/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/tools/event_log_visualizer/analyzer.h" #include #include #include #include #include #include #include "webrtc/audio_receive_stream.h" #include "webrtc/audio_send_stream.h" #include "webrtc/base/checks.h" #include "webrtc/call.h" #include "webrtc/common_types.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "webrtc/modules/rtp_rtcp/source/rtp_utility.h" #include "webrtc/video_receive_stream.h" #include "webrtc/video_send_stream.h" namespace { std::string SsrcToString(uint32_t ssrc) { std::stringstream ss; ss << "SSRC " << ssrc; return ss.str(); } // Checks whether an SSRC is contained in the list of desired SSRCs. // Note that an empty SSRC list matches every SSRC. bool MatchingSsrc(uint32_t ssrc, const std::vector& desired_ssrc) { if (desired_ssrc.size() == 0) return true; return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) != desired_ssrc.end(); } double AbsSendTimeToMicroseconds(int64_t abs_send_time) { // The timestamp is a fixed point representation with 6 bits for seconds // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the // time in seconds and then multiply by 1000000 to convert to microseconds. static constexpr double kTimestampToMicroSec = 1000000.0 / static_cast(1 << 18); return abs_send_time * kTimestampToMicroSec; } // Computes the difference |later| - |earlier| where |later| and |earlier| // are counters that wrap at |modulus|. The difference is chosen to have the // least absolute value. For example if |modulus| is 8, then the difference will // be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will // be in [-4, 4]. int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) { RTC_DCHECK_LE(1, modulus); RTC_DCHECK_LT(later, modulus); RTC_DCHECK_LT(earlier, modulus); int64_t difference = static_cast(later) - static_cast(earlier); int64_t max_difference = modulus / 2; int64_t min_difference = max_difference - modulus + 1; if (difference > max_difference) { difference -= modulus; } if (difference < min_difference) { difference += modulus; } return difference; } class StreamId { public: StreamId(uint32_t ssrc, webrtc::PacketDirection direction, webrtc::MediaType media_type) : ssrc_(ssrc), direction_(direction), media_type_(media_type) {} bool operator<(const StreamId& other) const { if (ssrc_ < other.ssrc_) { return true; } if (ssrc_ == other.ssrc_) { if (media_type_ < other.media_type_) { return true; } if (media_type_ == other.media_type_) { if (direction_ < other.direction_) { return true; } } } return false; } bool operator==(const StreamId& other) const { return ssrc_ == other.ssrc_ && direction_ == other.direction_ && media_type_ == other.media_type_; } uint32_t GetSsrc() const { return ssrc_; } private: uint32_t ssrc_; webrtc::PacketDirection direction_; webrtc::MediaType media_type_; }; const double kXMargin = 1.02; const double kYMargin = 1.1; const double kDefaultXMin = -1; const double kDefaultYMin = -1; } // namespace namespace webrtc { namespace plotting { EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log) : parsed_log_(log), window_duration_(250000), step_(10000) { uint64_t first_timestamp = std::numeric_limits::max(); uint64_t last_timestamp = std::numeric_limits::min(); for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::EventType::VIDEO_RECEIVER_CONFIG_EVENT) continue; if (event_type == ParsedRtcEventLog::EventType::VIDEO_SENDER_CONFIG_EVENT) continue; if (event_type == ParsedRtcEventLog::EventType::AUDIO_RECEIVER_CONFIG_EVENT) continue; if (event_type == ParsedRtcEventLog::EventType::AUDIO_SENDER_CONFIG_EVENT) continue; uint64_t timestamp = parsed_log_.GetTimestamp(i); first_timestamp = std::min(first_timestamp, timestamp); last_timestamp = std::max(last_timestamp, timestamp); } if (last_timestamp < first_timestamp) { // No useful events in the log. first_timestamp = last_timestamp = 0; } begin_time_ = first_timestamp; end_time_ = last_timestamp; } void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction, Plot* plot) { std::map time_series; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; float max_y = 0; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); if (direction == desired_direction) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { uint64_t timestamp = parsed_log_.GetTimestamp(i); float x = static_cast(timestamp - begin_time_) / 1000000; float y = total_length; max_y = std::max(max_y, y); time_series[parsed_header.ssrc].points.push_back( TimeSeriesPoint(x, y)); } } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series.push_back(std::move(kv.second)); } plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = kDefaultYMin; plot->yaxis_max = max_y * kYMargin; plot->yaxis_label = "Packet size (bytes)"; if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->title = "Incoming RTP packets"; } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->title = "Outgoing RTP packets"; } } // For each SSRC, plot the time between the consecutive playouts. void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) { std::map time_series; std::map last_playout; uint32_t ssrc; float max_y = 0; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) { parsed_log_.GetAudioPlayout(i, &ssrc); uint64_t timestamp = parsed_log_.GetTimestamp(i); if (MatchingSsrc(ssrc, desired_ssrc_)) { float x = static_cast(timestamp - begin_time_) / 1000000; float y = static_cast(timestamp - last_playout[ssrc]) / 1000; if (time_series[ssrc].