/* * Copyright 2011 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "webrtc/p2p/base/dtlstransportchannel.h" #include "webrtc/p2p/base/fakeicetransport.h" #include "webrtc/p2p/base/packettransportinternal.h" #include "webrtc/rtc_base/checks.h" #include "webrtc/rtc_base/dscp.h" #include "webrtc/rtc_base/gunit.h" #include "webrtc/rtc_base/helpers.h" #include "webrtc/rtc_base/ssladapter.h" #include "webrtc/rtc_base/sslidentity.h" #include "webrtc/rtc_base/sslstreamadapter.h" #include "webrtc/rtc_base/stringutils.h" #define MAYBE_SKIP_TEST(feature) \ if (!(rtc::SSLStreamAdapter::feature())) { \ LOG(LS_INFO) << #feature " feature disabled... skipping"; \ return; \ } static const char kIceUfrag1[] = "TESTICEUFRAG0001"; static const char kIcePwd1[] = "TESTICEPWD00000000000001"; static const size_t kPacketNumOffset = 8; static const size_t kPacketHeaderLen = 12; static const int kFakePacketId = 0x1234; static const int kTimeout = 10000; static bool IsRtpLeadByte(uint8_t b) { return ((b & 0xC0) == 0x80); } cricket::TransportDescription MakeTransportDescription( const rtc::scoped_refptr& cert, cricket::ConnectionRole role) { std::unique_ptr fingerprint; if (cert) { std::string digest_algorithm; EXPECT_TRUE( cert->ssl_certificate().GetSignatureDigestAlgorithm(&digest_algorithm)); EXPECT_FALSE(digest_algorithm.empty()); fingerprint.reset( rtc::SSLFingerprint::Create(digest_algorithm, cert->identity())); EXPECT_TRUE(fingerprint.get() != NULL); EXPECT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); } return cricket::TransportDescription(std::vector(), kIceUfrag1, kIcePwd1, cricket::ICEMODE_FULL, role, fingerprint.get()); } using cricket::ConnectionRole; enum Flags { NF_REOFFER = 0x1, NF_EXPECT_FAILURE = 0x2 }; // TODO(deadbeef): Remove the dependency on JsepTransport. This test should be // testing DtlsTransportChannel by itself, calling methods to set the // configuration directly instead of negotiating TransportDescriptions. class DtlsTestClient : public sigslot::has_slots<> { public: DtlsTestClient(const std::string& name) : name_(name) {} void CreateCertificate(rtc::KeyType key_type) { certificate_ = rtc::RTCCertificate::Create(std::unique_ptr( rtc::SSLIdentity::Generate(name_, key_type))); } const rtc::scoped_refptr& certificate() { return certificate_; } void SetupMaxProtocolVersion(rtc::SSLProtocolVersion version) { ssl_max_version_ = version; } void SetupChannels(int count, cricket::IceRole role, int async_delay_ms = 0) { transport_.reset( new cricket::JsepTransport("dtls content name", certificate_)); for (int i = 0; i < count; ++i) { cricket::FakeIceTransport* fake_ice_channel = new cricket::FakeIceTransport(transport_->mid(), i); fake_ice_channel->SetAsync(true); fake_ice_channel->SetAsyncDelay(async_delay_ms); // Hook the raw packets so that we can verify they are encrypted. fake_ice_channel->SignalReadPacket.connect( this, &DtlsTestClient::OnFakeTransportChannelReadPacket); cricket::DtlsTransport* dtls = new cricket::DtlsTransport(fake_ice_channel, rtc::CryptoOptions()); dtls->SetLocalCertificate(certificate_); dtls->ice_transport()->SetIceRole(role); dtls->ice_transport()->SetIceTiebreaker( (role == cricket::ICEROLE_CONTROLLING) ? 1 : 2); dtls->SetSslMaxProtocolVersion(ssl_max_version_); dtls->SignalWritableState.connect( this, &DtlsTestClient::OnTransportChannelWritableState); dtls->SignalReadPacket.connect( this, &DtlsTestClient::OnTransportChannelReadPacket); dtls->SignalSentPacket.connect( this, &DtlsTestClient::OnTransportChannelSentPacket); dtls_transports_.push_back(std::unique_ptr(dtls)); fake_ice_transports_.push_back( std::unique_ptr(fake_ice_channel)); transport_->AddChannel(dtls, i); } } cricket::JsepTransport* transport() { return transport_.get(); } cricket::FakeIceTransport* GetFakeIceTransort(int component) { for (const auto& ch : fake_ice_transports_) { if (ch->component() == component) { return ch.get(); } } return nullptr; } cricket::DtlsTransport* GetDtlsTransport(int component) { for (const auto& dtls : dtls_transports_) { if (dtls->component() == component) { return dtls.get(); } } return nullptr; } // Offer DTLS if we have an identity; pass in a remote fingerprint only if // both sides support DTLS. void Negotiate(DtlsTestClient* peer, cricket::ContentAction action, ConnectionRole local_role, ConnectionRole remote_role, int flags) { Negotiate(certificate_, certificate_ ? peer->certificate_ : nullptr, action, local_role, remote_role, flags); } void SetLocalTransportDescription( const rtc::scoped_refptr& cert, cricket::ContentAction action, ConnectionRole role, int flags) { // If |NF_EXPECT_FAILURE| is set, expect SRTD or SLTD to fail when // content action is CA_ANSWER. bool expect_success = !