/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/reverb_model_estimator.h" #include #include #include #include #include "api/array_view.h" #include "api/audio/echo_canceller3_config.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "rtc_base/checks.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { bool EnableSmoothUpdatesTailFreqResp() { return !field_trial::IsEnabled( "WebRTC-Aec3SmoothUpdatesTailFreqRespKillSwitch"); } // Computes the ratio of the energies between the direct path and the tail. The // energy is computed in the power spectrum domain discarding the DC // contributions. float ComputeRatioEnergies( const rtc::ArrayView& freq_resp_direct_path, const rtc::ArrayView& freq_resp_tail) { // Skipping the DC for the ratio computation constexpr size_t n_skip_bins = 1; RTC_CHECK_EQ(freq_resp_direct_path.size(), freq_resp_tail.size()); float direct_path_energy = std::accumulate(freq_resp_direct_path.begin() + n_skip_bins, freq_resp_direct_path.end(), 0.f); float tail_energy = std::accumulate(freq_resp_tail.begin() + n_skip_bins, freq_resp_tail.end(), 0.f); if (direct_path_energy > 0) { return tail_energy / direct_path_energy; } else { return 0.f; } } } // namespace ReverbModelEstimator::ReverbModelEstimator(const EchoCanceller3Config& config) : filter_main_length_blocks_(config.filter.main.length_blocks), reverb_decay_(fabsf(config.ep_strength.default_len)), enable_smooth_freq_resp_tail_updates_(EnableSmoothUpdatesTailFreqResp()) { block_energies_.fill(0.f); freq_resp_tail_.fill(0.f); } ReverbModelEstimator::~ReverbModelEstimator() = default; bool ReverbModelEstimator::IsAGoodFilterForDecayEstimation( int filter_delay_blocks, bool usable_linear_estimate, size_t length_filter) { if ((filter_delay_blocks && usable_linear_estimate) && (filter_delay_blocks <= static_cast(filter_main_length_blocks_) - 4) && (length_filter >= static_cast(GetTimeDomainLength(filter_main_length_blocks_)))) { return true; } else { return false; } } void ReverbModelEstimator::Update( const std::vector& impulse_response, const std::vector>& filter_freq_response, const absl::optional& quality_linear, int filter_delay_blocks, bool usable_linear_estimate, float default_decay, bool stationary_block) { if (enable_smooth_freq_resp_tail_updates_) { if (!stationary_block) { float alpha = 0; if (quality_linear) { alpha = 0.2f * quality_linear.value(); UpdateFreqRespTail(filter_freq_response, filter_delay_blocks, alpha); } if (IsAGoodFilterForDecayEstimation(filter_delay_blocks, usable_linear_estimate, impulse_response.size())) { alpha_ = std::max(alpha, alpha_); if ((alpha_ > 0.f) && (default_decay < 0.f)) { // Echo tail decay estimation if default_decay is negative. UpdateReverbDecay(impulse_response); } } else { ResetDecayEstimation(); } } } else { UpdateFreqRespTail(filter_freq_response, filter_delay_blocks, 0.1f); } } void ReverbModelEstimator::ResetDecayEstimation() { accumulated_nz_ = 0.f; accumulated_nn_ = 0.f; accumulated_count_ = 0.f; current_reverb_decay_section_ = 0; num_reverb_decay_sections_ = 0; num_reverb_decay_sections_next_ = 0; found_end_of_reverb_decay_ = false; alpha_ = 0.f; } void ReverbModelEstimator::UpdateReverbDecay( const std::vector& impulse_response) { constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2; // Form the data to match against by squaring the impulse response // coefficients. std::array matching_data_data; RTC_DCHECK_LE(GetTimeDomainLength(filter_main_length_blocks_), matching_data_data.size()); rtc::ArrayView matching_data( matching_data_data.data(), GetTimeDomainLength(filter_main_length_blocks_)); std::transform( impulse_response.begin(), impulse_response.end(), matching_data.begin(), [](float a) { return a * a; }); // TODO(devicentepena) check if focusing // on one block would be enough. if (current_reverb_decay_section_ < filter_main_length_blocks_) { // Update accumulated variables for the current filter section. const size_t start_index = current_reverb_decay_section_ * kFftLengthBy2; RTC_DCHECK_GT(matching_data.size(), start_index); RTC_DCHECK_GE(matching_data.size(), start_index + kFftLengthBy2); float section_energy = std::accumulate(matching_data.begin() + start_index, matching_data.begin() + start_index + kFftLengthBy2, 0.f) * kOneByFftLengthBy2; section_energy = std::max( section_energy, 1e-32f); // Regularization to avoid division by 0. RTC_DCHECK_LT(current_reverb_decay_section_, block_energies_.size()); const float energy_ratio = block_energies_[current_reverb_decay_section_] / section_energy; found_end_of_reverb_decay_ = found_end_of_reverb_decay_ || (energy_ratio > 1.1f || energy_ratio < 0.9f); // Count consecutive number of "good" filter sections, where "good" means: // 1) energy is above noise floor. // 2) energy of current section has not changed too much from last check. if (!found_end_of_reverb_decay_ && section_energy > tail_energy_) { ++num_reverb_decay_sections_next_; } else { found_end_of_reverb_decay_ = true; } block_energies_[current_reverb_decay_section_] = section_energy; if (num_reverb_decay_sections_ > 0) { // Linear regression of log squared magnitude of impulse response. for (size_t i = 0; i < kFftLengthBy2; i++) { RTC_DCHECK_GT(matching_data.size(), start_index + i); float z = FastApproxLog2f(matching_data[start_index + i] + 1e-10); accumulated_nz_ += accumulated_count_ * z; ++accumulated_count_; } } num_reverb_decay_sections_ = num_reverb_decay_sections_ > 0 ? num_reverb_decay_sections_ - 1 : 0; ++current_reverb_decay_section_; } else { constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60. constexpr float kMinDecay = 0.02f; // ~15 ms max RT60. // Accumulated variables throughout whole filter. // Solve for decay rate. float decay = reverb_decay_; if (accumulated_nn_ != 0.f) { const float exp_candidate = -accumulated_nz_ / accumulated_nn_; decay = powf(2.0f, -exp_candidate * kFftLengthBy2); decay = std::min(decay, kMaxDecay); decay = std::max(decay, kMinDecay); } // Filter tail energy (assumed to be noise). constexpr size_t kTailLength = kFftLengthBy2; constexpr float k1ByTailLength = 1.f / kTailLength; const size_t tail_index = GetTimeDomainLength(filter_main_length_blocks_) - kTailLength; RTC_DCHECK_GT(matching_data.size(), tail_index); tail_energy_ = std::accumulate(matching_data.begin() + tail_index, matching_data.end(), 0.f) * k1ByTailLength; // Update length of decay. num_reverb_decay_sections_ = num_reverb_decay_sections_next_; num_reverb_decay_sections_next_ = 0; // Must have enough data (number of sections) in order // to estimate decay rate. if (num_reverb_decay_sections_ < 5) { num_reverb_decay_sections_ = 0; } const float N = num_reverb_decay_sections_ * kFftLengthBy2; accumulated_nz_ = 0.f; const float k1By12 = 1.f / 12.f; // Arithmetic sum $2 \sum_{i=0.5}^{(N-1)/2}i^2$ calculated directly. accumulated_nn_ = N * (N * N - 1.0f) * k1By12; accumulated_count_ = -N * 0.5f; // Linear regression approach assumes symmetric index around 0. accumulated_count_ += 0.5f; // Identify the peak index of the impulse response. const size_t peak_index = std::distance( matching_data.begin(), std::max_element(matching_data.begin(), matching_data.end())); current_reverb_decay_section_ = peak_index * kOneByFftLengthBy2 + 3; // Make sure we're not out of bounds. if (current_reverb_decay_section_ + 1 >= filter_main_length_blocks_) { current_reverb_decay_section_ = filter_main_length_blocks_; } size_t start_index = current_reverb_decay_section_ * kFftLengthBy2; float first_section_energy = std::accumulate(matching_data.begin() + start_index, matching_data.begin() + start_index + kFftLengthBy2, 0.f) * kOneByFftLengthBy2; // To estimate the reverb decay, the energy of the first filter section // must be substantially larger than the last. // Also, the first filter section energy must not deviate too much // from the max peak. bool main_filter_has_reverb = first_section_energy > 4.f * tail_energy_; bool main_filter_is_sane = first_section_energy > 2.f * tail_energy_ && matching_data[peak_index] < 100.f; // Not detecting any decay, but tail is over noise - assume max decay. if (num_reverb_decay_sections_ == 0 && main_filter_is_sane && main_filter_has_reverb) { decay = kMaxDecay; } if (main_filter_is_sane && num_reverb_decay_sections_ > 0) { decay = std::max(.97f * reverb_decay_, decay); reverb_decay_ -= alpha_ * (reverb_decay_ - decay); } found_end_of_reverb_decay_ = !(main_filter_is_sane && main_filter_has_reverb); alpha_ = 0.f; // Stop estimation of the decay until another good filter is // received } } // Updates the estimation of the frequency response at the filter tail. void ReverbModelEstimator::UpdateFreqRespTail( const std::vector>& filter_freq_response, int filter_delay_blocks, float alpha) { size_t num_blocks = filter_freq_response.size(); rtc::ArrayView freq_resp_tail( filter_freq_response[num_blocks - 1]); rtc::ArrayView freq_resp_direct_path( filter_freq_response[filter_delay_blocks]); float ratio_energies = ComputeRatioEnergies(freq_resp_direct_path, freq_resp_tail); ratio_tail_to_direct_path_ += alpha * (ratio_energies - ratio_tail_to_direct_path_); for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { freq_resp_tail_[k] = freq_resp_direct_path[k] * ratio_tail_to_direct_path_; } for (size_t k = 1; k < kFftLengthBy2; ++k) { float avg_neighbour = 0.5f * (freq_resp_tail_[k - 1] + freq_resp_tail_[k + 1]); freq_resp_tail_[k] = std::max(freq_resp_tail_[k], avg_neighbour); } } void ReverbModelEstimator::Dump( const std::unique_ptr& data_dumper) { data_dumper->DumpRaw("aec3_reverb_decay", reverb_decay_); data_dumper->DumpRaw("aec3_reverb_tail_energy", tail_energy_); data_dumper->DumpRaw("aec3_reverb_alpha", alpha_); data_dumper->DumpRaw("aec3_num_reverb_decay_sections", static_cast(num_reverb_decay_sections_)); } } // namespace webrtc