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } max_y = std::max(max_y, y); time_series[ssrc].points.push_back(TimeSeriesPoint(x, y)); last_playout[ssrc] = timestamp; } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series.push_back(std::move(kv.second)); } plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = kDefaultYMin; plot->yaxis_max = max_y * kYMargin; plot->yaxis_label = "Time since last playout (ms)"; plot->title = "Audio playout"; } // For each SSRC, plot the time between the consecutive playouts. void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) { std::map time_series; std::map last_seqno; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; int max_y = 1; int min_y = 0; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); uint64_t timestamp = parsed_log_.GetTimestamp(i); if (direction == PacketDirection::kIncomingPacket) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { float x = static_cast(timestamp - begin_time_) / 1000000; int y = WrappingDifference(parsed_header.sequenceNumber, last_seqno[parsed_header.ssrc], 1ul << 16); if (time_series[parsed_header.ssrc].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } max_y = std::max(max_y, y); min_y = std::min(min_y, y); time_series[parsed_header.ssrc].points.push_back( TimeSeriesPoint(x, y)); last_seqno[parsed_header.ssrc] = parsed_header.sequenceNumber; } } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series.push_back(std::move(kv.second)); } plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = min_y - (kYMargin - 1) / 2 * (max_y - min_y); plot->yaxis_max = max_y + (kYMargin - 1) / 2 * (max_y - min_y); plot->yaxis_label = "Difference since last packet"; plot->title = "Sequence number"; } void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) { // Maps a stream identifier consisting of ssrc, direction and MediaType // to the header extensions used by that stream, std::map extension_maps; struct SendReceiveTime { SendReceiveTime() = default; SendReceiveTime(uint32_t send_time, uint64_t recv_time) : absolute_send_time(send_time), receive_timestamp(recv_time) {} uint32_t absolute_send_time; // 24-bit value in units of 2^-18 seconds. uint64_t receive_timestamp; // In microseconds. }; std::map last_packet; std::map time_series; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; double max_y = 10; double min_y = 0; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT) { VideoReceiveStream::Config config(nullptr); parsed_log_.GetVideoReceiveConfig(i, &config); StreamId stream(config.rtp.remote_ssrc, kIncomingPacket, MediaType::VIDEO); extension_maps[stream].Erase(); for (size_t j = 0; j < config.rtp.extensions.size(); ++j) { const std::string& extension = config.rtp.extensions[j].uri; int id = config.rtp.extensions[j].id; extension_maps[stream].Register(StringToRtpExtensionType(extension), id); } } else if (event_type == ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT) { VideoSendStream::Config config(nullptr); parsed_log_.GetVideoSendConfig(i, &config); for (auto ssrc : config.rtp.ssrcs) { StreamId stream(ssrc, kIncomingPacket, MediaType::VIDEO); extension_maps[stream].Erase(); for (size_t j = 0; j < config.rtp.extensions.size(); ++j) { const std::string& extension = config.rtp.extensions[j].uri; int id = config.rtp.extensions[j].id; extension_maps[stream].Register(StringToRtpExtensionType(extension), id); } } } else if (event_type == ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT) { AudioReceiveStream::Config config; // TODO(terelius): Parse the audio configs once we have them } else if (event_type == ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT) { AudioSendStream::Config config(nullptr); // TODO(terelius): Parse the audio configs once we have them } else if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); if (direction == kIncomingPacket) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { StreamId stream(parsed_header.ssrc, direction, media_type); // Look up the extension_map and parse it again to get the extensions. if (extension_maps.count(stream) == 1) { RtpHeaderExtensionMap* extension_map = &extension_maps[stream]; rtp_parser.Parse(&parsed_header, extension_map); if (parsed_header.extension.hasAbsoluteSendTime) { uint64_t timestamp = parsed_log_.GetTimestamp(i); int64_t send_time_diff = WrappingDifference( parsed_header.extension.absoluteSendTime, last_packet[stream].absolute_send_time, 1ul << 24); int64_t recv_time_diff = timestamp - last_packet[stream].receive_timestamp; float x = static_cast(timestamp - begin_time_) / 1000000; double y = static_cast( recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff)) / 1000; if (time_series[stream].