/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/video_coding/frame_buffer2.h" #include #include #include #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/modules/video_coding/jitter_estimator.h" #include "webrtc/modules/video_coding/timing.h" #include "webrtc/system_wrappers/include/clock.h" #include "webrtc/system_wrappers/include/metrics.h" namespace webrtc { namespace video_coding { namespace { // Max number of frames the buffer will hold. constexpr int kMaxFramesBuffered = 600; // Max number of decoded frame info that will be saved. constexpr int kMaxFramesHistory = 50; } // namespace FrameBuffer::FrameBuffer(Clock* clock, VCMJitterEstimator* jitter_estimator, VCMTiming* timing) : clock_(clock), new_countinuous_frame_event_(false, false), jitter_estimator_(jitter_estimator), timing_(timing), inter_frame_delay_(clock_->TimeInMilliseconds()), last_decoded_frame_it_(frames_.end()), last_continuous_frame_it_(frames_.end()), num_frames_history_(0), num_frames_buffered_(0), stopped_(false), protection_mode_(kProtectionNack) {} FrameBuffer::~FrameBuffer() { UpdateHistograms(); } FrameBuffer::ReturnReason FrameBuffer::NextFrame( int64_t max_wait_time_ms, std::unique_ptr* frame_out) { int64_t latest_return_time = clock_->TimeInMilliseconds() + max_wait_time_ms; int64_t wait_ms = max_wait_time_ms; FrameMap::iterator next_frame_it; do { int64_t now_ms = clock_->TimeInMilliseconds(); { rtc::CritScope lock(&crit_); new_countinuous_frame_event_.Reset(); if (stopped_) return kStopped; wait_ms = max_wait_time_ms; // Need to hold |crit_| in order to use |frames_|, therefore we // set it here in the loop instead of outside the loop in order to not // acquire the lock unnecesserily. next_frame_it = frames_.end(); // |frame_it| points to the first frame after the // |last_decoded_frame_it_|. auto frame_it = frames_.end(); if (last_decoded_frame_it_ == frames_.end()) { frame_it = frames_.begin(); } else { frame_it = last_decoded_frame_it_; ++frame_it; } // |continuous_end_it| points to the first frame after the // |last_continuous_frame_it_|. auto continuous_end_it = last_continuous_frame_it_; if (continuous_end_it != frames_.end()) ++continuous_end_it; for (; frame_it != continuous_end_it; ++frame_it) { if (!frame_it->second.continuous || frame_it->second.num_missing_decodable > 0) { continue; } FrameObject* frame = frame_it->second.frame.get(); next_frame_it = frame_it; if (frame->RenderTime() == -1) frame->SetRenderTime(timing_->RenderTimeMs(frame->timestamp, now_ms)); wait_ms = timing_->MaxWaitingTime(frame->RenderTime(), now_ms); // This will cause the frame buffer to prefer high framerate rather // than high resolution in the case of the decoder not decoding fast // enough and the stream has multiple spatial and temporal layers. if (wait_ms == 0) continue; break; } } // rtc::Critscope lock(&crit_); wait_ms = std::min(wait_ms, latest_return_time - now_ms); wait_ms = std::max(wait_ms, 0); } while (new_countinuous_frame_event_.Wait(wait_ms)); rtc::CritScope lock(&crit_); if (next_frame_it != frames_.end()) { std::unique_ptr frame = std::move(next_frame_it->second.frame); int64_t received_time = frame->ReceivedTime(); uint32_t timestamp = frame->timestamp; int64_t frame_delay; if (inter_frame_delay_.CalculateDelay(timestamp, &frame_delay, received_time)) { jitter_estimator_->UpdateEstimate(frame_delay, frame->size()); } float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0; timing_->SetJitterDelay(jitter_estimator_->GetJitterEstimate(rtt_mult)); timing_->UpdateCurrentDelay(frame->RenderTime(), clock_->TimeInMilliseconds()); UpdateJitterDelay(); PropagateDecodability(next_frame_it->second); AdvanceLastDecodedFrame(next_frame_it); last_decoded_frame_timestamp_ = frame->timestamp; *frame_out = std::move(frame); return kFrameFound; } else { return kTimeout; } } void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) { rtc::CritScope lock(&crit_); protection_mode_ = mode; } void FrameBuffer::Start() { rtc::CritScope lock(&crit_); stopped_ = false; } void