((action == cricket::CA_ANSWER) && (flags & NF_EXPECT_FAILURE)); EXPECT_EQ(expect_success, transport_->SetLocalTransportDescription( MakeTransportDescription(cert, role), action, nullptr)); } void SetRemoteTransportDescription( const rtc::scoped_refptr& cert, cricket::ContentAction action, ConnectionRole role, int flags) { // If |NF_EXPECT_FAILURE| is set, expect SRTD or SLTD to fail when // content action is CA_ANSWER. bool expect_success = !((action == cricket::CA_ANSWER) && (flags & NF_EXPECT_FAILURE)); EXPECT_EQ(expect_success, transport_->SetRemoteTransportDescription( MakeTransportDescription(cert, role), action, nullptr)); } // Allow any DTLS configuration to be specified (including invalid ones). void Negotiate(const rtc::scoped_refptr& local_cert, const rtc::scoped_refptr& remote_cert, cricket::ContentAction action, ConnectionRole local_role, ConnectionRole remote_role, int flags) { if (action == cricket::CA_OFFER) { SetLocalTransportDescription(local_cert, cricket::CA_OFFER, local_role, flags); SetRemoteTransportDescription(remote_cert, cricket::CA_ANSWER, remote_role, flags); } else { SetRemoteTransportDescription(remote_cert, cricket::CA_OFFER, remote_role, flags); // If remote if the offerer and has no DTLS support, answer will be // without any fingerprint. SetLocalTransportDescription(remote_cert ? local_cert : nullptr, cricket::CA_ANSWER, local_role, flags); } } bool Connect(DtlsTestClient* peer, bool asymmetric) { for (auto& ice : fake_ice_transports_) { ice->SetDestination(peer->GetFakeIceTransort(ice->component()), asymmetric); } return true; } bool all_dtls_transports_writable() const { if (dtls_transports_.empty()) { return false; } for (const auto& dtls : dtls_transports_) { if (!dtls->writable()) { return false; } } return true; } bool all_ice_transports_writable() const { if (dtls_transports_.empty()) { return false; } for (const auto& dtls : dtls_transports_) { if (!dtls->ice_transport()->writable()) { return false; } } return true; } int received_dtls_client_hellos() const { return received_dtls_client_hellos_; } int received_dtls_server_hellos() const { return received_dtls_server_hellos_; } bool negotiated_dtls() const { return transport_->local_description() && transport_->local_description()->identity_fingerprint && transport_->remote_description() && transport_->remote_description()->identity_fingerprint; } void CheckRole(rtc::SSLRole role) { if (role == rtc::SSL_CLIENT) { ASSERT_EQ(0, received_dtls_client_hellos_); ASSERT_GT(received_dtls_server_hellos_, 0); } else { ASSERT_GT(received_dtls_client_hellos_, 0); ASSERT_EQ(0, received_dtls_server_hellos_); } } void CheckSrtp(int expected_crypto_suite) { for (const auto& dtls : dtls_transports_) { int crypto_suite; bool rv = dtls->GetSrtpCryptoSuite(&crypto_suite); if (negotiated_dtls() && expected_crypto_suite) { ASSERT_TRUE(rv); ASSERT_EQ(crypto_suite, expected_crypto_suite); } else { ASSERT_FALSE(rv); } } } void CheckSsl() { for (const auto& dtls : dtls_transports_) { int cipher; bool rv = dtls->GetSslCipherSuite(&cipher); if (negotiated_dtls()) { ASSERT_TRUE(rv); EXPECT_TRUE( rtc::SSLStreamAdapter::IsAcceptableCipher(cipher, rtc::KT_DEFAULT)); } else { ASSERT_FALSE(rv); } } } void SendPackets(size_t transport, size_t size, size_t count, bool srtp) { RTC_CHECK(transport < dtls_transports_.size()); std::unique_ptr packet(new char[size]); size_t sent = 0; do { // Fill the packet with a known value and a sequence number to check // against, and make sure that it doesn't look like DTLS. memset(packet.get(), sent & 0xff, size); packet[0] = (srtp) ? 0x80 : 0x00; rtc::SetBE32(packet.get() + kPacketNumOffset, static_cast(sent)); // Only set the bypass flag if we've activated DTLS. int flags = (certificate_ && srtp) ? cricket::PF_SRTP_BYPASS : 0; rtc::PacketOptions packet_options; packet_options.packet_id = kFakePacketId; int rv = dtls_transports_[transport]->SendPacket(packet.get(), size, packet_options, flags); ASSERT_GT(rv, 0); ASSERT_EQ(size, static_cast(rv)); ++sent; } while (sent < count); } int SendInvalidSrtpPacket(size_t transport, size_t size) { RTC_CHECK(transport < dtls_transports_.size()); std::unique_ptr packet(new char[size]); // Fill the packet with 0 to form an invalid SRTP packet. memset(packet.get(), 0, size); rtc::PacketOptions packet_options; return dtls_transports_[transport]->SendPacket( packet.get(), size, packet_options, cricket::PF_SRTP_BYPASS); } void ExpectPackets(size_t