scaler has not already been configured. // Use experimental thresholds if available. absl::optional experimental_thresholds; if (quality_scaling_experiment_enabled_) { experimental_thresholds = QualityScalingExperiment::GetQpThresholds( encoder_config_.codec_type); } // Since the interface is non-public, std::make_unique can't do this // upcast. AdaptationObserverInterface* observer = this; quality_scaler_ = std::make_unique( &encoder_queue_, observer, experimental_thresholds ? *experimental_thresholds : *(scaling_settings.thresholds)); has_seen_first_significant_bwe_change_ = false; initial_framedrop_ = 0; } } else { quality_scaler_.reset(nullptr); initial_framedrop_ = kMaxInitialFramedrop; } if (degradation_preference_ == DegradationPreference::BALANCED && quality_scaler_ && last_frame_info_) { absl::optional thresholds = balanced_settings_.GetQpThresholds(encoder_config_.codec_type, last_frame_info_->pixel_count()); if (thresholds) { quality_scaler_->SetQpThresholds(*thresholds); } } encoder_stats_observer_->OnAdaptationChanged( VideoStreamEncoderObserver::AdaptationReason::kNone, GetActiveCounts(kCpu), GetActiveCounts(kQuality)); } void VideoStreamEncoder::OnFrame(const VideoFrame& video_frame) { RTC_DCHECK_RUNS_SERIALIZED(&incoming_frame_race_checker_); VideoFrame incoming_frame = video_frame; // Local time in webrtc time base. int64_t current_time_us = clock_->TimeInMicroseconds(); int64_t current_time_ms = current_time_us / rtc::kNumMicrosecsPerMillisec; // In some cases, e.g., when the frame from decoder is fed to encoder, // the timestamp may be set to the future. As the encoding pipeline assumes // capture time to be less than present time, we should reset the capture // timestamps here. Otherwise there may be issues with RTP send stream. if (incoming_frame.timestamp_us() > current_time_us) incoming_frame.set_timestamp_us(current_time_us); // Capture time may come from clock with an offset and drift from clock_. int64_t capture_ntp_time_ms; if (video_frame.ntp_time_ms() > 0) { capture_ntp_time_ms = video_frame.ntp_time_ms(); } else if (video_frame.render_time_ms() != 0) { capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_; } else { capture_ntp_time_ms = current_time_ms + delta_ntp_internal_ms_; } incoming_frame.set_ntp_time_ms(capture_ntp_time_ms); // Convert NTP time, in ms, to RTP timestamp. const int kMsToRtpTimestamp = 90; incoming_frame.set_timestamp( kMsToRtpTimestamp * static_cast(incoming_frame.ntp_time_ms())); if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) { // We don't allow the same capture time for two frames, drop this one. RTC_LOG(LS_WARNING) << "Same/old NTP timestamp (" << incoming_frame.ntp_time_ms() << " <= " << last_captured_timestamp_ << ") for incoming frame. Dropping."; encoder_queue_.PostTask([this, incoming_frame]() { RTC_DCHECK_RUN_ON(&encoder_queue_); accumulated_update_rect_.Union(incoming_frame.update_rect()); accumulated_update_rect_is_valid_ &= incoming_frame.has_update_rect(); }); return; } bool log_stats = false; if (current_time_ms - last_frame_log_ms_ > kFrameLogIntervalMs) { last_frame_log_ms_ = current_time_ms; log_stats = true; } last_captured_timestamp_ = incoming_frame.ntp_time_ms(); int64_t post_time_us = rtc::TimeMicros(); ++posted_frames_waiting_for_encode_; encoder_queue_.PostTask( [this, incoming_frame, post_time_us, log_stats]() { RTC_DCHECK_RUN_ON(&encoder_queue_); encoder_stats_observer_->OnIncomingFrame(incoming_frame.width(), incoming_frame.height()); ++captured_frame_count_; const int posted_frames_waiting_for_encode = posted_frames_waiting_for_encode_.fetch_sub(1); RTC_DCHECK_GT(posted_frames_waiting_for_encode, 0); if (posted_frames_waiting_for_encode == 1) { MaybeEncodeVideoFrame(incoming_frame, post_time_us); } else { // There is a newer frame in flight. Do not encode this frame. RTC_LOG(LS_VERBOSE) << "Incoming frame dropped due to that the encoder is blocked."; ++dropped_frame_count_; encoder_stats_observer_->OnFrameDropped( VideoStreamEncoderObserver::DropReason::kEncoderQueue); accumulated_update_rect_.Union(incoming_frame.update_rect()); accumulated_update_rect_is_valid_ &= incoming_frame.has_update_rect(); } if (log_stats) { RTC_LOG(LS_INFO) << "Number of frames: captured " << captured_frame_count_ << ", dropped (due to encoder blocked) " << dropped_frame_count_ << ", interval_ms " << kFrameLogIntervalMs; captured_frame_count_ = 0; dropped_frame_count_ = 0; } }); } void VideoStreamEncoder::OnDiscardedFrame() { encoder_stats_observer_->OnFrameDropped( VideoStreamEncoderObserver::DropReason::kSource); } bool VideoStreamEncoder::EncoderPaused() const { RTC_DCHECK_RUN_ON(&encoder_queue_); // Pause video if paused by caller or as long as the network is down or the // pacer queue has grown too large in buffered mode. // If the pacer queue has grown too large or the network is down, // |last_encoder_rate_settings_->encoder_target| will be 0. return !last_encoder_rate_settings_ || last_encoder_rate_settings_->encoder_target == DataRate::Zero(); } void VideoStreamEncoder::TraceFrameDropStart() { RTC_DCHECK_RUN_ON(&encoder_queue_); // Start trace event only on the first frame after encoder is paused. if (!encoder_paused_and_dropped_frame_) { TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this); } encoder_paused_and_dropped_frame_ = true; } void VideoStreamEncoder::TraceFrameDropEnd() { RTC_DCHECK_RUN_ON(&encoder_queue_); // End trace event on first frame after encoder resumes, if frame was dropped. if (encoder_paused_and_dropped_frame_) { TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this); } encoder_paused_and_dropped_frame_ = false; } VideoStreamEncoder::EncoderRateSettings VideoStreamEncoder::UpdateBitrateAllocationAndNotifyObserver( const EncoderRateSettings& rate_settings) { VideoBitrateAllocation new_allocation; // Only call allocators if bitrate > 0 (ie, not suspended), otherwise they // might cap the bitrate to the min bitrate configured. if (rate_allocator_ && rate_settings.encoder_target > DataRate::Zero()) { new_allocation = rate_allocator_->Allocate(VideoBitrateAllocationParameters( rate_settings.encoder_target, rate_settings.stable_encoder_target, rate_settings.rate_control.framerate_fps)); } if (bitrate_observer_ && new_allocation.get_sum_bps() > 0) { if (encoder_ && encoder_initialized_) { // Avoid too