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } max_y = std::max(max_y, y); min_y = std::min(min_y, y); time_series[stream].points.push_back(TimeSeriesPoint(x, y)); last_packet[stream] = SendReceiveTime( parsed_header.extension.absoluteSendTime, timestamp); } } } } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first.GetSsrc()); kv.second.style = BAR_GRAPH; plot->series.push_back(std::move(kv.second)); } plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = min_y - (kYMargin - 1) / 2 * (max_y - min_y); plot->yaxis_max = max_y + (kYMargin - 1) / 2 * (max_y - min_y); plot->yaxis_label = "Latency change (ms)"; plot->title = "Network latency change between consecutive packets"; } void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) { // TODO(terelius): Refactor // Maps a stream identifier consisting of ssrc, direction and MediaType // to the header extensions used by that stream. std::map extension_maps; struct SendReceiveTime { SendReceiveTime() = default; SendReceiveTime(uint32_t send_time, uint64_t recv_time, double accumulated) : absolute_send_time(send_time), receive_timestamp(recv_time), accumulated_delay(accumulated) {} uint32_t absolute_send_time; // 24-bit value in units of 2^-18 seconds. uint64_t receive_timestamp; // In microseconds. double accumulated_delay; // In milliseconds. }; std::map last_packet; std::map time_series; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; double max_y = 10; double min_y = 0; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT) { VideoReceiveStream::Config config(nullptr); parsed_log_.GetVideoReceiveConfig(i, &config); StreamId stream(config.rtp.remote_ssrc, kIncomingPacket, MediaType::VIDEO); extension_maps[stream].Erase(); for (size_t j = 0; j < config.rtp.extensions.size(); ++j) { const std::string& extension = config.rtp.extensions[j].uri; int id = config.rtp.extensions[j].id; extension_maps[stream].Register(StringToRtpExtensionType(extension), id); } } else if (event_type == ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT) { VideoSendStream::Config config(nullptr); parsed_log_.GetVideoSendConfig(i, &config); for (auto ssrc : config.rtp.ssrcs) { StreamId stream(ssrc, kIncomingPacket, MediaType::VIDEO); extension_maps[stream].Erase(); for (size_t j = 0; j < config.rtp.extensions.size(); ++j) { const std::string& extension = config.rtp.extensions[j].uri; int id = config.rtp.extensions[j].id; extension_maps[stream].Register(StringToRtpExtensionType(extension), id); } } } else if (event_type == ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT) { AudioReceiveStream::Config config; // TODO(terelius): Parse the audio configs once we have them } else if (event_type == ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT) { AudioSendStream::Config config(nullptr); // TODO(terelius): Parse the audio configs once we have them } else if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); if (direction == kIncomingPacket) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { StreamId stream(parsed_header.ssrc, direction, media_type); // Look up the extension_map and parse it again to get the extensions. if (extension_maps.count(stream) == 1) { RtpHeaderExtensionMap* extension_map = &extension_maps[stream]; rtp_parser.Parse(&parsed_header, extension_map); if (parsed_header.extension.hasAbsoluteSendTime) { uint64_t timestamp = parsed_log_.GetTimestamp(i); int64_t send_time_diff = WrappingDifference( parsed_header.extension.absoluteSendTime, last_packet[stream].absolute_send_time, 1ul << 24); int64_t recv_time_diff = timestamp - last_packet[stream].receive_timestamp; float x = static_cast(timestamp - begin_time_) / 1000000; double y = last_packet[stream].accumulated_delay + static_cast( recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff)) / 1000; if (time_series[stream].