transport, size_t size) { packet_size_ = size; received_.clear(); } size_t NumPacketsReceived() { return received_.size(); } bool VerifyPacket(const char* data, size_t size, uint32_t* out_num) { if (size != packet_size_ || (data[0] != 0 && static_cast(data[0]) != 0x80)) { return false; } uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset); for (size_t i = kPacketHeaderLen; i < size; ++i) { if (static_cast(data[i]) != (packet_num & 0xff)) { return false; } } if (out_num) { *out_num = packet_num; } return true; } bool VerifyEncryptedPacket(const char* data, size_t size) { // This is an encrypted data packet; let's make sure it's mostly random; // less than 10% of the bytes should be equal to the cleartext packet. if (size <= packet_size_) { return false; } uint32_t packet_num = rtc::GetBE32(data + kPacketNumOffset); int num_matches = 0; for (size_t i = kPacketNumOffset; i < size; ++i) { if (static_cast(data[i]) == (packet_num & 0xff)) { ++num_matches; } } return (num_matches < ((static_cast(size) - 5) / 10)); } // Transport channel callbacks void OnTransportChannelWritableState( rtc::PacketTransportInternal* transport) { LOG(LS_INFO) << name_ << ": Channel '" << transport->debug_name() << "' is writable"; } void OnTransportChannelReadPacket(rtc::PacketTransportInternal* transport, const char* data, size_t size, const rtc::PacketTime& packet_time, int flags) { uint32_t packet_num = 0; ASSERT_TRUE(VerifyPacket(data, size, &packet_num)); received_.insert(packet_num); // Only DTLS-SRTP packets should have the bypass flag set. int expected_flags = (certificate_ && IsRtpLeadByte(data[0])) ? cricket::PF_SRTP_BYPASS : 0; ASSERT_EQ(expected_flags, flags); } void OnTransportChannelSentPacket(rtc::PacketTransportInternal* transport, const rtc::SentPacket& sent_packet) { sent_packet_ = sent_packet; } rtc::SentPacket sent_packet() const { return sent_packet_; } // Hook into the raw packet stream to make sure DTLS packets are encrypted. void OnFakeTransportChannelReadPacket(rtc::PacketTransportInternal* transport, const char* data, size_t size, const rtc::PacketTime& time, int flags) { // Flags shouldn't be set on the underlying TransportChannel packets. ASSERT_EQ(0, flags); // Look at the handshake packets to see what role we played. // Check that non-handshake packets are DTLS data or SRTP bypass. if (data[0] == 22 && size > 17) { if (data[13] == 1) { ++received_dtls_client_hellos_; } else if (data[13] == 2) { ++received_dtls_server_hellos_; } } else if (negotiated_dtls() && !(data[0] >= 20 && data[0] <= 22)) { ASSERT_TRUE(data[0] == 23 || IsRtpLeadByte(data[0])); if (data[0] == 23) { ASSERT_TRUE(VerifyEncryptedPacket(data, size)); } else if (IsRtpLeadByte(data[0])) { ASSERT_TRUE(VerifyPacket(data, size, NULL)); } } } private: std::string name_; rtc::scoped_refptr certificate_; std::vector> fake_ice_transports_; std::vector> dtls_transports_; std::unique_ptr transport_; size_t packet_size_ = 0u; std::set received_; rtc::SSLProtocolVersion ssl_max_version_ = rtc::SSL_PROTOCOL_DTLS_12; int received_dtls_client_hellos_ = 0; int received_dtls_server_hellos_ = 0; rtc::SentPacket sent_packet_; }; // Base class for DtlsTransportChannelTest and DtlsEventOrderingTest, which // inherit from different variants of testing::Test. // // Note that this test always uses a FakeClock, due to the |fake_clock_| member // variable. class DtlsTransportChannelTestBase { public: DtlsTransportChannelTestBase() : client1_("P1"), client2_("P2"), channel_ct_(1), use_dtls_(false), ssl_expected_version_(rtc::SSL_PROTOCOL_DTLS_12) {} void SetChannelCount(size_t channel_ct) { channel_ct_ = static_cast(channel_ct); } void SetMaxProtocolVersions(rtc::SSLProtocolVersion c1, rtc::SSLProtocolVersion c2) { client1_.SetupMaxProtocolVersion(c1); client2_.SetupMaxProtocolVersion(c2); ssl_expected_version_ = std::min(c1, c2); } void PrepareDtls(bool c1, bool c2, rtc::KeyType key_type) { if (c1) { client1_.CreateCertificate(key_type); } if (c2) { client2_.CreateCertificate(key_type); } if (c1 && c2) use_dtls_ = true; } // Negotiate local/remote fingerprint before or after the underlying // tranpsort is connected? enum NegotiateOrdering { NEGOTIATE_BEFORE_CONNECT, CONNECT_BEFORE_NEGOTIATE }; bool Connect(ConnectionRole client1_role, ConnectionRole client2_role, NegotiateOrdering ordering = NEGOTIATE_BEFORE_CONNECT) { bool rv; if (ordering == NEGOTIATE_BEFORE_CONNECT) { Negotiate(client1_role, client2_role); rv = client1_.Connect(&client2_, false); } else { client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING); client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED); // This