old encoder_info_. const int64_t kMaxDiffMs = 100; const bool updated_recently = (last_encode_info_ms_ && ((clock_->TimeInMilliseconds() - *last_encode_info_ms_) < kMaxDiffMs)); // Update allocation according to info from encoder. bitrate_observer_->OnBitrateAllocationUpdated( UpdateAllocationFromEncoderInfo( new_allocation, updated_recently ? encoder_info_ : encoder_->GetEncoderInfo())); } else { bitrate_observer_->OnBitrateAllocationUpdated(new_allocation); } } EncoderRateSettings new_rate_settings = rate_settings; new_rate_settings.rate_control.bitrate = new_allocation; // VideoBitrateAllocator subclasses may allocate a bitrate higher than the // target in order to sustain the min bitrate of the video codec. In this // case, make sure the bandwidth allocation is at least equal the allocation // as that is part of the document contract for that field. new_rate_settings.rate_control.bandwidth_allocation = std::max( new_rate_settings.rate_control.bandwidth_allocation, DataRate::bps(new_rate_settings.rate_control.bitrate.get_sum_bps())); if (bitrate_adjuster_) { VideoBitrateAllocation adjusted_allocation = bitrate_adjuster_->AdjustRateAllocation(new_rate_settings.rate_control); RTC_LOG(LS_VERBOSE) << "Adjusting allocation, fps = " << rate_settings.rate_control.framerate_fps << ", from " << new_allocation.ToString() << ", to " << adjusted_allocation.ToString(); new_rate_settings.rate_control.bitrate = adjusted_allocation; } encoder_stats_observer_->OnBitrateAllocationUpdated( send_codec_, new_rate_settings.rate_control.bitrate); return new_rate_settings; } uint32_t VideoStreamEncoder::GetInputFramerateFps() { const uint32_t default_fps = max_framerate_ != -1 ? max_framerate_ : 30; absl::optional input_fps = input_framerate_.Rate(clock_->TimeInMilliseconds()); if (!input_fps || *input_fps == 0) { return default_fps; } return *input_fps; } void VideoStreamEncoder::SetEncoderRates( const EncoderRateSettings& rate_settings) { RTC_DCHECK_GT(rate_settings.rate_control.framerate_fps, 0.0); bool rate_control_changed = (!last_encoder_rate_settings_.has_value() || last_encoder_rate_settings_->rate_control != rate_settings.rate_control); if (last_encoder_rate_settings_ != rate_settings) { last_encoder_rate_settings_ = rate_settings; } if (!encoder_) { return; } // |bitrate_allocation| is 0 it means that the network is down or the send // pacer is full. We currently only report this if the encoder has an internal // source. If the encoder does not have an internal source, higher levels // are expected to not call AddVideoFrame. We do this since its unclear // how current encoder implementations behave when given a zero target // bitrate. // TODO(perkj): Make sure all known encoder implementations handle zero // target bitrate and remove this check. if (!HasInternalSource() && rate_settings.rate_control.bitrate.get_sum_bps() == 0) { return; } if (rate_control_changed) { encoder_->SetRates(rate_settings.rate_control); frame_encode_metadata_writer_.OnSetRates( rate_settings.rate_control.bitrate, static_cast(rate_settings.rate_control.framerate_fps + 0.5)); } } void VideoStreamEncoder::MaybeEncodeVideoFrame(const VideoFrame& video_frame, int64_t time_when_posted_us) { RTC_DCHECK_RUN_ON(&encoder_queue_); if (!last_frame_info_ || video_frame.width() != last_frame_info_->width || video_frame.height() != last_frame_info_->height || video_frame.is_texture() != last_frame_info_->is_texture) { pending_encoder_reconfiguration_ = true; last_frame_info_ = VideoFrameInfo(video_frame.width(), video_frame.height(), video_frame.is_texture()); RTC_LOG(LS_INFO) << "Video frame parameters changed: dimensions=" << last_frame_info_->width << "x" << last_frame_info_->height << ", texture=" << last_frame_info_->is_texture << "."; // Force full frame update, since resolution has changed. accumulated_update_rect_ = VideoFrame::UpdateRect{0, 0, video_frame.width(), video_frame.height()}; } // We have to create then encoder before the frame drop logic, // because the latter depends on encoder_->GetScalingSettings. // According to the testcase // InitialFrameDropOffWhenEncoderDisabledScaling, the return value // from GetScalingSettings should enable or disable the frame drop. // Update input frame rate before we start using it. If we update it after // any potential frame drop we are going to artificially increase frame sizes. // Poll the rate before updating, otherwise we risk the rate being estimated // a little too high at the start of the call when then window is small. uint32_t framerate_fps = GetInputFramerateFps(); input_framerate_.Update(1u, clock_->TimeInMilliseconds()); int64_t now_ms = clock_->TimeInMilliseconds(); if (pending_encoder_reconfiguration_) { ReconfigureEncoder(); last_parameters_update_ms_.emplace(now_ms); } else if (!last_parameters_update_ms_ || now_ms - *last_parameters_update_ms_ >= kParameterUpdateIntervalMs) { if (last_encoder_rate_settings_) { // Clone rate settings before update, so that SetEncoderRates() will // actually detect the change between the input and // |last_encoder_rate_setings_|, triggering the call to SetRate() on the // encoder. EncoderRateSettings new_rate_settings = *last_encoder_rate_settings_; new_rate_settings.rate_control.framerate_fps = static_cast(framerate_fps); SetEncoderRates( UpdateBitrateAllocationAndNotifyObserver(new_rate_settings)); } last_parameters_update_ms_.emplace(now_ms); } // Because pending frame will be dropped in any case, we need to // remember its updated region. if (pending_frame_) { encoder_stats_observer_->OnFrameDropped( VideoStreamEncoderObserver::DropReason::kEncoderQueue); accumulated_update_rect_.Union(pending_frame_->update_rect()); accumulated_update_rect_is_valid_ &= pending_frame_->has_update_rect(); } if (DropDueToSize(video_frame.size())) { RTC_LOG(LS_INFO) << "Dropping frame. Too large for target bitrate."; int fps_count = GetConstAdaptCounter().FramerateCount(kQuality); int res_count = GetConstAdaptCounter().ResolutionCount(kQuality); AdaptDown(kQuality); if (degradation_preference_ == DegradationPreference::BALANCED && GetConstAdaptCounter().FramerateCount(kQuality) > fps_count) { // Adapt framerate in same step as resolution. AdaptDown(kQuality); } if (GetConstAdaptCounter().ResolutionCount(kQuality) > res_count) { encoder_stats_observer_->OnInitialQualityResolutionAdaptDown(); } ++initial_framedrop_; // Storing