/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/video_coding/frame_buffer2.h" #include #include #include #include #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/platform_thread.h" #include "webrtc/base/random.h" #include "webrtc/modules/video_coding/frame_object.h" #include "webrtc/modules/video_coding/jitter_estimator.h" #include "webrtc/modules/video_coding/sequence_number_util.h" #include "webrtc/modules/video_coding/timing.h" #include "webrtc/system_wrappers/include/clock.h" namespace webrtc { namespace video_coding { class VCMTimingFake : public VCMTiming { public: explicit VCMTimingFake(Clock* clock) : VCMTiming(clock) {} int64_t RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms) const override { if (last_ms_ == -1) { last_ms_ = now_ms + kDelayMs; last_timestamp_ = frame_timestamp; } uint32_t diff = MinDiff(frame_timestamp, last_timestamp_); if (AheadOf(frame_timestamp, last_timestamp_)) last_ms_ += diff / 90; else last_ms_ -= diff / 90; last_timestamp_ = frame_timestamp; return last_ms_; } uint32_t MaxWaitingTime(int64_t render_time_ms, int64_t now_ms) const override { return std::max(0, render_time_ms - now_ms - kDecodeTime); } private: static constexpr int kDelayMs = 50; static constexpr int kDecodeTime = kDelayMs / 2; mutable uint32_t last_timestamp_ = 0; mutable int64_t last_ms_ = -1; }; class VCMJitterEstimatorMock : public VCMJitterEstimator { public: explicit VCMJitterEstimatorMock(Clock* clock) : VCMJitterEstimator(clock) {} MOCK_METHOD1(UpdateRtt, void(int64_t rttMs)); MOCK_METHOD3(UpdateEstimate, void(int64_t frameDelayMs, uint32_t frameSizeBytes, bool incompleteFrame)); }; class FrameObjectMock : public FrameObject { public: MOCK_CONST_METHOD1(GetBitstream, bool(uint8_t* destination)); }; class TestFrameBuffer2 : public ::testing::Test { protected: static constexpr int kMaxReferences = 5; static constexpr int kFps1 = 1000; static constexpr int kFps10 = kFps1 / 10; static constexpr int kFps20 = kFps1 / 20; TestFrameBuffer2() : clock_(0), timing_(&clock_), jitter_estimator_(&clock_), buffer_(&clock_, &jitter_estimator_, &timing_), rand_(0x34678213), tear_down_(false), extract_thread_(&ExtractLoop, this, "Extract Thread"), trigger_extract_event_(false, false), crit_acquired_event_(false, false) {} void SetUp() override { extract_thread_.Start(); } void TearDown() override { tear_down_ = true; trigger_extract_event_.Set(); extract_thread_.Stop(); } template void InsertFrame(uint16_t picture_id, uint8_t spatial_layer, int64_t ts_ms, bool inter_layer_predicted, T... refs) { static_assert(sizeof...(refs) <= kMaxReferences, "To many references specified for FrameObject."); std::array references = {{refs...}}; std::unique_ptr frame(new FrameObjectMock()); frame->picture_id = picture_id; frame->spatial_layer = spatial_layer; frame->timestamp = ts_ms * 90; frame->num_references = references.size(); frame->inter_layer_predicted = inter_layer_predicted; for (size_t r = 0; r < references.size(); ++r) frame->references[r] = references[r]; buffer_.InsertFrame(std::move(frame)); } void ExtractFrame(int64_t max_wait_time = 0) { crit_.Enter(); if (max_wait_time == 0) { frames_.emplace_back(buffer_.NextFrame(0)); crit_.Leave(); } else { max_wait_time_ = max_wait_time; trigger_extract_event_.Set(); crit_.Leave(); // Make sure |crit_| is aquired by |extract_thread_| before returning. crit_acquired_event_.Wait(rtc::Event::kForever); } } void CheckFrame(size_t index, int picture_id, int spatial_layer) { rtc::CritScope lock(&crit_); ASSERT_LT(index, frames_.size()); ASSERT_TRUE(frames_[index]); ASSERT_EQ(picture_id, frames_[index]->picture_id); ASSERT_EQ(spatial_layer, frames_[index]->spatial_layer); } void CheckNoFrame(size_t index) { rtc::CritScope lock(&crit_); ASSERT_LT(index, frames_.size()); ASSERT_FALSE(frames_[index]); } static bool ExtractLoop(void* obj) { TestFrameBuffer2* tfb = static_cast(obj); while (true) { tfb->trigger_extract_event_.Wait(rtc::Event::kForever); { rtc::CritScope