is equivalent to an offer being processed on both sides, but an // answer not yet being received on the initiating side. So the // connection will be made before negotiation has finished on both sides. client1_.SetLocalTransportDescription(client1_.certificate(), cricket::CA_OFFER, client1_role, 0); client2_.SetRemoteTransportDescription( client1_.certificate(), cricket::CA_OFFER, client1_role, 0); client2_.SetLocalTransportDescription( client2_.certificate(), cricket::CA_ANSWER, client2_role, 0); rv = client1_.Connect(&client2_, false); client1_.SetRemoteTransportDescription( client2_.certificate(), cricket::CA_ANSWER, client2_role, 0); } EXPECT_TRUE(rv); if (!rv) return false; EXPECT_TRUE_SIMULATED_WAIT(client1_.all_dtls_transports_writable() && client2_.all_dtls_transports_writable(), kTimeout, fake_clock_); if (!client1_.all_dtls_transports_writable() || !client2_.all_dtls_transports_writable()) return false; // Check that we used the right roles. if (use_dtls_) { rtc::SSLRole client1_ssl_role = (client1_role == cricket::CONNECTIONROLE_ACTIVE || (client2_role == cricket::CONNECTIONROLE_PASSIVE && client1_role == cricket::CONNECTIONROLE_ACTPASS)) ? rtc::SSL_CLIENT : rtc::SSL_SERVER; rtc::SSLRole client2_ssl_role = (client2_role == cricket::CONNECTIONROLE_ACTIVE || (client1_role == cricket::CONNECTIONROLE_PASSIVE && client2_role == cricket::CONNECTIONROLE_ACTPASS)) ? rtc::SSL_CLIENT : rtc::SSL_SERVER; client1_.CheckRole(client1_ssl_role); client2_.CheckRole(client2_ssl_role); } if (use_dtls_) { // Check that we negotiated the right ciphers. Since GCM ciphers are not // negotiated by default, we should end up with SRTP_AES128_CM_SHA1_32. client1_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_32); client2_.CheckSrtp(rtc::SRTP_AES128_CM_SHA1_32); } else { // If DTLS isn't actually being used, GetSrtpCryptoSuite should return // false. client1_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE); client2_.CheckSrtp(rtc::SRTP_INVALID_CRYPTO_SUITE); } client1_.CheckSsl(); client2_.CheckSsl(); return true; } bool Connect() { // By default, Client1 will be Server and Client2 will be Client. return Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE); } void Negotiate() { Negotiate(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE); } void Negotiate(ConnectionRole client1_role, ConnectionRole client2_role) { client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING); client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED); // Expect success from SLTD and SRTD. client1_.Negotiate(&client2_, cricket::CA_OFFER, client1_role, client2_role, 0); client2_.Negotiate(&client1_, cricket::CA_ANSWER, client2_role, client1_role, 0); } // Negotiate with legacy client |client2|. Legacy client doesn't use setup // attributes, except NONE. void NegotiateWithLegacy() { client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING); client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED); // Expect success from SLTD and SRTD. client1_.Negotiate(&client2_, cricket::CA_OFFER, cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_NONE, 0); client2_.Negotiate(&client1_, cricket::CA_ANSWER, cricket::CONNECTIONROLE_ACTIVE, cricket::CONNECTIONROLE_NONE, 0); } void Renegotiate(DtlsTestClient* reoffer_initiator, ConnectionRole client1_role, ConnectionRole client2_role, int flags) { if (reoffer_initiator == &client1_) { client1_.Negotiate(&client2_, cricket::CA_OFFER, client1_role, client2_role, flags); client2_.Negotiate(&client1_, cricket::CA_ANSWER, client2_role, client1_role, flags); } else { client2_.Negotiate(&client1_, cricket::CA_OFFER, client2_role, client1_role, flags); client1_.Negotiate(&client2_, cricket::CA_ANSWER, client1_role, client2_role, flags); } } void TestTransfer(size_t transport, size_t size, size_t count, bool srtp) { LOG(LS_INFO) << "Expect packets, size=" << size; client2_.ExpectPackets(transport, size); client1_.SendPackets(transport, size, count, srtp); EXPECT_EQ_SIMULATED_WAIT(count, client2_.NumPacketsReceived(), kTimeout, fake_clock_); } protected: rtc::ScopedFakeClock fake_clock_; DtlsTestClient client1_; DtlsTestClient client2_; int channel_ct_; bool use_dtls_; rtc::SSLProtocolVersion ssl_expected_version_; }; class DtlsTransportChannelTest : public DtlsTransportChannelTestBase, public ::testing::Test {}; // Test that transport negotiation of ICE, no DTLS works properly. TEST_F(DtlsTransportChannelTest, TestChannelSetupIce) { Negotiate(); cricket::FakeIceTransport* channel1 = client1_.GetFakeIceTransort(0); cricket::FakeIceTransport* channel2 = client2_.GetFakeIceTransort(0); ASSERT_TRUE(channel1 != NULL); ASSERT_TRUE(channel2 != NULL); EXPECT_EQ(cricket::ICEROLE_CONTROLLING, channel1->GetIceRole()); EXPECT_EQ(1U, channel1->IceTiebreaker()); EXPECT_EQ(kIceUfrag1, channel1->ice_ufrag()); EXPECT_EQ(kIcePwd1, channel1->ice_pwd()); EXPECT_EQ(cricket::ICEROLE_CONTROLLED, channel2->GetIceRole()); EXPECT_EQ(2U, channel2->IceTiebreaker()); } // Connect without DTLS, and transfer some data. TEST_F(DtlsTransportChannelTest, TestTransfer) { ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); } // Connect without DTLS, and transfer some data. TEST_F(DtlsTransportChannelTest, TestOnSentPacket) { ASSERT_TRUE(Connect()); EXPECT_EQ(client1_.sent_packet().send_time_ms, -1); TestTransfer(0, 1000, 100, false); EXPECT_EQ(kFakePacketId, client1_.sent_packet().packet_id); EXPECT_GE(client1_.sent_packet().send_time_ms, 0); } // Create two channels without DTLS, and transfer some data. TEST_F(DtlsTransportChannelTest, TestTransferTwoChannels) { SetChannelCount(2); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); TestTransfer(1, 1000, 100, false); } // Connect without DTLS, and transfer SRTP data. TEST_F(DtlsTransportChannelTest, TestTransferSrtp) { ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, true); } // Create two channels without DTLS, and transfer SRTP data. TEST_F(DtlsTransportChannelTest, TestTransferSrtpTwoChannels) { SetChannelCount(2); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } // Connect with DTLS, and transfer some data. TEST_F(DtlsTransportChannelTest, TestTransferDtls) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); } // Create two channels with DTLS, and transfer some data. TEST_F(DtlsTransportChannelTest, TestTransferDtlsTwoChannels) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); TestTransfer(1, 1000, 100, false); } // Connect with DTLS, combine multiple DTLS records into one packet. // Our DTLS implementation doesn't do this, but other implementations may; // see https://tools.ietf.org/html/rfc6347#section-4.1.1. // This has caused interoperability problems with ORTCLib in the past. TEST_F(DtlsTransportChannelTest, TestTransferDtlsCombineRecords) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); // Our DTLS implementation always sends one record per packet, so to simulate // an endpoint that sends multiple records per packet, we configure the fake // ICE transport to combine every two consecutive packets into a single // packet. cricket::FakeIceTransport* transport = client1_.GetFakeIceTransort(0); transport->combine_outgoing_packets(true); TestTransfer(0, 500, 100, false); } // Connect with A doing DTLS and B not, and transfer some data. TEST_F(DtlsTransportChannelTest, TestTransferDtlsRejected) { PrepareDtls(true, false, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); } // Connect with B doing DTLS and A not, and transfer some data. TEST_F(DtlsTransportChannelTest, TestTransferDtlsNotOffered) { PrepareDtls(false, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); } // Create two channels with DTLS 1.0 and check ciphers. TEST_F(DtlsTransportChannelTest, TestDtls12None) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_10); ASSERT_TRUE(Connect()); } // Create two channels with DTLS 1.2 and check ciphers. TEST_F(DtlsTransportChannelTest, TestDtls12Both) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_12); ASSERT_TRUE(Connect()); } // Create two channels with DTLS 1.0 / DTLS 1.2 and check ciphers. TEST_F(DtlsTransportChannelTest, TestDtls12Client1) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_12, rtc::SSL_PROTOCOL_DTLS_10); ASSERT_TRUE(Connect()); } // Create two channels with DTLS 1.2 / DTLS 1.0 and check ciphers. TEST_F(DtlsTransportChannelTest, TestDtls12Client2) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); SetMaxProtocolVersions(rtc::SSL_PROTOCOL_DTLS_10, rtc::SSL_PROTOCOL_DTLS_12); ASSERT_TRUE(Connect()); } // Connect with DTLS, negotiating DTLS-SRTP, and transfer SRTP using bypass. TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtp) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, true); } // Connect with DTLS-SRTP, transfer an invalid SRTP packet, and expects -1 // returned. TEST_F(DtlsTransportChannelTest, TestTransferDtlsInvalidSrtpPacket) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); int result = client1_.SendInvalidSrtpPacket(0, 100); ASSERT_EQ(-1, result); } // Connect with DTLS. A does DTLS-SRTP but B does not. TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpRejected) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); } // Connect