references to a native buffer risks blocking frame capture. if (video_frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative) { pending_frame_ = video_frame; pending_frame_post_time_us_ = time_when_posted_us; } else { // Ensure that any previously stored frame is dropped. pending_frame_.reset(); accumulated_update_rect_.Union(video_frame.update_rect()); accumulated_update_rect_is_valid_ &= video_frame.has_update_rect(); } return; } initial_framedrop_ = kMaxInitialFramedrop; if (!quality_rampup_done_ && TryQualityRampup(now_ms) && GetConstAdaptCounter().ResolutionCount(kQuality) > 0 && GetConstAdaptCounter().TotalCount(kCpu) == 0) { RTC_LOG(LS_INFO) << "Reset quality limitations."; last_adaptation_request_.reset(); source_proxy_->ResetPixelFpsCount(); adapt_counters_.clear(); quality_rampup_done_ = true; } if (EncoderPaused()) { // Storing references to a native buffer risks blocking frame capture. if (video_frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative) { if (pending_frame_) TraceFrameDropStart(); pending_frame_ = video_frame; pending_frame_post_time_us_ = time_when_posted_us; } else { // Ensure that any previously stored frame is dropped. pending_frame_.reset(); TraceFrameDropStart(); accumulated_update_rect_.Union(video_frame.update_rect()); accumulated_update_rect_is_valid_ &= video_frame.has_update_rect(); } return; } pending_frame_.reset(); frame_dropper_.Leak(framerate_fps); // Frame dropping is enabled iff frame dropping is not force-disabled, and // rate controller is not trusted. const bool frame_dropping_enabled = !force_disable_frame_dropper_ && !encoder_info_.has_trusted_rate_controller; frame_dropper_.Enable(frame_dropping_enabled); if (frame_dropping_enabled && frame_dropper_.DropFrame()) { RTC_LOG(LS_VERBOSE) << "Drop Frame: " << "target bitrate " << (last_encoder_rate_settings_ ? last_encoder_rate_settings_->encoder_target.bps() : 0) << ", input frame rate " << framerate_fps; OnDroppedFrame( EncodedImageCallback::DropReason::kDroppedByMediaOptimizations); accumulated_update_rect_.Union(video_frame.update_rect()); accumulated_update_rect_is_valid_ &= video_frame.has_update_rect(); return; } EncodeVideoFrame(video_frame, time_when_posted_us); } void VideoStreamEncoder::EncodeVideoFrame(const VideoFrame& video_frame, int64_t time_when_posted_us) { RTC_DCHECK_RUN_ON(&encoder_queue_); // If the encoder fail we can't continue to encode frames. When this happens // the WebrtcVideoSender is notified and the whole VideoSendStream is // recreated. if (encoder_failed_) return; TraceFrameDropEnd(); // Encoder metadata needs to be updated before encode complete callback. VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo(); if (info.implementation_name != encoder_info_.implementation_name) { encoder_stats_observer_->OnEncoderImplementationChanged( info.implementation_name); if (bitrate_adjuster_) { // Encoder implementation changed, reset overshoot detector states. bitrate_adjuster_->Reset(); } } if (encoder_info_ != info) { RTC_LOG(LS_INFO) << "Encoder settings changed from " << encoder_info_.ToString() << " to " << info.ToString(); } if (bitrate_adjuster_) { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { if (info.fps_allocation[si] != encoder_info_.fps_allocation[si]) { bitrate_adjuster_->OnEncoderInfo(info); break; } } } encoder_info_ = info; last_encode_info_ms_ = clock_->TimeInMilliseconds(); VideoFrame out_frame(video_frame); const VideoFrameBuffer::Type buffer_type = out_frame.video_frame_buffer()->type(); const bool is_buffer_type_supported = buffer_type == VideoFrameBuffer::Type::kI420 || (buffer_type == VideoFrameBuffer::Type::kNative && info.supports_native_handle); if (!is_buffer_type_supported) { // This module only supports software encoding. rtc::scoped_refptr converted_buffer( out_frame.video_frame_buffer()->ToI420()); if (!converted_buffer) { RTC_LOG(LS_ERROR) << "Frame conversion failed, dropping frame."; return; } VideoFrame::UpdateRect update_rect = out_frame.update_rect(); if (!update_rect.IsEmpty() && out_frame.video_frame_buffer()->GetI420() == nullptr) { // UpdatedRect is reset to full update if it's not empty, and buffer was // converted, therefore we can't guarantee that pixels outside of // UpdateRect didn't change comparing to the previous frame. update_rect = VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}; } out_frame.set_video_frame_buffer(converted_buffer); out_frame.set_update_rect(update_rect); } // Crop frame if needed. if ((crop_width_ > 0 || crop_height_ > 0) && out_frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative) { // If the frame can't be converted to I420, drop it. auto i420_buffer = video_frame.video_frame_buffer()->ToI420(); if (!i420_buffer) { RTC_LOG(LS_ERROR) << "Frame conversion for crop failed, dropping frame."; return; } int cropped_width = video_frame.width() - crop_width_; int cropped_height = video_frame.height() - crop_height_; rtc::scoped_refptr cropped_buffer = I420Buffer::Create(cropped_width, cropped_height); // TODO(ilnik): Remove scaling if cropping is too big, as it should never // happen after SinkWants signaled correctly from ReconfigureEncoder. VideoFrame::UpdateRect update_rect = video_frame.update_rect(); if (crop_width_ < 4 && crop_height_ < 4) { cropped_buffer->CropAndScaleFrom(*i420_buffer, crop_width_ / 2, crop_height_ / 2, cropped_width, cropped_height); update_rect.offset_x -= crop_width_ / 2; update_rect.offset_y -= crop_height_ / 2; update_rect.Intersect( VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height}); } else { cropped_buffer->ScaleFrom(*i420_buffer); if (!update_rect.IsEmpty()) { // Since we can't reason about pixels after scaling, we invalidate whole // picture, if anything changed. update_rect = VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height}; } } out_frame.set_video_frame_buffer(cropped_buffer); out_frame.set_update_rect(update_rect); out_frame.set_ntp_time_ms(video_frame.ntp_time_ms()); // Since accumulated_update_rect_ is constructed before cropping, // we can't trust it. If any changes were pending, we invalidate whole // frame here. if (!accumulated_update_rect_.IsEmpty()) { accumulated_update_rect_ = VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}; accumulated_update_rect_is_valid_ = false; } } if (!accumulated_update_rect_is_valid_) { out_frame.clear_update_rect(); } else if (!accumulated_update_rect_.IsEmpty() && out_frame.has_update_rect()) { accumulated_update_rect_.Union(out_frame.update_rect()); accumulated_update_rect_.Intersect( VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}); out_frame.set_update_rect(accumulated_update_rect_); accumulated_update_rect_.MakeEmptyUpdate(); } accumulated_update_rect_is_valid_ = true; TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame.render_time_ms(), "Encode"); overuse_detector_->FrameCaptured(out_frame, time_when_posted_us); RTC_DCHECK_LE(send_codec_.width, out_frame.width()); RTC_DCHECK_LE(send_codec_.height, out_frame.height()); // Native frames should be scaled by the client. // For internal encoders we scale everything in one place here. RTC_DCHECK((out_frame.video_frame_buffer()->type() == VideoFrameBuffer::Type::kNative) || (send_codec_.width == out_frame.width() && send_codec_.height == out_frame.height())); TRACE_EVENT1("webrtc", "VCMGenericEncoder::Encode", "timestamp", out_frame.timestamp()); frame_encode_metadata_writer_.OnEncodeStarted(out_frame); const int32_t encode_status = encoder_->Encode(out_frame, &next_frame_types_); was_encode_called_since_last_initialization_ = true; if (encode_status < 0) { if (encode_status == WEBRTC_VIDEO_CODEC_ENCODER_FAILURE) { RTC_LOG(LS_ERROR) << "Encoder failed, failing encoder format: " << encoder_config_.video_format.ToString(); if (settings_.encoder_switch_request_callback) { encoder_failed_ = true; settings_.encoder_switch_request_callback->RequestEncoderFallback(); } else { RTC_LOG(LS_ERROR) << "Encoder failed but no encoder fallback callback is registered"; } } else { RTC_LOG(LS_ERROR) << "Failed to encode frame. Error code: " << encode_status; } return; } for (auto& it : next_frame_types_) { it = VideoFrameType::kVideoFrameDelta; } } void VideoStreamEncoder::SendKeyFrame() { if (!encoder_queue_.IsCurrent()) { encoder_queue_.PostTask([this] { SendKeyFrame(); }); return; } RTC_DCHECK_RUN_ON(&encoder_queue_); TRACE_EVENT0("webrtc", "OnKeyFrameRequest"); RTC_DCHECK(!next_frame_types_.empty()); // TODO(webrtc:10615): Map keyframe request to spatial layer. std::fill(next_frame_types_.begin(), next_frame_types_.end(), VideoFrameType::kVideoFrameKey); if (HasInternalSource()) { // Try to request the frame if we have an external encoder with // internal source since AddVideoFrame never will be called. // TODO(nisse): Used only with internal source. Delete as soon as // that feature is removed. The only implementation I've been able // to find ignores what's in the frame. With one exception: It seems // a few test cases, e.g., // VideoSendStreamTest.VideoSendStreamStopSetEncoderRateToZero, set // internal_source to true and use FakeEncoder. And the latter will // happily encode this 1x1 frame and pass it on down the pipeline. if (encoder_->Encode(VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Create(1, 1)) .set_rotation(kVideoRotation_0) .set_timestamp_us(0) .build(), &next_frame_types_) == WEBRTC_VIDEO_CODEC_OK) { // Try to remove just-performed keyframe request, if stream still exists. std::fill(next_frame_types_.begin(), next_frame_types_.end(), VideoFrameType::kVideoFrameDelta); } } } void VideoStreamEncoder::OnLossNotification( const VideoEncoder::LossNotification& loss_notification) { if (!encoder_queue_.IsCurrent()) { encoder_queue_.PostTask( [this, loss_notification] { OnLossNotification(loss_notification); }); return; } RTC_DCHECK_RUN_ON(&encoder_queue_); if (encoder_) { encoder_->OnLossNotification(loss_notification); } } EncodedImageCallback::Result VideoStreamEncoder::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) { TRACE_EVENT_INSTANT1("webrtc", "VCMEncodedFrameCallback::Encoded", "timestamp", encoded_image.Timestamp()); const size_t spatial_idx = encoded_image.SpatialIndex().value_or(0); EncodedImage image_copy(encoded_image); frame_encode_metadata_writer_.FillTimingInfo(spatial_idx, &image_copy); std::unique_ptr fragmentation_copy = frame_encode_metadata_writer_.UpdateBitstream(codec_specific_info, fragmentation, &image_copy); // Piggyback ALR experiment group id and simulcast id into the content type. const uint8_t experiment_id = experiment_groups_[videocontenttypehelpers::IsScreenshare( image_copy.content_type_)]; // TODO(ilnik): This will force content type extension to be present even // for realtime video. At the expense of miniscule overhead we will get // sliced receive statistics. RTC_CHECK(videocontenttypehelpers::SetExperimentId(&image_copy.content_type_, experiment_id)); // We count simulcast streams from 1 on the wire. That's why we set simulcast // id in content type to +1 of that is actual simulcast index. This is because // value 0 on the wire is reserved for 'no simulcast stream specified'. RTC_CHECK(videocontenttypehelpers::SetSimulcastId( &image_copy.content_type_, static_cast(spatial_idx + 1))); // Encoded is called on whatever thread the real encoder implementation run // on. In the case of hardware encoders, there might be several encoders // running in parallel on different threads. encoder_stats_observer_->OnSendEncodedImage(image_copy, codec_specific_info); // The simulcast id is signaled in the SpatialIndex. This makes it impossible // to do simulcast for codecs that actually support spatial layers since we // can't distinguish between an actual spatial layer and a simulcast stream. // TODO(bugs.webrtc.org/10520): Signal the simulcast id explicitly. int simulcast_id = 0; if (codec_specific_info && (codec_specific_info->codecType == kVideoCodecVP8 || codec_specific_info->codecType == kVideoCodecH264 || codec_specific_info->codecType == kVideoCodecGeneric)) { simulcast_id = encoded_image.SpatialIndex().value_or(0); } std::unique_ptr codec_info_copy; { rtc::CritScope cs(&encoded_image_lock_); if (codec_specific_info && codec_specific_info->generic_frame_info) { codec_info_copy = std::make_unique(*codec_specific_info); GenericFrameInfo& generic_info = *codec_info_copy->generic_frame_info; generic_info.frame_id = next_frame_id_++; if (encoder_buffer_state_.size() <= static_cast(simulcast_id)) { RTC_LOG(LS_ERROR) << "At most " << encoder_buffer_state_.size() << " simulcast streams supported."; } else { std::array& state = encoder_buffer_state_[simulcast_id]; for (const CodecBufferUsage& buffer : generic_info.encoder_buffers) { if (state.size() <= static_cast(buffer.id)) { RTC_LOG(LS_ERROR) << "At most " << state.size() << " encoder buffers supported."; break; } if (buffer.referenced) { int64_t diff = generic_info.frame_id - state[buffer.id]; if (diff <= 0) { RTC_LOG(LS_ERROR) << "Invalid frame diff: " << diff << "."; } else if (absl::c_find(generic_info.frame_diffs, diff) == generic_info.frame_diffs.end()) { generic_info.frame_diffs.push_back(diff); } } if (buffer.updated) state[buffer.id] = generic_info.frame_id; } } } } EncodedImageCallback::Result result = sink_->OnEncodedImage( image_copy, codec_info_copy ? codec_info_copy.get() : codec_specific_info, fragmentation_copy ? fragmentation_copy.get() : fragmentation); // We are only interested in propagating the meta-data about the image, not // encoded data itself, to the post encode function. Since we cannot be sure // the pointer will still be valid when run on the task queue, set it to null. DataSize frame_size = DataSize::bytes(image_copy.size()); image_copy.ClearEncodedData(); int temporal_index = 0; if (codec_specific_info) { if (codec_specific_info->codecType == kVideoCodecVP9) { temporal_index = codec_specific_info->codecSpecific.VP9.temporal_idx; } else if (codec_specific_info->codecType == kVideoCodecVP8) { temporal_index = codec_specific_info->codecSpecific.VP8.temporalIdx; } } if (temporal_index == kNoTemporalIdx) { temporal_index = 0; } RunPostEncode(image_copy, rtc::TimeMicros(), temporal_index, frame_size); if (result.error == Result::OK) { // In case of an internal encoder running on a separate thread, the // decision to drop a frame might be a frame late and signaled via // atomic flag. This is because we can't easily wait for the worker thread // without risking deadlocks, eg during shutdown when the worker thread // might be waiting for the internal encoder threads to stop. if (pending_frame_drops_.load() > 0) { int pending_drops = pending_frame_drops_.fetch_sub(1); RTC_DCHECK_GT(pending_drops, 0); result.drop_next_frame = true; } } return result; } void VideoStreamEncoder::OnDroppedFrame(DropReason reason) { switch (reason) { case DropReason::kDroppedByMediaOptimizations: encoder_stats_observer_->OnFrameDropped( VideoStreamEncoderObserver::DropReason::kMediaOptimization); encoder_queue_.PostTask([this] { RTC_DCHECK_RUN_ON(&encoder_queue_); if (quality_scaler_) quality_scaler_->ReportDroppedFrameByMediaOpt(); }); break; case DropReason::kDroppedByEncoder: encoder_stats_observer_->OnFrameDropped( VideoStreamEncoderObserver::DropReason::kEncoder); encoder_queue_.PostTask([this] { RTC_DCHECK_RUN_ON(&encoder_queue_); if (quality_scaler_) quality_scaler_->ReportDroppedFrameByEncoder(); }); break; } sink_->OnDroppedFrame(reason); } void VideoStreamEncoder::OnBitrateUpdated(DataRate target_bitrate, DataRate stable_target_bitrate, DataRate link_allocation, uint8_t fraction_lost, int64_t round_trip_time_ms) { RTC_DCHECK_GE(link_allocation, target_bitrate); if (!encoder_queue_.IsCurrent()) { encoder_queue_.PostTask([this, target_bitrate, stable_target_bitrate, link_allocation, fraction_lost, round_trip_time_ms] { OnBitrateUpdated(target_bitrate, stable_target_bitrate, link_allocation, fraction_lost, round_trip_time_ms); }); return; } RTC_DCHECK_RUN_ON(&encoder_queue_); if (encoder_switch_experiment_.IsBitrateBelowThreshold(target_bitrate) && settings_.encoder_switch_request_callback && !encoder_switch_requested_) { EncoderSwitchRequestCallback::Config conf; conf.codec_name = encoder_switch_experiment_.to_codec; conf.param = encoder_switch_experiment_.to_param; conf.value = encoder_switch_experiment_.to_value; settings_.encoder_switch_request_callback->RequestEncoderSwitch(conf); encoder_switch_requested_ = true; } RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active."; RTC_LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << target_bitrate.bps() << " stable bitrate = " << stable_target_bitrate.bps() << " link allocation bitrate = " << link_allocation.bps() << " packet loss " << static_cast(fraction_lost) << " rtt " << round_trip_time_ms; // On significant changes to BWE at the start of the call, // enable frame drops to quickly react to jumps in available bandwidth. if (encoder_start_bitrate_bps_ != 0 && !has_seen_first_significant_bwe_change_ && quality_scaler_ && initial_framedrop_on_bwe_enabled_ && abs_diff(target_bitrate.bps(), encoder_start_bitrate_bps_) >= kFramedropThreshold * encoder_start_bitrate_bps_) { // Reset initial framedrop feature when first real BW estimate arrives. // TODO(kthelgason): Update BitrateAllocator to not call OnBitrateUpdated // without an actual BW estimate. initial_framedrop_ = 0; has_seen_first_significant_bwe_change_ = true; } if (set_start_bitrate_bps_ > 0 && !has_seen_first_bwe_drop_ && quality_scaler_ && quality_scaler_settings_.InitialBitrateIntervalMs() && quality_scaler_settings_.InitialBitrateFactor()) { int64_t diff_ms = clock_->TimeInMilliseconds() - set_start_bitrate_time_ms_; if (diff_ms < quality_scaler_settings_.InitialBitrateIntervalMs().value() && (target_bitrate.bps() < (set_start_bitrate_bps_ * quality_scaler_settings_.InitialBitrateFactor().value()))) { RTC_LOG(LS_INFO) << "Reset initial_framedrop_. Start bitrate: " << set_start_bitrate_bps_ << ", target bitrate: " << target_bitrate.bps(); initial_framedrop_ = 0; has_seen_first_bwe_drop_ = true; } } if (encoder_) { encoder_->OnPacketLossRateUpdate(static_cast(fraction_lost) / 256.f); encoder_->OnRttUpdate(round_trip_time_ms); } uint32_t framerate_fps = GetInputFramerateFps(); frame_dropper_.SetRates((target_bitrate.bps() + 500) / 1000, framerate_fps); const bool video_is_suspended = target_bitrate == DataRate::Zero(); const bool video_suspension_changed = video_is_suspended != EncoderPaused(); EncoderRateSettings new_rate_settings{ VideoBitrateAllocation(), static_cast(framerate_fps), link_allocation, target_bitrate, stable_target_bitrate}; SetEncoderRates(UpdateBitrateAllocationAndNotifyObserver(new_rate_settings)); encoder_start_bitrate_bps_ = target_bitrate.bps() != 0 ? target_bitrate.bps() : encoder_start_bitrate_bps_; if (video_suspension_changed) { RTC_LOG(LS_INFO) << "Video suspend state changed to: " << (video_is_suspended ? "suspended" : "not