/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/gain_control_impl.h" #include "webrtc/base/constructormagic.h" #include "webrtc/base/optional.h" #include "webrtc/modules/audio_processing/audio_buffer.h" #include "webrtc/modules/audio_processing/agc/legacy/gain_control.h" namespace webrtc { typedef void Handle; namespace { int16_t MapSetting(GainControl::Mode mode) { switch (mode) { case GainControl::kAdaptiveAnalog: return kAgcModeAdaptiveAnalog; case GainControl::kAdaptiveDigital: return kAgcModeAdaptiveDigital; case GainControl::kFixedDigital: return kAgcModeFixedDigital; } RTC_DCHECK(false); return -1; } // Maximum length that a frame of samples can have. static const size_t kMaxAllowedValuesOfSamplesPerFrame = 160; // Maximum number of frames to buffer in the render queue. // TODO(peah): Decrease this once we properly handle hugely unbalanced // reverse and forward call numbers. static const size_t kMaxNumFramesToBuffer = 100; } // namespace class GainControlImpl::GainController { public: explicit GainController() { state_ = WebRtcAgc_Create(); RTC_CHECK(state_); } ~GainController() { RTC_DCHECK(state_); WebRtcAgc_Free(state_); } Handle* state() { RTC_DCHECK(state_); return state_; } void Initialize(int minimum_capture_level, int maximum_capture_level, Mode mode, int sample_rate_hz, int capture_level) { RTC_DCHECK(state_); int error = WebRtcAgc_Init(state_, minimum_capture_level, maximum_capture_level, MapSetting(mode), sample_rate_hz); RTC_DCHECK_EQ(0, error); set_capture_level(capture_level); } void set_capture_level(int capture_level) { capture_level_ = rtc::Optional(capture_level); } int get_capture_level() { RTC_DCHECK(capture_level_); return *capture_level_; } private: Handle* state_; // TODO(peah): Remove the optional once the initialization is moved into the // ctor. rtc::Optional capture_level_; RTC_DISALLOW_COPY_AND_ASSIGN(GainController); }; GainControlImpl::GainControlImpl(rtc::CriticalSection* crit_render, rtc::CriticalSection* crit_capture) : crit_render_(crit_render), crit_capture_(crit_capture), mode_(kAdaptiveAnalog), minimum_capture_level_(0), maximum_capture_level_(255), limiter_enabled_(true), target_level_dbfs_(3), compression_gain_db_(9), analog_capture_level_(0), was_analog_level_set_(false), stream_is_saturated_(false), render_queue_element_max_size_(0) { RTC_DCHECK(crit_render); RTC_DCHECK(crit_capture); } GainControlImpl::~GainControlImpl() {} int GainControlImpl::ProcessRenderAudio(AudioBuffer* audio) { rtc::CritScope cs(crit_render_); if (!enabled_) { return AudioProcessing::kNoError; } RTC_DCHECK_GE(160u, audio->num_frames_per_band()); render_queue_buffer_.resize(0); for (auto& gain_controller : gain_controllers_) { int err = WebRtcAgc_GetAddFarendError(gain_controller->state(), audio->num_frames_per_band()); if (err != AudioProcessing::kNoError) { return AudioProcessing::kUnspecifiedError; } // Buffer the samples in the render queue. render_queue_buffer_.insert( render_queue_buffer_.end(), audio->mixed_low_pass_data(), (audio->mixed_low_pass_data() + audio->num_frames_per_band())); } // Insert the samples into the queue. if (!render_signal_queue_->Insert(&render_queue_buffer_)) { // The data queue is full and needs to be emptied. ReadQueuedRenderData(); // Retry the insert (should always work). RTC_DCHECK_EQ(render_signal_queue_->Insert(&render_queue_buffer_), true); } return AudioProcessing::kNoError; } // Read chunks of data that were received and queued on the render side from // a queue. All the data chunks are buffered into the farend signal of the AGC. void GainControlImpl::ReadQueuedRenderData() { rtc::CritScope cs(crit_capture_); if (!enabled_) { return; } while (render_signal_queue_->Remove(&capture_queue_buffer_)) { size_t buffer_index = 0; RTC_DCHECK(num_proc_channels_); RTC_DCHECK_LT(0ul, *num_proc_channels_); const size_t num_frames_per_band = capture_queue_buffer_.size() / (*num_proc_channels_); for (auto& gain_controller : gain_controllers_) { WebRtcAgc_AddFarend(gain_controller->state(), &capture_queue_buffer_[buffer_index], num_frames_per_band); buffer_index += num_frames_per_band; } } } int GainControlImpl::AnalyzeCaptureAudio(AudioBuffer* audio) { rtc::CritScope cs(crit_capture_); if (!enabled_) { return