with DTLS. B does DTLS-SRTP but A does not. TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpNotOffered) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); } // Create two channels with DTLS, negotiate DTLS-SRTP, and transfer bypass SRTP. TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpTwoChannels) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } // Create a single channel with DTLS, and send normal data and SRTP data on it. TEST_F(DtlsTransportChannelTest, TestTransferDtlsSrtpDemux) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); TestTransfer(0, 1000, 100, false); TestTransfer(0, 1000, 100, true); } // Testing when the remote is passive. TEST_F(DtlsTransportChannelTest, TestTransferDtlsAnswererIsPassive) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_PASSIVE)); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } // Testing with the legacy DTLS client which doesn't use setup attribute. // In this case legacy is the answerer. TEST_F(DtlsTransportChannelTest, TestDtlsSetupWithLegacyAsAnswerer) { PrepareDtls(true, true, rtc::KT_DEFAULT); NegotiateWithLegacy(); EXPECT_EQ(rtc::SSL_SERVER, *client1_.transport()->GetSslRole()); EXPECT_EQ(rtc::SSL_CLIENT, *client2_.transport()->GetSslRole()); } // Testing re offer/answer after the session is estbalished. Roles will be // kept same as of the previous negotiation. TEST_F(DtlsTransportChannelTest, TestDtlsReOfferFromOfferer) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); // Initial role for client1 is ACTPASS and client2 is ACTIVE. ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE)); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); // Using input roles for the re-offer. Renegotiate(&client1_, cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE, NF_REOFFER); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } TEST_F(DtlsTransportChannelTest, TestDtlsReOfferFromAnswerer) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); // Initial role for client1 is ACTPASS and client2 is ACTIVE. ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE)); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); // Using input roles for the re-offer. Renegotiate(&client2_, cricket::CONNECTIONROLE_PASSIVE, cricket::CONNECTIONROLE_ACTPASS, NF_REOFFER); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } // Test that any change in role after the intial setup will result in failure. TEST_F(DtlsTransportChannelTest, TestDtlsRoleReversal) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_PASSIVE)); // Renegotiate from client2 with actpass and client1 as active. Renegotiate(&client2_, cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE, NF_REOFFER | NF_EXPECT_FAILURE); } // Test that using different setup attributes which results in similar ssl // role as the initial negotiation will result in success. TEST_F(DtlsTransportChannelTest, TestDtlsReOfferWithDifferentSetupAttr) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_PASSIVE)); // Renegotiate from client2 with actpass and client1 as active. Renegotiate(&client2_, cricket::CONNECTIONROLE_ACTIVE, cricket::CONNECTIONROLE_ACTPASS, NF_REOFFER); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } // Test that re-negotiation can be started before the clients become connected // in the first negotiation. TEST_F(DtlsTransportChannelTest, TestRenegotiateBeforeConnect) { SetChannelCount(2); PrepareDtls(true, true, rtc::KT_DEFAULT); Negotiate(); Renegotiate(&client1_, cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE, NF_REOFFER); bool rv = client1_.Connect(&client2_, false); EXPECT_TRUE(rv); EXPECT_TRUE_SIMULATED_WAIT(client1_.all_dtls_transports_writable() && client2_.all_dtls_transports_writable(), kTimeout, fake_clock_); TestTransfer(0, 1000, 100, true); TestTransfer(1, 1000, 100, true); } // Test Certificates state after negotiation but before connection. TEST_F(DtlsTransportChannelTest, TestCertificatesBeforeConnect) { PrepareDtls(true, true, rtc::KT_DEFAULT); Negotiate(); rtc::scoped_refptr certificate1; rtc::scoped_refptr certificate2; std::unique_ptr remote_cert1; std::unique_ptr remote_cert2; // After negotiation, each side has a distinct local certificate, but still no // remote certificate, because connection has not yet occurred. ASSERT_TRUE(client1_.transport()->GetLocalCertificate(&certificate1)); ASSERT_TRUE(client2_.transport()->GetLocalCertificate(&certificate2)); ASSERT_NE(certificate1->ssl_certificate().ToPEMString(), certificate2->ssl_certificate().ToPEMString()); ASSERT_FALSE(client1_.GetDtlsTransport(0)->GetRemoteSSLCertificate()); ASSERT_FALSE(client2_.GetDtlsTransport(0)->GetRemoteSSLCertificate()); } // Test