suspended"); encoder_stats_observer_->OnSuspendChange(video_is_suspended); } if (video_suspension_changed && !video_is_suspended && pending_frame_ && !DropDueToSize(pending_frame_->size())) { int64_t pending_time_us = rtc::TimeMicros() - pending_frame_post_time_us_; if (pending_time_us < kPendingFrameTimeoutMs * 1000) EncodeVideoFrame(*pending_frame_, pending_frame_post_time_us_); pending_frame_.reset(); } } bool VideoStreamEncoder::DropDueToSize(uint32_t pixel_count) const { if (initial_framedrop_ >= kMaxInitialFramedrop || encoder_start_bitrate_bps_ == 0) { return false; } absl::optional encoder_bitrate_limits = GetEncoderBitrateLimits(encoder_->GetEncoderInfo(), pixel_count); if (encoder_bitrate_limits.has_value()) { // Use bitrate limits provided by encoder. return encoder_start_bitrate_bps_ < static_cast(encoder_bitrate_limits->min_start_bitrate_bps); } if (encoder_start_bitrate_bps_ < 300000 /* qvga */) { return pixel_count > 320 * 240; } else if (encoder_start_bitrate_bps_ < 500000 /* vga */) { return pixel_count > 640 * 480; } return false; } bool VideoStreamEncoder::TryQualityRampup(int64_t now_ms) { if (!quality_scaler_) return false; uint32_t bw_kbps = last_encoder_rate_settings_ ? last_encoder_rate_settings_->rate_control .bandwidth_allocation.kbps() : 0; if (quality_rampup_experiment_.BwHigh(now_ms, bw_kbps)) { // Verify that encoder is at max bitrate and the QP is low. if (encoder_start_bitrate_bps_ == send_codec_.maxBitrate * 1000 && quality_scaler_->QpFastFilterLow()) { return true; } } return false; } bool VideoStreamEncoder::AdaptDown(AdaptReason reason) { RTC_DCHECK_RUN_ON(&encoder_queue_); AdaptationRequest adaptation_request = { last_frame_info_->pixel_count(), encoder_stats_observer_->GetInputFrameRate(), AdaptationRequest::Mode::kAdaptDown}; bool downgrade_requested = last_adaptation_request_ && last_adaptation_request_->mode_ == AdaptationRequest::Mode::kAdaptDown; bool did_adapt = true; switch (degradation_preference_) { case DegradationPreference::BALANCED: break; case DegradationPreference::MAINTAIN_FRAMERATE: if (downgrade_requested && adaptation_request.input_pixel_count_ >= last_adaptation_request_->input_pixel_count_) { // Don't request lower resolution if the current resolution is not // lower than the last time we asked for the resolution to be lowered. return true; } break; case DegradationPreference::MAINTAIN_RESOLUTION: if (adaptation_request.framerate_fps_ <= 0 || (downgrade_requested && adaptation_request.framerate_fps_ < kMinFramerateFps)) { // If no input fps estimate available, can't determine how to scale down // framerate. Otherwise, don't request lower framerate if we don't have // a valid frame rate. Since framerate, unlike resolution, is a measure // we have to estimate, and can fluctuate naturally over time, don't // make the same kind of limitations as for resolution, but trust the // overuse detector to not trigger too often. return true; } break; case DegradationPreference::DISABLED: return true; } switch (degradation_preference_) { case DegradationPreference::BALANCED: { // Try scale down framerate, if lower. int fps = balanced_settings_.MinFps(encoder_config_.codec_type, last_frame_info_->pixel_count()); if (source_proxy_->RestrictFramerate(fps)) { GetAdaptCounter().IncrementFramerate(reason); // Check if requested fps is higher (or close to) input fps. absl::optional min_diff = balanced_settings_.MinFpsDiff(last_frame_info_->pixel_count()); if (min_diff && adaptation_request.framerate_fps_ > 0) { int fps_diff = adaptation_request.framerate_fps_ - fps; if (fps_diff < min_diff.value()) { did_adapt = false; } } break; } // Scale down resolution. RTC_FALLTHROUGH(); } case DegradationPreference::MAINTAIN_FRAMERATE: { // Scale down resolution. bool min_pixels_reached = false; if (!source_proxy_->RequestResolutionLowerThan( adaptation_request.input_pixel_count_, encoder_->GetEncoderInfo().scaling_settings.min_pixels_per_frame, &min_pixels_reached)) { if (min_pixels_reached) encoder_stats_observer_->OnMinPixelLimitReached(); return true; } GetAdaptCounter().IncrementResolution(reason); break; } case DegradationPreference::MAINTAIN_RESOLUTION: { // Scale down framerate. const int requested_framerate = source_proxy_->RequestFramerateLowerThan( adaptation_request.framerate_fps_); if (requested_framerate == -1) return true; RTC_DCHECK_NE(max_framerate_, -1); overuse_detector_->OnTargetFramerateUpdated( std::min(max_framerate_, requested_framerate)); GetAdaptCounter().IncrementFramerate(reason); break; } case DegradationPreference::DISABLED: RTC_NOTREACHED(); } last_adaptation_request_.emplace(adaptation_request); UpdateAdaptationStats(reason); RTC_LOG(LS_INFO) << GetConstAdaptCounter().ToString(); return did_adapt; } void VideoStreamEncoder::AdaptUp(AdaptReason reason) { RTC_DCHECK_RUN_ON(&encoder_queue_); const AdaptCounter& adapt_counter = GetConstAdaptCounter(); int num_downgrades = adapt_counter.TotalCount(reason); if (num_downgrades == 0) return; RTC_DCHECK_GT(num_downgrades, 0); AdaptationRequest adaptation_request = { last_frame_info_->pixel_count(), encoder_stats_observer_->GetInputFrameRate(), AdaptationRequest::Mode::kAdaptUp}; bool adapt_up_requested = last_adaptation_request_ && last_adaptation_request_->mode_ == AdaptationRequest::Mode::kAdaptUp; if (degradation_preference_ == DegradationPreference::MAINTAIN_FRAMERATE) { if (adapt_up_requested && adaptation_request.input_pixel_count_ <= last_adaptation_request_->input_pixel_count_) { // Don't request higher resolution if the current resolution is not // higher than the last time we asked for the resolution to be higher. return; } } switch (degradation_preference_) { case DegradationPreference::BALANCED: { // Check if quality should be increased based on bitrate. if (reason == kQuality && !balanced_settings_.CanAdaptUp(last_frame_info_->pixel_count(), encoder_start_bitrate_bps_)) { return; } // Try scale up framerate, if higher. int fps = balanced_settings_.MaxFps(encoder_config_.codec_type, last_frame_info_->pixel_count()); if (source_proxy_->IncreaseFramerate(fps)) { GetAdaptCounter().DecrementFramerate(reason, fps); // Reset framerate in case of fewer fps steps down than up. if (adapt_counter.FramerateCount() == 0 && fps != std::numeric_limits::max()) { RTC_LOG(LS_INFO) << "Removing framerate down-scaling