/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "call/payload_router.h" #include "modules/rtp_rtcp/include/rtp_rtcp.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/video_coding/include/video_codec_interface.h" #include "rtc_base/checks.h" #include "rtc_base/random.h" #include "rtc_base/timeutils.h" namespace webrtc { namespace { // Map information from info into rtp. void CopyCodecSpecific(const CodecSpecificInfo* info, RTPVideoHeader* rtp) { RTC_DCHECK(info); rtp->codec = info->codecType; switch (info->codecType) { case kVideoCodecVP8: { rtp->vp8().InitRTPVideoHeaderVP8(); rtp->vp8().nonReference = info->codecSpecific.VP8.nonReference; rtp->vp8().temporalIdx = info->codecSpecific.VP8.temporalIdx; rtp->vp8().layerSync = info->codecSpecific.VP8.layerSync; rtp->vp8().keyIdx = info->codecSpecific.VP8.keyIdx; rtp->simulcastIdx = info->codecSpecific.VP8.simulcastIdx; return; } case kVideoCodecVP9: { rtp->vp9().InitRTPVideoHeaderVP9(); rtp->vp9().inter_pic_predicted = info->codecSpecific.VP9.inter_pic_predicted; rtp->vp9().flexible_mode = info->codecSpecific.VP9.flexible_mode; rtp->vp9().ss_data_available = info->codecSpecific.VP9.ss_data_available; rtp->vp9().non_ref_for_inter_layer_pred = info->codecSpecific.VP9.non_ref_for_inter_layer_pred; rtp->vp9().temporal_idx = info->codecSpecific.VP9.temporal_idx; rtp->vp9().spatial_idx = info->codecSpecific.VP9.spatial_idx; rtp->vp9().temporal_up_switch = info->codecSpecific.VP9.temporal_up_switch; rtp->vp9().inter_layer_predicted = info->codecSpecific.VP9.inter_layer_predicted; rtp->vp9().gof_idx = info->codecSpecific.VP9.gof_idx; rtp->vp9().num_spatial_layers = info->codecSpecific.VP9.num_spatial_layers; if (info->codecSpecific.VP9.ss_data_available) { rtp->vp9().spatial_layer_resolution_present = info->codecSpecific.VP9.spatial_layer_resolution_present; if (info->codecSpecific.VP9.spatial_layer_resolution_present) { for (size_t i = 0; i < info->codecSpecific.VP9.num_spatial_layers; ++i) { rtp->vp9().width[i] = info->codecSpecific.VP9.width[i]; rtp->vp9().height[i] = info->codecSpecific.VP9.height[i]; } } rtp->vp9().gof.CopyGofInfoVP9(info->codecSpecific.VP9.gof); } rtp->vp9().num_ref_pics = info->codecSpecific.VP9.num_ref_pics; for (int i = 0; i < info->codecSpecific.VP9.num_ref_pics; ++i) { rtp->vp9().pid_diff[i] = info->codecSpecific.VP9.p_diff[i]; } rtp->vp9().end_of_picture = info->codecSpecific.VP9.end_of_picture; return; } case kVideoCodecH264: rtp->h264().packetization_mode = info->codecSpecific.H264.packetization_mode; rtp->simulcastIdx = info->codecSpecific.H264.simulcast_idx; return; case kVideoCodecMultiplex: case kVideoCodecGeneric: rtp->codec = kVideoCodecGeneric; rtp->simulcastIdx = info->codecSpecific.generic.simulcast_idx; return; default: return; } } void SetVideoTiming(VideoSendTiming* timing, const EncodedImage& image) { if (image.timing_.flags == VideoSendTiming::TimingFrameFlags::kInvalid || image.timing_.flags == VideoSendTiming::TimingFrameFlags::kNotTriggered) { timing->flags = VideoSendTiming::TimingFrameFlags::kInvalid; return; } timing->encode_start_delta_ms = VideoSendTiming::GetDeltaCappedMs( image.capture_time_ms_, image.timing_.encode_start_ms); timing->encode_finish_delta_ms = VideoSendTiming::GetDeltaCappedMs( image.capture_time_ms_, image.timing_.encode_finish_ms); timing->packetization_finish_delta_ms = 0; timing->pacer_exit_delta_ms = 0; timing->network_timestamp_delta_ms = 0; timing->network2_timestamp_delta_ms = 0; timing->flags = image.timing_.flags; } } // namespace // State for setting picture id and tl0 pic idx, for VP8 and VP9 // TODO(nisse): Make these properties not codec specific. class PayloadRouter::RtpPayloadParams final { public: RtpPayloadParams(const uint32_t ssrc, const RtpPayloadState* state) : ssrc_(ssrc) { Random random(rtc::TimeMicros()); state_.picture_id = state ? state->picture_id : (random.Rand() & 0x7FFF); state_.tl0_pic_idx = state ? state->tl0_pic_idx : (random.Rand()); } ~RtpPayloadParams() {} void Set(RTPVideoHeader* rtp_video_header, bool first_frame_in_picture) { // Always set picture id. Set tl0_pic_idx iff temporal index is set. if (first_frame_in_picture) { state_.picture_id = (static_cast(state_.picture_id) + 1) & 0x7FFF; } if (rtp_video_header->codec == kVideoCodecVP8) { rtp_video_header->vp8().pictureId = state_.picture_id; if (rtp_video_header->vp8().temporalIdx != kNoTemporalIdx) { if (rtp_video_header->vp8().temporalIdx == 0) { ++state_.tl0_pic_idx; } rtp_video_header->vp8().tl0PicIdx = state_.tl0_pic_idx; } } if (rtp_video_header->codec == kVideoCodecVP9) { rtp_video_header->vp9().picture_id = state_.picture_id; // Note that in the case that we have no temporal layers but we do have // spatial layers, packets will carry layering info with a temporal_idx of // zero, and we then have to set and increment tl0_pic_idx. if (rtp_video_header->vp9().temporal_idx != kNoTemporalIdx || rtp_video_header->vp9().spatial_idx != kNoSpatialIdx) { if (first_frame_in_picture && (rtp_video_header->vp9().temporal_idx == 0 || rtp_video_header->vp9().temporal_idx == kNoTemporalIdx)) { ++state_.tl0_pic_idx; } rtp_video_header->vp9().tl0_pic_idx = state_.tl0_pic_idx; } } } uint32_t ssrc() const { return ssrc_; } RtpPayloadState state() const { return state_; } private: const uint32_t ssrc_; RtpPayloadState state_; }; PayloadRouter::PayloadRouter(const std::vector& rtp_modules, const std::vector& ssrcs, int payload_type, const std::map& states) : active_(false), rtp_modules_(rtp_modules), payload_type_(payload_type) { RTC_DCHECK_EQ(ssrcs.size(), rtp_modules.size()); // SSRCs are assumed to be sorted in the same order as |rtp_modules|. for (uint32_t ssrc : ssrcs) { // Restore state if it previously existed. const RtpPayloadState* state = nullptr; auto it = states.find(ssrc); if (it != states.end()) { state = &it->second; } params_.push_back(RtpPayloadParams(ssrc, state)); } } PayloadRouter::~PayloadRouter() {} void PayloadRouter::SetActive(bool active) { rtc::CritScope lock(&crit_); if (active_ == active) return; const std::vector active_modules(rtp_modules_.size(), active); SetActiveModules(active_modules); } void PayloadRouter::SetActiveModules(const std::vector active_modules) { rtc::CritScope lock(&crit_); RTC_DCHECK_EQ(rtp_modules_.size(), active_modules.size()); active_ = false; for (size_t i = 0; i < active_modules.size(); ++i) { if (active_modules[i]) { active_ = true; } // Sends a kRtcpByeCode when going from true to false. rtp_modules_[i]->SetSendingStatus(active_modules[i]); // If set to false this module won't send media. rtp_modules_[i]->SetSendingMediaStatus(active_modules[i]); } } bool PayloadRouter::IsActive() { rtc::CritScope lock(&crit_); return active_ && !rtp_modules_.empty(); } std::map PayloadRouter::GetRtpPayloadStates() const { rtc::CritScope lock(&crit_); std::map payload_states; for (const auto& param : params_) { payload_states[param.ssrc()] = param.state(); } return payload_states; } EncodedImageCallback::Result PayloadRouter::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) { rtc::CritScope lock(&crit_); RTC_DCHECK(!rtp_modules_.empty()); if (!active_) return Result(Result::ERROR_SEND_FAILED); RTPVideoHeader rtp_video_header; if (codec_specific_info) CopyCodecSpecific(codec_specific_info, &rtp_video_header); rtp_video_header.rotation = encoded_image.rotation_; rtp_video_header.content_type = encoded_image.content_type_; rtp_video_header.playout_delay = encoded_image.playout_delay_; SetVideoTiming(&rtp_video_header.video_timing, encoded_image); int stream_index = rtp_video_header.simulcastIdx; RTC_DCHECK_LT(stream_index, rtp_modules_.size()); // Sets picture id and tl0 pic idx. const bool first_frame_in_picture = (codec_specific_info && codec_specific_info->codecType == kVideoCodecVP9) ? codec_specific_info->codecSpecific.VP9.first_frame_in_picture : true; params_[stream_index].Set(&rtp_video_header, first_frame_in_picture); uint32_t frame_id; if (!rtp_modules_[stream_index]->Sending()) { // The payload router could be active but this module isn't sending. return Result(Result::ERROR_SEND_FAILED); } bool send_result = rtp_modules_[stream_index]->SendOutgoingData( encoded_image._frameType, payload_type_, encoded_image._timeStamp, encoded_image.capture_time_ms_, encoded_image._buffer, encoded_image._length, fragmentation, &rtp_video_header, &frame_id); if (!send_result) return Result(Result::ERROR_SEND_FAILED); return Result(Result::OK, frame_id); } void PayloadRouter::OnBitrateAllocationUpdated( const VideoBitrateAllocation& bitrate) { rtc::CritScope lock(&crit_); if (IsActive()) { if (rtp_modules_.size() == 1) { // If spatial scalability is enabled, it is covered by a single stream. rtp_modules_[0]->SetVideoBitrateAllocation(bitrate); } else { // Simulcast is in use, split the VideoBitrateAllocation into one struct // per rtp stream, moving over the temporal layer allocation. for (size_t si = 0; si < rtp_modules_.size(); ++si) { // Don't send empty TargetBitrate messages on streams not being relayed. if (!bitrate.IsSpatialLayerUsed(si)) { // The next spatial layer could be used if the current one is // inactive. continue; } VideoBitrateAllocation layer_bitrate; for (int tl = 0; tl < kMaxTemporalStreams; ++tl) { if (bitrate.HasBitrate(si, tl)) layer_bitrate.SetBitrate(0, tl, bitrate.GetBitrate(si, tl)); } rtp_modules_[si]->SetVideoBitrateAllocation(layer_bitrate); } } } } } // namespace webrtc