AudioProcessing::kNoError; } RTC_DCHECK(num_proc_channels_); RTC_DCHECK_GE(160u, audio->num_frames_per_band()); RTC_DCHECK_EQ(audio->num_channels(), *num_proc_channels_); RTC_DCHECK_LE(*num_proc_channels_, gain_controllers_.size()); if (mode_ == kAdaptiveAnalog) { int capture_channel = 0; for (auto& gain_controller : gain_controllers_) { gain_controller->set_capture_level(analog_capture_level_); int err = WebRtcAgc_AddMic( gain_controller->state(), audio->split_bands(capture_channel), audio->num_bands(), audio->num_frames_per_band()); if (err != AudioProcessing::kNoError) { return AudioProcessing::kUnspecifiedError; } ++capture_channel; } } else if (mode_ == kAdaptiveDigital) { int capture_channel = 0; for (auto& gain_controller : gain_controllers_) { int32_t capture_level_out = 0; int err = WebRtcAgc_VirtualMic( gain_controller->state(), audio->split_bands(capture_channel), audio->num_bands(), audio->num_frames_per_band(), analog_capture_level_, &capture_level_out); gain_controller->set_capture_level(capture_level_out); if (err != AudioProcessing::kNoError) { return AudioProcessing::kUnspecifiedError; } ++capture_channel; } } return AudioProcessing::kNoError; } int GainControlImpl::ProcessCaptureAudio(AudioBuffer* audio, bool stream_has_echo) { rtc::CritScope cs(crit_capture_); if (!enabled_) { return AudioProcessing::kNoError; } if (mode_ == kAdaptiveAnalog && !was_analog_level_set_) { return AudioProcessing::kStreamParameterNotSetError; } RTC_DCHECK(num_proc_channels_); RTC_DCHECK_GE(160u, audio->num_frames_per_band()); RTC_DCHECK_EQ(audio->num_channels(), *num_proc_channels_); stream_is_saturated_ = false; int capture_channel = 0; for (auto& gain_controller : gain_controllers_) { int32_t capture_level_out = 0; uint8_t saturation_warning = 0; // The call to stream_has_echo() is ok from a deadlock perspective // as the capture lock is allready held. int err = WebRtcAgc_Process( gain_controller->state(), audio->split_bands_const(capture_channel), audio->num_bands(), audio->num_frames_per_band(), audio->split_bands(capture_channel), gain_controller->get_capture_level(), &capture_level_out, stream_has_echo, &saturation_warning); if (err != AudioProcessing::kNoError) { return AudioProcessing::kUnspecifiedError; } gain_controller->set_capture_level(capture_level_out); if (saturation_warning == 1) { stream_is_saturated_ = true; } ++capture_channel; } RTC_DCHECK_LT(0ul, *num_proc_channels_); if (mode_ == kAdaptiveAnalog) { // Take the analog level to be the average across the handles. analog_capture_level_ = 0; for (auto& gain_controller : gain_controllers_) { analog_capture_level_ += gain_controller->get_capture_level(); } analog_capture_level_ /= (*num_proc_channels_); } was_analog_level_set_ = false; return AudioProcessing::kNoError; } int GainControlImpl::compression_gain_db() const { rtc::CritScope cs(crit_capture_); return compression_gain_db_; } // TODO(ajm): ensure this is called under kAdaptiveAnalog. int GainControlImpl::set_stream_analog_level(int level) { rtc::CritScope cs(crit_capture_); was_analog_level_set_ = true; if (level < minimum_capture_level_ || level > maximum_capture_level_) { return AudioProcessing::kBadParameterError; } analog_capture_level_ = level; return AudioProcessing::kNoError; } int GainControlImpl::stream_analog_level() { rtc::CritScope cs(crit_capture_); // TODO(ajm): enable this assertion? //RTC_DCHECK_EQ(kAdaptiveAnalog, mode_); return analog_capture_level_; } int GainControlImpl::Enable(bool enable) { rtc::CritScope cs_render(crit_render_); rtc::CritScope cs_capture(crit_capture_); if (enable && !enabled_) { enabled_ = enable; // Must be set before Initialize() is called. RTC_DCHECK(num_proc_channels_); RTC_DCHECK(sample_rate_hz_); Initialize(*num_proc_channels_, *sample_rate_hz_); } else { enabled_ = enable; } return AudioProcessing::kNoError; } bool GainControlImpl::is_enabled() const { rtc::CritScope cs(crit_capture_); return enabled_; } int GainControlImpl::set_mode(Mode mode) { rtc::CritScope cs_render(crit_render_); rtc::CritScope cs_capture(crit_capture_); if (MapSetting(mode) == -1) { return AudioProcessing::kBadParameterError; } mode_ = mode; RTC_DCHECK(num_proc_channels_); RTC_DCHECK(sample_rate_hz_); Initialize(*num_proc_channels_, *sample_rate_hz_); return