setting."; source_proxy_->IncreaseFramerate(std::numeric_limits::max()); } break; } // Check if resolution should be increased based on bitrate. if (reason == kQuality && !balanced_settings_.CanAdaptUpResolution( last_frame_info_->pixel_count(), encoder_start_bitrate_bps_)) { return; } // Scale up resolution. RTC_FALLTHROUGH(); } case DegradationPreference::MAINTAIN_FRAMERATE: { // Check if resolution should be increased based on bitrate and // limits specified by encoder capabilities. if (reason == kQuality && !CanAdaptUpResolution(last_frame_info_->pixel_count(), encoder_start_bitrate_bps_)) { return; } // Scale up resolution. int pixel_count = adaptation_request.input_pixel_count_; if (adapt_counter.ResolutionCount() == 1) { RTC_LOG(LS_INFO) << "Removing resolution down-scaling setting."; pixel_count = std::numeric_limits::max(); } if (!source_proxy_->RequestHigherResolutionThan(pixel_count)) return; GetAdaptCounter().DecrementResolution(reason); break; } case DegradationPreference::MAINTAIN_RESOLUTION: { // Scale up framerate. int fps = adaptation_request.framerate_fps_; if (adapt_counter.FramerateCount() == 1) { RTC_LOG(LS_INFO) << "Removing framerate down-scaling setting."; fps = std::numeric_limits::max(); } const int requested_framerate = source_proxy_->RequestHigherFramerateThan(fps); if (requested_framerate == -1) { overuse_detector_->OnTargetFramerateUpdated(max_framerate_); return; } overuse_detector_->OnTargetFramerateUpdated( std::min(max_framerate_, requested_framerate)); GetAdaptCounter().DecrementFramerate(reason); break; } case DegradationPreference::DISABLED: return; } last_adaptation_request_.emplace(adaptation_request); UpdateAdaptationStats(reason); RTC_LOG(LS_INFO) << adapt_counter.ToString(); } bool VideoStreamEncoder::CanAdaptUpResolution(int pixels, uint32_t bitrate_bps) const { absl::optional bitrate_limits = GetEncoderBitrateLimits(encoder_info_, source_proxy_->GetHigherResolutionThan(pixels)); if (!bitrate_limits.has_value() || bitrate_bps == 0) { return true; // No limit configured or bitrate provided. } RTC_DCHECK_GE(bitrate_limits->frame_size_pixels, pixels); return bitrate_bps >= static_cast(bitrate_limits->min_start_bitrate_bps); } // TODO(nisse): Delete, once AdaptReason and AdaptationReason are merged. void VideoStreamEncoder::UpdateAdaptationStats(AdaptReason reason) { switch (reason) { case kCpu: encoder_stats_observer_->OnAdaptationChanged( VideoStreamEncoderObserver::AdaptationReason::kCpu, GetActiveCounts(kCpu), GetActiveCounts(kQuality)); break; case kQuality: encoder_stats_observer_->OnAdaptationChanged( VideoStreamEncoderObserver::AdaptationReason::kQuality, GetActiveCounts(kCpu), GetActiveCounts(kQuality)); break; } } VideoStreamEncoderObserver::AdaptationSteps VideoStreamEncoder::GetActiveCounts( AdaptReason reason) { VideoStreamEncoderObserver::AdaptationSteps counts = GetConstAdaptCounter().Counts(reason); switch (reason) { case kCpu: if (!IsFramerateScalingEnabled(degradation_preference_)) counts.num_framerate_reductions = absl::nullopt; if (!IsResolutionScalingEnabled(degradation_preference_)) counts.num_resolution_reductions = absl::nullopt; break; case kQuality: if (!IsFramerateScalingEnabled(degradation_preference_) || !quality_scaler_) { counts.num_framerate_reductions = absl::nullopt; } if (!IsResolutionScalingEnabled(degradation_preference_) || !quality_scaler_) { counts.num_resolution_reductions = absl::nullopt; } break; } return counts; } VideoStreamEncoder::AdaptCounter& VideoStreamEncoder::GetAdaptCounter() { return adapt_counters_[degradation_preference_]; } const VideoStreamEncoder::AdaptCounter& VideoStreamEncoder::GetConstAdaptCounter() { return adapt_counters_[degradation_preference_]; } void VideoStreamEncoder::RunPostEncode(EncodedImage encoded_image, int64_t time_sent_us, int temporal_index, DataSize frame_size) { if (!encoder_queue_.IsCurrent()) { encoder_queue_.PostTask([this, encoded_image, time_sent_us, temporal_index, frame_size] { RunPostEncode(encoded_image, time_sent_us, temporal_index, frame_size); }); return; } RTC_DCHECK_RUN_ON(&encoder_queue_); absl::optional encode_duration_us; if (encoded_image.timing_.flags != VideoSendTiming::kInvalid) { encode_duration_us = // TODO(nisse): Maybe use capture_time_ms_ rather than encode_start_ms_? rtc::kNumMicrosecsPerMillisec * (encoded_image.timing_.encode_finish_ms - encoded_image.timing_.encode_start_ms); } // Run post encode tasks, such as overuse detection and frame rate/drop // stats for internal encoders. const bool keyframe = encoded_image._frameType == VideoFrameType::kVideoFrameKey; if (!frame_size.IsZero()) { frame_dropper_.Fill(frame_size.bytes(), !keyframe); } if (HasInternalSource()) { // Update frame dropper after the fact for internal sources. input_framerate_.Update(1u, clock_->TimeInMilliseconds()); frame_dropper_.Leak(GetInputFramerateFps()); // Signal to encoder to drop next frame. if (frame_dropper_.DropFrame()) { pending_frame_drops_.fetch_add(1); } } overuse_detector_->FrameSent( encoded_image.Timestamp(), time_sent_us, encoded_image.capture_time_ms_ * rtc::kNumMicrosecsPerMillisec, encode_duration_us); if (quality_scaler_ && encoded_image.qp_ >= 0) quality_scaler_->ReportQp(encoded_image.qp_, time_sent_us); if (bitrate_adjuster_) { bitrate_adjuster_->OnEncodedFrame(encoded_image, temporal_index); } } bool VideoStreamEncoder::HasInternalSource() const { // TODO(sprang): Checking both info from encoder and from encoder factory // until we have deprecated and removed the encoder factory info. return codec_info_.has_internal_source || encoder_info_.has_internal_source; } void VideoStreamEncoder::ReleaseEncoder() { if (!encoder_ || !encoder_initialized_) { return; } encoder_->Release(); encoder_initialized_ = false; TRACE_EVENT0("webrtc", "VCMGenericEncoder::Release"); } // Class holding adaptation information. VideoStreamEncoder::AdaptCounter::AdaptCounter() { fps_counters_.resize(kScaleReasonSize); resolution_counters_.resize(kScaleReasonSize); static_assert(kScaleReasonSize == 2, "Update MoveCount."); } VideoStreamEncoder::AdaptCounter::~AdaptCounter() {} std::string VideoStreamEncoder::AdaptCounter::ToString() const { rtc::StringBuilder ss; ss << "Downgrade counts: fps: {" << ToString(fps_counters_); ss << "}, resolution: {" << ToString(resolution_counters_) << "}"; return