/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" #include #include #include #include #include #include "webrtc/base/checks.h" #include "webrtc/common_audio/include/audio_util.h" #include "webrtc/common_audio/window_generator.h" namespace webrtc { namespace { const size_t kErbResolution = 2; const int kWindowSizeMs = 16; const int kChunkSizeMs = 10; // Size provided by APM. const float kClipFreqKhz = 0.2f; const float kKbdAlpha = 1.5f; const float kLambdaBot = -1.0f; // Extreme values in bisection const float kLambdaTop = -1e-5f; // search for lamda. const float kVoiceProbabilityThreshold = 0.02f; // Number of chunks after voice activity which is still considered speech. const size_t kSpeechOffsetDelay = 80; const float kDecayRate = 0.98f; // Power estimation decay rate. const float kMaxRelativeGainChange = 0.04f; // Maximum relative change in gain. const float kRho = 0.0004f; // Default production and interpretation SNR. // Returns dot product of vectors |a| and |b| with size |length|. float DotProduct(const float* a, const float* b, size_t length) { float ret = 0.f; for (size_t i = 0; i < length; ++i) { ret = fmaf(a[i], b[i], ret); } return ret; } // Computes the power across ERB bands from the power spectral density |pow|. // Stores it in |result|. void MapToErbBands(const float* pow, const std::vector>& filter_bank, float* result) { for (size_t i = 0; i < filter_bank.size(); ++i) { RTC_DCHECK_GT(filter_bank[i].size(), 0u); result[i] = DotProduct(&filter_bank[i][0], pow, filter_bank[i].size()); } } } // namespace IntelligibilityEnhancer::TransformCallback::TransformCallback( IntelligibilityEnhancer* parent) : parent_(parent) { } void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( const std::complex* const* in_block, size_t in_channels, size_t frames, size_t /* out_channels */, std::complex* const* out_block) { RTC_DCHECK_EQ(parent_->freqs_, frames); for (size_t i = 0; i < in_channels; ++i) { parent_->ProcessClearBlock(in_block[i], out_block[i]); } } IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz, size_t num_render_channels) : freqs_(RealFourier::ComplexLength( RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), chunk_length_(static_cast(sample_rate_hz * kChunkSizeMs / 1000)), bank_size_(GetBankSize(sample_rate_hz, kErbResolution)), sample_rate_hz_(sample_rate_hz), num_render_channels_(num_render_channels), clear_power_estimator_(freqs_, kDecayRate), noise_power_estimator_( new intelligibility::PowerEstimator(freqs_, kDecayRate)), filtered_clear_pow_(new float[bank_size_]), filtered_noise_pow_(new float[bank_size_]), center_freqs_(new float[bank_size_]), render_filter_bank_(CreateErbBank(freqs_)), gains_eq_(new float[bank_size_]), gain_applier_(freqs_, kMaxRelativeGainChange), temp_render_out_buffer_(chunk_length_, num_render_channels_), render_callback_(this), audio_s16_(chunk_length_), chunks_since_voice_(kSpeechOffsetDelay), is_speech_(false) { RTC_DCHECK_LE(kRho, 1.f); memset(filtered_clear_pow_.get(), 0, bank_size_ * sizeof(filtered_clear_pow_[0])); memset(filtered_noise_pow_.get(), 0, bank_size_ * sizeof(filtered_noise_pow_[0])); const size_t erb_index = static_cast( ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) + 43.f)); start_freq_ = std::max(static_cast(1), erb_index * kErbResolution); size_t window_size = static_cast(1 << RealFourier::FftOrder(freqs_)); std::vector kbd_window(window_size); WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size, &kbd_window[0]); render_mangler_.reset(new LappedTransform( num_render_channels_, num_render_channels_, chunk_length_, &kbd_window[0], window_size, window_size / 2, &render_callback_)); } void IntelligibilityEnhancer::SetCaptureNoiseEstimate( std::vector noise) { if (capture_filter_bank_.size() != bank_size_ || capture_filter_bank_[0].size() != noise.size()) { capture_filter_bank_ = CreateErbBank(noise.size()); noise_power_estimator_.reset( new intelligibility::PowerEstimator(noise.size(), kDecayRate)); } noise_power_estimator_->Step(&noise[0]); } void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio, int sample_rate_hz, size_t num_channels) { RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz); RTC_CHECK_EQ(num_render_channels_, num_channels); is_speech_ = IsSpeech(audio[0]); render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels()); for (size_t i = 0; i < num_render_channels_; ++i) { memcpy(audio[i], temp_render_out_buffer_.channels()[i], chunk_length_ * sizeof(**audio)); } } void IntelligibilityEnhancer::ProcessClearBlock( const std::complex* in_block, std::complex* out_block) { if (is_speech_) { clear_power_estimator_.Step(in_block); } const std::vector& clear_power = clear_power_estimator_.power(); const std::vector& noise_power = noise_power_estimator_->power(); MapToErbBands(&clear_power[0], render_filter_bank_, filtered_clear_pow_.get()); MapToErbBands(&noise_power[0], capture_filter_bank_, filtered_noise_pow_.get()); SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); const float power_target = std::accumulate(&clear_power[0], &clear_power[0] + freqs_, 0.f); const float power_top = DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); const float power_bot = DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); if (power_target >= power_bot && power_target <= power_top) { SolveForLambda(power_target); UpdateErbGains(); } // Else experiencing power underflow, so do nothing. gain_applier_.Apply(in_block, out_block); } void IntelligibilityEnhancer::SolveForLambda(float power_target) { const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values const int kMaxIters = 100; // for these, based on experiments. const float reciprocal_power_target = 1.f / (power_target + std::numeric_limits::epsilon()); float lambda_bot = kLambdaBot; float lambda_top = kLambdaTop; float power_ratio = 2.f; // Ratio of achieved power to target power. int iters = 0; while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) { const float lambda = (lambda_bot + lambda_top) / 2.f; SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); const float power = DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_); if (power < power_target) { lambda_bot = lambda; } else { lambda_top = lambda; } power_ratio = std::fabs(power * reciprocal_power_target); ++iters; } } void IntelligibilityEnhancer::UpdateErbGains() { // (ERB gain) = filterbank' * (freq gain) float* gains = gain_applier_.target(); for (size_t i = 0; i < freqs_; ++i) { gains[i] = 0.f; for (size_t j = 0; j < bank_size_; ++j) { gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]); } } } size_t IntelligibilityEnhancer::GetBankSize(int sample_rate, size_t erb_resolution) { float freq_limit = sample_rate / 2000.f; size_t erb_scale = static_cast(ceilf( 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f)); return erb_scale * erb_resolution; } std::vector> IntelligibilityEnhancer::CreateErbBank( size_t num_freqs) { std::vector> filter_bank(bank_size_); size_t lf = 1, rf = 4; for (size_t i = 0; i < bank_size_; ++i) { float abs_temp = fabsf((i + 1.f) / static_cast(kErbResolution)); center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); center_freqs_[i] -= 14678.49f; } float last_center_freq = center_freqs_[bank_size_ - 1]; for (size_t i = 0; i < bank_size_; ++i) { center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; } for (size_t i = 0; i < bank_size_; ++i) { filter_bank[i].resize(num_freqs); } for (size_t i = 1; i <= bank_size_; ++i) { static const size_t kOne = 1; // Avoids repeated static_cast<>s below. size_t lll = static_cast(round(center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs / (0.5f * sample_rate_hz_))); size_t ll = static_cast(round(center_freqs_[std::max(kOne, i) - 1] * num_freqs / (0.5f * sample_rate_hz_))); lll = std::min(num_freqs, std::max(lll, kOne)) - 1; ll = std::min(num_freqs, std::max(ll, kOne)) - 1; size_t rrr = static_cast( round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs / (0.5f * sample_rate_hz_))); size_t rr = static_cast( round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs / (0.5f * sample_rate_hz_))); rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1; rr = std::min(num_freqs, std::max(rr, kOne)) - 1; float step = ll == lll ? 0.f : 1.f / (ll - lll); float element = 0.f; for (size_t j = lll; j <= ll; ++j) { filter_bank[i - 1][j] = element; element += step; } step = rr == rrr ? 0.f : 1.f / (rrr - rr); element = 1.f; for (size_t j = rr; j <= rrr; ++j) { filter_bank[i - 1][j] = element; element -= step; } for (size_t j = ll; j <= rr; ++j) { filter_bank[i - 1][j] = 1.f; } } for (size_t i = 0; i < num_freqs; ++i) { float sum = 0.f; for (size_t j = 0; j < bank_size_; ++j) { sum += filter_bank[j][i]; } for (size_t j = 0; j < bank_size_; ++j) { filter_bank[j][i] /= sum; } } return filter_bank; } void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, size_t start_freq, float* sols) { const float kMinPower = 1e-5f; const float* pow_x0 = filtered_clear_pow_.get(); const float* pow_n0 = filtered_noise_pow_.get(); for (size_t n = 0; n < start_freq; ++n) { sols[n] = 1.f; } // Analytic solution for optimal gains. See paper for derivation. for (size_t n = start_freq; n < bank_size_; ++n) { if (pow_x0[n] < kMinPower || pow_n0[n] < kMinPower) { sols[n] = 1.f; } else { const float gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] + lambda * pow_x0[n] * pow_n0[n] * pow_n0[n]; const float beta0 = lambda * pow_x0[n] * (2.f - kRho) * pow_x0[n] * pow_n0[n]; const float alpha0 = lambda * pow_x0[n] * (1.f - kRho) * pow_x0[n] * pow_x0[n]; RTC_DCHECK_LT(alpha0, 0.f); // The quadratic equation should always have real roots, but to guard // against numerical errors we limit it to a minimum of zero. sols[n] = std::max( 0.f, (-beta0 - std::sqrt(std::max( 0.f, beta0 * beta0 - 4.f * alpha0 * gamma0))) / (2.f * alpha0)); } } } bool IntelligibilityEnhancer::IsSpeech(const float* audio) { FloatToS16(audio, chunk_length_, &audio_s16_[0]); vad_.ProcessChunk(&audio_s16_[0], chunk_length_, sample_rate_hz_); if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) { chunks_since_voice_ = 0; } else if (chunks_since_voice_ < kSpeechOffsetDelay) { ++chunks_since_voice_; } return chunks_since_voice_ < kSpeechOffsetDelay; } } // namespace webrtc