FrameBuffer::Stop() { rtc::CritScope lock(&crit_); stopped_ = true; new_countinuous_frame_event_.Set(); } int FrameBuffer::InsertFrame(std::unique_ptr frame) { rtc::CritScope lock(&crit_); RTC_DCHECK(frame); ++num_total_frames_; if (frame->num_references == 0) ++num_key_frames_; FrameKey key(frame->picture_id, frame->spatial_layer); int last_continuous_picture_id = last_continuous_frame_it_ == frames_.end() ? -1 : last_continuous_frame_it_->first.picture_id; if (num_frames_buffered_ >= kMaxFramesBuffered) { LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id << ":" << static_cast(key.spatial_layer) << ") could not be inserted due to the frame " << "buffer being full, dropping frame."; return last_continuous_picture_id; } if (frame->inter_layer_predicted && frame->spatial_layer == 0) { LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id << ":" << static_cast(key.spatial_layer) << ") is marked as inter layer predicted, dropping frame."; return last_continuous_picture_id; } if (last_decoded_frame_it_ != frames_.end() && key < last_decoded_frame_it_->first) { if (AheadOf(frame->timestamp, last_decoded_frame_timestamp_) && frame->num_references == 0) { // If this frame has a newer timestamp but an earlier picture id then we // assume there has been a jump in the picture id due to some encoder // reconfiguration or some other reason. Even though this is not according // to spec we can still continue to decode from this frame if it is a // keyframe. LOG(LS_WARNING) << "A jump in picture id was detected, clearing buffer."; ClearFramesAndHistory(); last_continuous_picture_id = -1; } else { LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id << ":" << static_cast(key.spatial_layer) << ") inserted after frame (" << last_decoded_frame_it_->first.picture_id << ":" << static_cast( last_decoded_frame_it_->first.spatial_layer) << ") was handed off for decoding, dropping frame."; return last_continuous_picture_id; } } auto info = frames_.insert(std::make_pair(key, FrameInfo())).first; if (info->second.frame) { LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id << ":" << static_cast(key.spatial_layer) << ") already inserted, dropping frame."; return last_continuous_picture_id; } if (!UpdateFrameInfoWithIncomingFrame(*frame, info)) return last_continuous_picture_id; info->second.frame = std::move(frame); ++num_frames_buffered_; if (info->second.num_missing_continuous == 0) { info->second.continuous = true; PropagateContinuity(info); last_continuous_picture_id = last_continuous_frame_it_->first.picture_id; // Since we now have new continuous frames there might be a better frame // to return from NextFrame. Signal that thread so that it again can choose // which frame to return. new_countinuous_frame_event_.Set(); } return last_continuous_picture_id; } void FrameBuffer::PropagateContinuity(FrameMap::iterator start) { RTC_DCHECK(start->second.continuous); if (last_continuous_frame_it_ == frames_.end()) last_continuous_frame_it_ = start; std::queue continuous_frames; continuous_frames.push(start); // A simple BFS to traverse continuous frames. while (!continuous_frames.empty()) { auto frame = continuous_frames.front(); continuous_frames.pop(); if (last_continuous_frame_it_->first < frame->first) last_continuous_frame_it_ = frame; // Loop through all dependent frames, and if that frame no longer has // any unfulfilled dependencies then that frame is continuous as well. for (size_t d = 0; d < frame->second.num_dependent_frames; ++d) { auto frame_ref = frames_.find(frame->second.dependent_frames[d]); --frame_ref->second.num_missing_continuous; if (frame_ref->second.num_missing_continuous == 0) { frame_ref->second.continuous = true; continuous_frames.push(frame_ref); } } } } void FrameBuffer::PropagateDecodability(const FrameInfo& info) { for (size_t d = 0; d < info.num_dependent_frames; ++d) { auto ref_info = frames_.find(info.dependent_frames[d]); RTC_DCHECK(ref_info != frames_.end()); RTC_DCHECK_GT(ref_info->second.num_missing_decodable, 0U); --ref_info->second.num_missing_decodable; } } void