ss.Release(); } VideoStreamEncoderObserver::AdaptationSteps VideoStreamEncoder::AdaptCounter::Counts(int reason) const { VideoStreamEncoderObserver::AdaptationSteps counts; counts.num_framerate_reductions = fps_counters_[reason]; counts.num_resolution_reductions = resolution_counters_[reason]; return counts; } void VideoStreamEncoder::AdaptCounter::IncrementFramerate(int reason) { ++(fps_counters_[reason]); } void VideoStreamEncoder::AdaptCounter::IncrementResolution(int reason) { ++(resolution_counters_[reason]); } void VideoStreamEncoder::AdaptCounter::DecrementFramerate(int reason) { if (fps_counters_[reason] == 0) { // Balanced mode: Adapt up is in a different order, switch reason. // E.g. framerate adapt down: quality (2), framerate adapt up: cpu (3). // 1. Down resolution (cpu): res={quality:0,cpu:1}, fps={quality:0,cpu:0} // 2. Down fps (quality): res={quality:0,cpu:1}, fps={quality:1,cpu:0} // 3. Up fps (cpu): res={quality:1,cpu:0}, fps={quality:0,cpu:0} // 4. Up resolution (quality): res={quality:0,cpu:0}, fps={quality:0,cpu:0} RTC_DCHECK_GT(TotalCount(reason), 0) << "No downgrade for reason."; RTC_DCHECK_GT(FramerateCount(), 0) << "Framerate not downgraded."; MoveCount(&resolution_counters_, reason); MoveCount(&fps_counters_, (reason + 1) % kScaleReasonSize); } --(fps_counters_[reason]); RTC_DCHECK_GE(fps_counters_[reason], 0); } void VideoStreamEncoder::AdaptCounter::DecrementResolution(int reason) { if (resolution_counters_[reason] == 0) { // Balanced mode: Adapt up is in a different order, switch reason. RTC_DCHECK_GT(TotalCount(reason), 0) << "No downgrade for reason."; RTC_DCHECK_GT(ResolutionCount(), 0) << "Resolution not downgraded."; MoveCount(&fps_counters_, reason); MoveCount(&resolution_counters_, (reason + 1) % kScaleReasonSize); } --(resolution_counters_[reason]); RTC_DCHECK_GE(resolution_counters_[reason], 0); } void VideoStreamEncoder::AdaptCounter::DecrementFramerate(int reason, int cur_fps) { DecrementFramerate(reason); // Reset if at max fps (i.e. in case of fewer steps up than down). if (cur_fps == std::numeric_limits::max()) absl::c_fill(fps_counters_, 0); } int VideoStreamEncoder::AdaptCounter::FramerateCount() const { return Count(fps_counters_); } int VideoStreamEncoder::AdaptCounter::ResolutionCount() const { return Count(resolution_counters_); } int VideoStreamEncoder::AdaptCounter::FramerateCount(int reason) const { return fps_counters_[reason]; } int VideoStreamEncoder::AdaptCounter::ResolutionCount(int reason) const { return resolution_counters_[reason]; } int VideoStreamEncoder::AdaptCounter::TotalCount(int reason) const { return FramerateCount(reason) + ResolutionCount(reason); } int VideoStreamEncoder::AdaptCounter::Count( const std::vector& counters) const { return absl::c_accumulate(counters, 0); } void VideoStreamEncoder::AdaptCounter::MoveCount(std::vector* counters, int from_reason) { int to_reason = (from_reason + 1) % kScaleReasonSize; ++((*counters)[to_reason]); --((*counters)[from_reason]); } std::string VideoStreamEncoder::AdaptCounter::ToString( const std::vector& counters) const { rtc::StringBuilder ss; for (size_t reason = 0; reason < kScaleReasonSize; ++reason) { ss << (reason ? " cpu" : "quality") << ":" << counters[reason]; } return ss.Release(); } bool VideoStreamEncoder::EncoderSwitchExperiment::IsBitrateBelowThreshold( const DataRate& target_bitrate) { DataRate rate = DataRate::kbps(bitrate_filter.Apply(1.0, target_bitrate.kbps())); return current_thresholds.bitrate && rate < *current_thresholds.bitrate; } bool VideoStreamEncoder::EncoderSwitchExperiment::IsPixelCountBelowThreshold( int pixel_count) const { return current_thresholds.pixel_count && pixel_count < *current_thresholds.pixel_count; } void VideoStreamEncoder::EncoderSwitchExperiment::SetCodec( VideoCodecType codec) { auto it = codec_thresholds.find(codec); if (it == codec_thresholds.end()) { current_thresholds = {}; } else { current_thresholds = it->second; } } VideoStreamEncoder::EncoderSwitchExperiment VideoStreamEncoder::ParseEncoderSwitchFieldTrial() const { EncoderSwitchExperiment result; // Each "codec threshold" have the format // ";;", and are separated by the "|" // character. webrtc::FieldTrialOptional codec_thresholds_string{ "codec_thresholds"}; webrtc::FieldTrialOptional to_codec{"to_codec"}; webrtc::FieldTrialOptional to_param{"to_param"}; webrtc::FieldTrialOptional to_value{"to_value"}; webrtc::FieldTrialOptional window{"window"}; webrtc::ParseFieldTrial( {&codec_thresholds_string, &to_codec, &to_param, &to_value, &window}, webrtc::field_trial::FindFullName( "WebRTC-NetworkCondition-EncoderSwitch")); if (!codec_thresholds_string || !to_codec || !window) { return {}; } result.bitrate_filter.Reset(1.0 - 1.0 / *window); result.to_codec = *to_codec; result.to_param = to_param.GetOptional(); result.to_value = to_value.GetOptional(); std::vector codecs_thresholds; if (rtc::split(*codec_thresholds_string, '|', &codecs_thresholds) == 0) { return {}; } for (const std::string& codec_threshold : codecs_thresholds) { std::vector thresholds_split; if (rtc::split(codec_threshold, ';', &thresholds_split) != 3) { return {}; } VideoCodecType codec = PayloadStringToCodecType(thresholds_split[0]); int bitrate_kbps; rtc::FromString(thresholds_split[1], &bitrate_kbps); int pixel_count; rtc::FromString(thresholds_split[2], &pixel_count); if (bitrate_kbps > 0) { result.codec_thresholds[codec].bitrate = DataRate::kbps(bitrate_kbps); } if (pixel_count > 0) { result.codec_thresholds[codec].pixel_count = pixel_count; } if (!result.codec_thresholds[codec].bitrate && !result.codec_thresholds[codec].pixel_count) { return {}; } } rtc::StringBuilder ss; ss << "Successfully parsed WebRTC-NetworkCondition-EncoderSwitch field " "trial." << " to_codec:" << result.to_codec << " to_param:" << result.to_param.value_or("") << " to_value:" << result.to_value.value_or("") << " codec_thresholds:"; for (auto kv : result.codec_thresholds) { std::string codec_name = CodecTypeToPayloadString(kv.first); std::string bitrate = kv.second.bitrate ? std::to_string(kv.second.bitrate->kbps()) : ""; std::string pixels = kv.second.pixel_count ? std::to_string(*kv.second.pixel_count) : ""; ss << " (" << codec_name << ":" << bitrate << ":" << pixels << ")"; } RTC_LOG(LS_INFO) << ss.str(); return result; } } // namespace webrtc