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } max_y = std::max(max_y, y); min_y = std::min(min_y, y); time_series[stream].points.push_back(TimeSeriesPoint(x, y)); last_packet[stream] = SendReceiveTime( parsed_header.extension.absoluteSendTime, timestamp, y); } } } } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first.GetSsrc()); kv.second.style = LINE_GRAPH; plot->series.push_back(std::move(kv.second)); } plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = min_y - (kYMargin - 1) / 2 * (max_y - min_y); plot->yaxis_max = max_y + (kYMargin - 1) / 2 * (max_y - min_y); plot->yaxis_label = "Latency change (ms)"; plot->title = "Accumulated network latency change"; } // Plot the total bandwidth used by all RTP streams. void EventLogAnalyzer::CreateTotalBitrateGraph( PacketDirection desired_direction, Plot* plot) { struct TimestampSize { TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} uint64_t timestamp; size_t size; }; std::vector packets; PacketDirection direction; size_t total_length; // Extract timestamps and sizes for the relevant packets. for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr, &total_length); if (direction == desired_direction) { uint64_t timestamp = parsed_log_.GetTimestamp(i); packets.push_back(TimestampSize(timestamp, total_length)); } } } size_t window_index_begin = 0; size_t window_index_end = 0; size_t bytes_in_window = 0; float max_y = 0; // Calculate a moving average of the bitrate and store in a TimeSeries. plot->series.push_back(TimeSeries()); for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { while (window_index_end < packets.size() && packets[window_index_end].timestamp < time) { bytes_in_window += packets[window_index_end].size; window_index_end++; } while (window_index_begin < packets.size() && packets[window_index_begin].timestamp < time - window_duration_) { RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window); bytes_in_window -= packets[window_index_begin].size; window_index_begin++; } float window_duration_in_seconds = static_cast(window_duration_) / 1000000; float x = static_cast(time - begin_time_) / 1000000; float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; max_y = std::max(max_y, y); plot->series.back().points.push_back(TimeSeriesPoint(x, y)); } // Set labels. if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->series.back().label = "Incoming bitrate"; } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->series.back().label = "Outgoing bitrate"; } plot->series.back().style = LINE_GRAPH; plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = kDefaultYMin; plot->yaxis_max = max_y * kYMargin; plot->yaxis_label = "Bitrate (kbps)"; if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->title = "Incoming RTP bitrate"; } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->title = "Outgoing RTP bitrate"; } } // For each SSRC, plot the bandwidth used by that stream. void EventLogAnalyzer::CreateStreamBitrateGraph( PacketDirection desired_direction, Plot* plot) { struct TimestampSize { TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} uint64_t timestamp; size_t size; }; std::map > packets; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; // Extract timestamps and sizes for the relevant packets. for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); if (direction == desired_direction) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { uint64_t timestamp = parsed_log_.GetTimestamp(i); packets[parsed_header.ssrc].push_back( TimestampSize(timestamp, total_length)); } } } } float max_y = 0; for (auto& kv : packets) { size_t window_index_begin = 0; size_t window_index_end = 0; size_t bytes_in_window = 0; // Calculate a moving average of the bitrate and store in a TimeSeries. plot->series.push_back(TimeSeries()); for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { while (window_index_end < kv.second.size() && kv.second[window_index_end].timestamp < time) { bytes_in_window += kv.second[window_index_end].size; window_index_end++; } while (window_index_begin < kv.second.size() && kv.second[window_index_begin].timestamp < time - window_duration_) { RTC_DCHECK_LE(kv.second[window_index_begin].size, bytes_in_window); bytes_in_window -= kv.second[window_index_begin].size; window_index_begin++; } float window_duration_in_seconds = static_cast(window_duration_) / 1000000; float x = static_cast(time - begin_time_) / 1000000; float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; max_y = std::max(max_y, y); plot->series.back().points.push_back(TimeSeriesPoint(x, y)); } // Set labels. plot->series.back().label = SsrcToString(kv.first); plot->series.back().style = LINE_GRAPH; } plot->xaxis_min = kDefaultXMin; plot->xaxis_max = (end_time_ - begin_time_) / 1000000 * kXMargin; plot->xaxis_label = "Time (s)"; plot->yaxis_min = kDefaultYMin; plot->yaxis_max = max_y * kYMargin; plot->yaxis_label = "Bitrate (kbps)"; if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->title = "Incoming bitrate per stream"; } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->title = "Outgoing bitrate per stream"; } } } // namespace plotting } // namespace webrtc