FrameBuffer::AdvanceLastDecodedFrame(FrameMap::iterator decoded) { if (last_decoded_frame_it_ == frames_.end()) { last_decoded_frame_it_ = frames_.begin(); } else { RTC_DCHECK(last_decoded_frame_it_->first < decoded->first); ++last_decoded_frame_it_; } --num_frames_buffered_; ++num_frames_history_; // First, delete non-decoded frames from the history. while (last_decoded_frame_it_ != decoded) { if (last_decoded_frame_it_->second.frame) --num_frames_buffered_; last_decoded_frame_it_ = frames_.erase(last_decoded_frame_it_); } // Then remove old history if we have too much history saved. if (num_frames_history_ > kMaxFramesHistory) { frames_.erase(frames_.begin()); --num_frames_history_; } } bool FrameBuffer::UpdateFrameInfoWithIncomingFrame(const FrameObject& frame, FrameMap::iterator info) { FrameKey key(frame.picture_id, frame.spatial_layer); info->second.num_missing_continuous = frame.num_references; info->second.num_missing_decodable = frame.num_references; RTC_DCHECK(last_decoded_frame_it_ == frames_.end() || last_decoded_frame_it_->first < info->first); // Check how many dependencies that have already been fulfilled. for (size_t i = 0; i < frame.num_references; ++i) { FrameKey ref_key(frame.references[i], frame.spatial_layer); auto ref_info = frames_.find(ref_key); // Does |frame| depend on a frame earlier than the last decoded frame? if (last_decoded_frame_it_ != frames_.end() && ref_key <= last_decoded_frame_it_->first) { if (ref_info == frames_.end()) { LOG(LS_WARNING) << "Frame with (picture_id:spatial_id) (" << key.picture_id << ":" << static_cast(key.spatial_layer) << " depends on a non-decoded frame more previous than " << "the last decoded frame, dropping frame."; return false; } --info->second.num_missing_continuous; --info->second.num_missing_decodable; } else { if (ref_info == frames_.end()) ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first; if (ref_info->second.continuous) --info->second.num_missing_continuous; // Add backwards reference so |frame| can be updated when new // frames are inserted or decoded. ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] = key; ++ref_info->second.num_dependent_frames; } RTC_DCHECK_LE(ref_info->second.num_missing_continuous, ref_info->second.num_missing_decodable); } // Check if we have the lower spatial layer frame. if (frame.inter_layer_predicted) { ++info->second.num_missing_continuous; ++info->second.num_missing_decodable; FrameKey ref_key(frame.picture_id, frame.spatial_layer - 1); // Gets or create the FrameInfo for the referenced frame. auto ref_info = frames_.insert(std::make_pair(ref_key, FrameInfo())).first; if (ref_info->second.continuous) --info->second.num_missing_continuous; if (ref_info == last_decoded_frame_it_) { --info->second.num_missing_decodable; } else { ref_info->second.dependent_frames[ref_info->second.num_dependent_frames] = key; ++ref_info->second.num_dependent_frames; } RTC_DCHECK_LE(ref_info->second.num_missing_continuous, ref_info->second.num_missing_decodable); } RTC_DCHECK_LE(info->second.num_missing_continuous, info->second.num_missing_decodable); return true; } void FrameBuffer::UpdateJitterDelay() { int unused; int delay; timing_->GetTimings(&unused, &unused, &unused, &unused, &delay, &unused, &unused); accumulated_delay_ += delay; ++accumulated_delay_samples_; } void FrameBuffer::UpdateHistograms() const { rtc::CritScope lock(&crit_); if (num_total_frames_ > 0) { int key_frames_permille = (static_cast(num_key_frames_) * 1000.0f / static_cast(num_total_frames_) + 0.5f); RTC_HISTOGRAM_COUNTS_1000("WebRTC.Video.KeyFramesReceivedInPermille", key_frames_permille); } if (accumulated_delay_samples_ > 0) { RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.JitterBufferDelayInMs", accumulated_delay_ / accumulated_delay_samples_); } } void FrameBuffer::ClearFramesAndHistory() { frames_.clear(); last_decoded_frame_it_ = frames_.end(); last_continuous_frame_it_ = frames_.end(); num_frames_history_ = 0; num_frames_buffered_ = 0; } } // namespace video_coding } // namespace webrtc