AudioProcessing::kNoError; } GainControl::Mode GainControlImpl::mode() const { rtc::CritScope cs(crit_capture_); return mode_; } int GainControlImpl::set_analog_level_limits(int minimum, int maximum) { if (minimum < 0) { return AudioProcessing::kBadParameterError; } if (maximum > 65535) { return AudioProcessing::kBadParameterError; } if (maximum < minimum) { return AudioProcessing::kBadParameterError; } size_t num_proc_channels_local = 0u; int sample_rate_hz_local = 0; { rtc::CritScope cs(crit_capture_); minimum_capture_level_ = minimum; maximum_capture_level_ = maximum; RTC_DCHECK(num_proc_channels_); RTC_DCHECK(sample_rate_hz_); num_proc_channels_local = *num_proc_channels_; sample_rate_hz_local = *sample_rate_hz_; } Initialize(num_proc_channels_local, sample_rate_hz_local); return AudioProcessing::kNoError; } int GainControlImpl::analog_level_minimum() const { rtc::CritScope cs(crit_capture_); return minimum_capture_level_; } int GainControlImpl::analog_level_maximum() const { rtc::CritScope cs(crit_capture_); return maximum_capture_level_; } bool GainControlImpl::stream_is_saturated() const { rtc::CritScope cs(crit_capture_); return stream_is_saturated_; } int GainControlImpl::set_target_level_dbfs(int level) { if (level > 31 || level < 0) { return AudioProcessing::kBadParameterError; } { rtc::CritScope cs(crit_capture_); target_level_dbfs_ = level; } return Configure(); } int GainControlImpl::target_level_dbfs() const { rtc::CritScope cs(crit_capture_); return target_level_dbfs_; } int GainControlImpl::set_compression_gain_db(int gain) { if (gain < 0 || gain > 90) { return AudioProcessing::kBadParameterError; } { rtc::CritScope cs(crit_capture_); compression_gain_db_ = gain; } return Configure(); } int GainControlImpl::enable_limiter(bool enable) { { rtc::CritScope cs(crit_capture_); limiter_enabled_ = enable; } return Configure(); } bool GainControlImpl::is_limiter_enabled() const { rtc::CritScope cs(crit_capture_); return limiter_enabled_; } void GainControlImpl::Initialize(size_t num_proc_channels, int sample_rate_hz) { rtc::CritScope cs_render(crit_render_); rtc::CritScope cs_capture(crit_capture_); num_proc_channels_ = rtc::Optional(num_proc_channels); sample_rate_hz_ = rtc::Optional(sample_rate_hz); if (!enabled_) { return; } gain_controllers_.resize(*num_proc_channels_); for (auto& gain_controller : gain_controllers_) { if (!gain_controller) { gain_controller.reset(new GainController()); } gain_controller->Initialize(minimum_capture_level_, maximum_capture_level_, mode_, *sample_rate_hz_, analog_capture_level_); } Configure(); AllocateRenderQueue(); } void GainControlImpl::AllocateRenderQueue() { rtc::CritScope cs_render(crit_render_); rtc::CritScope cs_capture(crit_capture_); RTC_DCHECK(num_proc_channels_); const size_t new_render_queue_element_max_size = std::max( static_cast(1), kMaxAllowedValuesOfSamplesPerFrame * (*num_proc_channels_)); if (render_queue_element_max_size_ < new_render_queue_element_max_size) { render_queue_element_max_size_ = new_render_queue_element_max_size; std::vector template_queue_element(render_queue_element_max_size_); render_signal_queue_.reset( new SwapQueue, RenderQueueItemVerifier>( kMaxNumFramesToBuffer, template_queue_element, RenderQueueItemVerifier(render_queue_element_max_size_))); render_queue_buffer_.resize(render_queue_element_max_size_); capture_queue_buffer_.resize(render_queue_element_max_size_); } else { render_signal_queue_->Clear(); } } int GainControlImpl::Configure() { rtc::CritScope cs_render(crit_render_); rtc::CritScope cs_capture(crit_capture_); WebRtcAgcConfig config; // TODO(ajm): Flip the sign here (since AGC expects a positive value) if we // change the interface. //RTC_DCHECK_LE(target_level_dbfs_, 0); //config.targetLevelDbfs = static_cast(-target_level_dbfs_); config.targetLevelDbfs = static_cast(target_level_dbfs_); config.compressionGaindB = static_cast(compression_gain_db_); config.limiterEnable = limiter_enabled_; int error = AudioProcessing::kNoError; for (auto& gain_controller : gain_controllers_) { const int handle_error = WebRtcAgc_set_config(gain_controller->state(), config); if (handle_error != AudioProcessing::kNoError) { error = handle_error; } } return error; } } // namespace webrtc