Certificates state after connection. TEST_F(DtlsTransportChannelTest, TestCertificatesAfterConnect) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect()); rtc::scoped_refptr certificate1; rtc::scoped_refptr certificate2; // After connection, each side has a distinct local certificate. ASSERT_TRUE(client1_.transport()->GetLocalCertificate(&certificate1)); ASSERT_TRUE(client2_.transport()->GetLocalCertificate(&certificate2)); ASSERT_NE(certificate1->ssl_certificate().ToPEMString(), certificate2->ssl_certificate().ToPEMString()); // Each side's remote certificate is the other side's local certificate. std::unique_ptr remote_cert1 = client1_.GetDtlsTransport(0)->GetRemoteSSLCertificate(); ASSERT_TRUE(remote_cert1); ASSERT_EQ(remote_cert1->ToPEMString(), certificate2->ssl_certificate().ToPEMString()); std::unique_ptr remote_cert2 = client2_.GetDtlsTransport(0)->GetRemoteSSLCertificate(); ASSERT_TRUE(remote_cert2); ASSERT_EQ(remote_cert2->ToPEMString(), certificate1->ssl_certificate().ToPEMString()); } // Test that packets are retransmitted according to the expected schedule. // Each time a timeout occurs, the retransmission timer should be doubled up to // 60 seconds. The timer defaults to 1 second, but for WebRTC we should be // initializing it to 50ms. TEST_F(DtlsTransportChannelTest, TestRetransmissionSchedule) { // We can only change the retransmission schedule with a recently-added // BoringSSL API. Skip the test if not built with BoringSSL. MAYBE_SKIP_TEST(IsBoringSsl); PrepareDtls(true, true, rtc::KT_DEFAULT); // Exchange transport descriptions. Negotiate(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE); // Make client2_ writable, but not client1_. // This means client1_ will send DTLS client hellos but get no response. EXPECT_TRUE(client2_.Connect(&client1_, true)); EXPECT_TRUE_SIMULATED_WAIT(client2_.all_ice_transports_writable(), kTimeout, fake_clock_); // Wait for the first client hello to be sent. EXPECT_EQ_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout); EXPECT_FALSE(client1_.all_ice_transports_writable()); static int timeout_schedule_ms[] = {50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200, 60000}; int expected_hellos = 1; for (size_t i = 0; i < (sizeof(timeout_schedule_ms) / sizeof(timeout_schedule_ms[0])); ++i) { // For each expected retransmission time, advance the fake clock a // millisecond before the expected time and verify that no unexpected // retransmissions were sent. Then advance it the final millisecond and // verify that the expected retransmission was sent. fake_clock_.AdvanceTime( rtc::TimeDelta::FromMilliseconds(timeout_schedule_ms[i] - 1)); EXPECT_EQ(expected_hellos, client1_.received_dtls_client_hellos()); fake_clock_.AdvanceTime(rtc::TimeDelta::FromMilliseconds(1)); EXPECT_EQ(++expected_hellos, client1_.received_dtls_client_hellos()); } } // Test that a DTLS connection can be made even if the underlying transport // is connected before DTLS fingerprints/roles have been negotiated. TEST_F(DtlsTransportChannelTest, TestConnectBeforeNegotiate) { PrepareDtls(true, true, rtc::KT_DEFAULT); ASSERT_TRUE(Connect(cricket::CONNECTIONROLE_ACTPASS, cricket::CONNECTIONROLE_ACTIVE, CONNECT_BEFORE_NEGOTIATE)); TestTransfer(0, 1000, 100, false); } // The following events can occur in many different orders: // 1. Caller receives remote fingerprint. // 2. Caller is writable. // 3. Caller receives ClientHello. // 4. DTLS handshake finishes. // // The tests below cover all causally consistent permutations of these events; // the caller must be writable and receive a ClientHello before the handshake // finishes, but otherwise any ordering is possible. // // For each permutation, the test verifies that a connection is established and // fingerprint verified without any DTLS packet needing to be retransmitted. // // Each permutation is also tested with valid and invalid fingerprints, // ensuring that the handshake fails with an invalid fingerprint. enum DtlsTransportEvent { CALLER_RECEIVES_FINGERPRINT, CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES }; class DtlsEventOrderingTest : public DtlsTransportChannelTestBase, public ::testing::TestWithParam< ::testing::tuple, bool>> { protected: // If |valid_fingerprint| is false, the caller will receive a fingerprint // that doesn't match the callee's certificate, so the handshake should fail. void TestEventOrdering(const std::vector& events, bool valid_fingerprint) { // Pre-setup: Set local certificate on both caller and callee, and // remote fingerprint on callee, but neither is writable and the caller // doesn't have the callee's fingerprint. PrepareDtls(true, true, rtc::KT_DEFAULT); // Simulate packets being sent and arriving asynchronously. // Otherwise the entire DTLS handshake would occur in one clock tick, and // we couldn't inject method calls in the middle of it. int simulated_delay_ms = 10; client1_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLING, simulated_delay_ms); client2_.SetupChannels(channel_ct_, cricket::ICEROLE_CONTROLLED, simulated_delay_ms); client1_.SetLocalTransportDescription(client1_.certificate(), cricket::CA_OFFER, cricket::CONNECTIONROLE_ACTPASS, 0); client2_.Negotiate(&client1_, cricket::CA_ANSWER, cricket::CONNECTIONROLE_ACTIVE, cricket::CONNECTIONROLE_ACTPASS, 0); for (DtlsTransportEvent e : events) { switch (e) { case CALLER_RECEIVES_FINGERPRINT: if (valid_fingerprint) { client1_.SetRemoteTransportDescription( client2_.certificate(), cricket::CA_ANSWER, cricket::CONNECTIONROLE_ACTIVE, 0); } else { // Create a fingerprint with a correct algorithm but an invalid // digest. cricket::TransportDescription remote_desc = MakeTransportDescription(client2_.certificate(), cricket::CONNECTIONROLE_ACTIVE); ++(remote_desc.identity_fingerprint->digest[0]); // Even if certificate verification fails inside this method, // it should return true as long as the fingerprint was formatted // correctly. EXPECT_TRUE(client1_.transport()->SetRemoteTransportDescription( remote_desc, cricket::CA_ANSWER, nullptr)); } break; case CALLER_WRITABLE: EXPECT_TRUE(client1_.Connect(&client2_, true)); EXPECT_TRUE_SIMULATED_WAIT(client1_.all_ice_transports_writable(), kTimeout, fake_clock_); break; case CALLER_RECEIVES_CLIENTHELLO: // Sanity check that a ClientHello hasn't already been received. EXPECT_EQ(0, client1_.received_dtls_client_hellos()); // Making client2_ writable will cause it to send the ClientHello. EXPECT_TRUE(client2_.Connect(&client1_, true)); EXPECT_TRUE_SIMULATED_WAIT(client2_.all_ice_transports_writable(), kTimeout, fake_clock_); EXPECT_EQ_SIMULATED_WAIT(1, client1_.received_dtls_client_hellos(), kTimeout, fake_clock_); break; case HANDSHAKE_FINISHES: // Sanity check that the handshake hasn't already finished. EXPECT_FALSE(client1_.GetDtlsTransport(0)->IsDtlsConnected() || client1_.GetDtlsTransport(0)->dtls_state() == cricket::DTLS_TRANSPORT_FAILED); EXPECT_TRUE_SIMULATED_WAIT( client1_.GetDtlsTransport(0)->IsDtlsConnected() || client1_.GetDtlsTransport(0)->dtls_state() == cricket::DTLS_TRANSPORT_FAILED, kTimeout, fake_clock_); break; } } cricket::DtlsTransportState expected_final_state = valid_fingerprint ? cricket::DTLS_TRANSPORT_CONNECTED : cricket::DTLS_TRANSPORT_FAILED; EXPECT_EQ_SIMULATED_WAIT(expected_final_state, client1_.GetDtlsTransport(0)->dtls_state(), kTimeout, fake_clock_); EXPECT_EQ_SIMULATED_WAIT(expected_final_state, client2_.GetDtlsTransport(0)->dtls_state(), kTimeout, fake_clock_); // Channel should be writable iff there was a valid fingerprint. EXPECT_EQ(valid_fingerprint, client1_.GetDtlsTransport(0)->writable()); EXPECT_EQ(valid_fingerprint, client2_.GetDtlsTransport(0)->writable()); // Check that no hello needed to be retransmitted. EXPECT_EQ(1, client1_.received_dtls_client_hellos()); EXPECT_EQ(1, client2_.received_dtls_server_hellos()); if (valid_fingerprint) { TestTransfer(0, 1000, 100, false); } } }; TEST_P(DtlsEventOrderingTest, TestEventOrdering) { TestEventOrdering(::testing::get<0>(GetParam()), ::testing::get<1>(GetParam())); } INSTANTIATE_TEST_CASE_P( TestEventOrdering, DtlsEventOrderingTest, ::testing::Combine( ::testing::Values( std::vector{ CALLER_RECEIVES_FINGERPRINT, CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES}, std::vector{ CALLER_WRITABLE, CALLER_RECEIVES_FINGERPRINT, CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES}, std::vector{ CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO, CALLER_RECEIVES_FINGERPRINT, HANDSHAKE_FINISHES}, std::vector{ CALLER_WRITABLE, CALLER_RECEIVES_CLIENTHELLO, HANDSHAKE_FINISHES, CALLER_RECEIVES_FINGERPRINT}, std::vector{ CALLER_RECEIVES_FINGERPRINT, CALLER_RECEIVES_CLIENTHELLO, CALLER_WRITABLE, HANDSHAKE_FINISHES}, std::vector{ CALLER_RECEIVES_CLIENTHELLO, CALLER_RECEIVES_FINGERPRINT, CALLER_WRITABLE, HANDSHAKE_FINISHES}, std::vector{ CALLER_RECEIVES_CLIENTHELLO, CALLER_WRITABLE, CALLER_RECEIVES_FINGERPRINT, HANDSHAKE_FINISHES}, std::vector{CALLER_RECEIVES_CLIENTHELLO, CALLER_WRITABLE, HANDSHAKE_FINISHES, CALLER_RECEIVES_FINGERPRINT}), ::testing::Bool()));