lock(&tfb->crit_); tfb->crit_acquired_event_.Set(); if (tfb->tear_down_) return false; tfb->frames_.emplace_back(tfb->buffer_.NextFrame(tfb->max_wait_time_)); } } } uint32_t Rand() { return rand_.Rand(); } SimulatedClock clock_; VCMTimingFake timing_; VCMJitterEstimatorMock jitter_estimator_; FrameBuffer buffer_; std::vector> frames_; Random rand_; int64_t max_wait_time_; bool tear_down_; rtc::PlatformThread extract_thread_; rtc::Event trigger_extract_event_; rtc::Event crit_acquired_event_; rtc::CriticalSection crit_; }; // Following tests are timing dependent. Either the timeouts have to // be increased by a large margin, which would slow down all trybots, // or we disable them for the very slow ones, like we do here. #if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) TEST_F(TestFrameBuffer2, WaitForFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); ExtractFrame(50); InsertFrame(pid, 0, ts, false); CheckFrame(0, pid, 0); } TEST_F(TestFrameBuffer2, OneSuperFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); ExtractFrame(50); InsertFrame(pid, 1, ts, true); InsertFrame(pid, 0, ts, false); ExtractFrame(); CheckFrame(0, pid, 0); CheckFrame(1, pid, 1); } TEST_F(TestFrameBuffer2, OneLayerStreamReordered) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false); ExtractFrame(); CheckFrame(0, pid, 0); for (int i = 1; i < 10; i += 2) { ExtractFrame(50); InsertFrame(pid + i + 1, 0, ts + (i + 1) * kFps10, false, pid + i); clock_.AdvanceTimeMilliseconds(kFps10); InsertFrame(pid + i, 0, ts + i * kFps10, false, pid + i - 1); clock_.AdvanceTimeMilliseconds(kFps10); ExtractFrame(); CheckFrame(i, pid + i, 0); CheckFrame(i + 1, pid + i + 1, 0); } } #endif // Timing dependent tests. TEST_F(TestFrameBuffer2, ExtractFromEmptyBuffer) { ExtractFrame(); CheckNoFrame(0); } TEST_F(TestFrameBuffer2, OneLayerStream) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false); ExtractFrame(); CheckFrame(0, pid, 0); for (int i = 1; i < 10; ++i) { InsertFrame(pid + i, 0, ts + i * kFps10, false, pid + i - 1); ExtractFrame(); clock_.AdvanceTimeMilliseconds(kFps10); CheckFrame(i, pid + i, 0); } } TEST_F(TestFrameBuffer2, DropTemporalLayerSlowDecoder) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false); InsertFrame(pid + 1, 0, ts + kFps20, false); for (int i = 2; i < 10; i += 2) { uint32_t ts_tl0 = ts + i / 2 * kFps10; InsertFrame(pid + i, 0, ts_tl0, false, pid + i - 2); InsertFrame(pid + i + 1, 0, ts_tl0 + kFps20, false, pid + i, pid + i - 1); } for (int i = 0; i < 10; ++i) { ExtractFrame(); clock_.AdvanceTimeMilliseconds(60); } CheckFrame(0, pid, 0); CheckFrame(1, pid + 1, 0); CheckFrame(2, pid + 2, 0); CheckFrame(3, pid + 4, 0); CheckFrame(4, pid + 6, 0); CheckFrame(5, pid + 8, 0); CheckNoFrame(6); CheckNoFrame(7); CheckNoFrame(8); CheckNoFrame(9); } TEST_F(TestFrameBuffer2, DropSpatialLayerSlowDecoder) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false); InsertFrame(pid, 1, ts, false); for (int i = 1; i < 6; ++i) { uint32_t ts_tl0 = ts + i * kFps10; InsertFrame(pid + i, 0, ts_tl0, false, pid + i - 1); InsertFrame(pid + i, 1, ts_tl0, false, pid + i - 1); } ExtractFrame(); ExtractFrame(); clock_.AdvanceTimeMilliseconds(55); for (int i = 2; i < 12; ++i) { ExtractFrame(); clock_.AdvanceTimeMilliseconds(55); } CheckFrame(0, pid, 0); CheckFrame(1, pid, 1); CheckFrame(2, pid + 1, 0); CheckFrame(3, pid + 1, 1); CheckFrame(4, pid + 2, 0); CheckFrame(5, pid + 2, 1); CheckFrame(6, pid + 3, 0); CheckFrame(7, pid + 4, 0); CheckFrame(8, pid + 5, 0); CheckNoFrame(9); CheckNoFrame(10); CheckNoFrame(11); } TEST_F(TestFrameBuffer2, InsertLateFrame) { uint16_t pid = Rand(); uint32_t ts = Rand(); InsertFrame(pid, 0, ts, false); ExtractFrame(); InsertFrame(pid + 2, 0, ts, false); ExtractFrame(); InsertFrame(pid + 1, 0, ts, false, pid); ExtractFrame(); CheckFrame(0, pid, 0); CheckFrame(1, pid + 2, 0); CheckNoFrame(2); } } // namespace video_coding } // namespace webrtc