/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "call/rtp_video_sender.h" #include #include #include #include #include "call/rtp_transport_controller_send_interface.h" #include "modules/pacing/packet_router.h" #include "modules/rtp_rtcp/include/rtp_rtcp.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/source/rtp_sender.h" #include "modules/utility/include/process_thread.h" #include "modules/video_coding/include/video_codec_interface.h" #include "rtc_base/checks.h" #include "rtc_base/location.h" #include "rtc_base/logging.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { static const int kMinSendSidePacketHistorySize = 600; std::vector> CreateRtpRtcpModules( const std::vector& ssrcs, const std::vector& protected_media_ssrcs, const RtcpConfig& rtcp_config, Transport* send_transport, RtcpIntraFrameObserver* intra_frame_callback, RtcpBandwidthObserver* bandwidth_callback, RtpTransportControllerSendInterface* transport, RtcpRttStats* rtt_stats, FlexfecSender* flexfec_sender, BitrateStatisticsObserver* bitrate_observer, FrameCountObserver* frame_count_observer, RtcpPacketTypeCounterObserver* rtcp_type_observer, SendSideDelayObserver* send_delay_observer, SendPacketObserver* send_packet_observer, RtcEventLog* event_log, RateLimiter* retransmission_rate_limiter, OverheadObserver* overhead_observer, RtpKeepAliveConfig keepalive_config) { RTC_DCHECK_GT(ssrcs.size(), 0); RtpRtcp::Configuration configuration; configuration.audio = false; configuration.receiver_only = false; configuration.outgoing_transport = send_transport; configuration.intra_frame_callback = intra_frame_callback; configuration.bandwidth_callback = bandwidth_callback; configuration.transport_feedback_callback = transport->transport_feedback_observer(); configuration.rtt_stats = rtt_stats; configuration.rtcp_packet_type_counter_observer = rtcp_type_observer; configuration.paced_sender = transport->packet_sender(); configuration.transport_sequence_number_allocator = transport->packet_router(); configuration.send_bitrate_observer = bitrate_observer; configuration.send_frame_count_observer = frame_count_observer; configuration.send_side_delay_observer = send_delay_observer; configuration.send_packet_observer = send_packet_observer; configuration.event_log = event_log; configuration.retransmission_rate_limiter = retransmission_rate_limiter; configuration.overhead_observer = overhead_observer; configuration.keepalive_config = keepalive_config; configuration.rtcp_interval_config.video_interval_ms = rtcp_config.video_report_interval_ms; configuration.rtcp_interval_config.audio_interval_ms = rtcp_config.audio_report_interval_ms; std::vector> modules; const std::vector& flexfec_protected_ssrcs = protected_media_ssrcs; for (uint32_t ssrc : ssrcs) { bool enable_flexfec = flexfec_sender != nullptr && std::find(flexfec_protected_ssrcs.begin(), flexfec_protected_ssrcs.end(), ssrc) != flexfec_protected_ssrcs.end(); configuration.flexfec_sender = enable_flexfec ? flexfec_sender : nullptr; std::unique_ptr rtp_rtcp = std::unique_ptr(RtpRtcp::CreateRtpRtcp(configuration)); rtp_rtcp->SetSendingStatus(false); rtp_rtcp->SetSendingMediaStatus(false); rtp_rtcp->SetRTCPStatus(RtcpMode::kCompound); modules.push_back(std::move(rtp_rtcp)); } return modules; } bool PayloadTypeSupportsSkippingFecPackets(const std::string& payload_name) { const VideoCodecType codecType = PayloadStringToCodecType(payload_name); if (codecType == kVideoCodecVP8 || codecType == kVideoCodecVP9) { return true; } if (codecType == kVideoCodecGeneric && field_trial::IsEnabled("WebRTC-GenericPictureId")) { return true; } return false; } // TODO(brandtr): Update this function when we support multistream protection. std::unique_ptr MaybeCreateFlexfecSender( const RtpConfig& rtp, const std::map& suspended_ssrcs) { if (rtp.flexfec.payload_type < 0) { return nullptr; } RTC_DCHECK_GE(rtp.flexfec.payload_type, 0); RTC_DCHECK_LE(rtp.flexfec.payload_type, 127); if (rtp.flexfec.ssrc == 0) { RTC_LOG(LS_WARNING) << "FlexFEC is enabled, but no FlexFEC SSRC given. " "Therefore disabling FlexFEC."; return nullptr; } if (rtp.flexfec.protected_media_ssrcs.empty()) { RTC_LOG(LS_WARNING) << "FlexFEC is enabled, but no protected media SSRC given. " "Therefore disabling FlexFEC."; return nullptr; } if (rtp.flexfec.protected_media_ssrcs.size() > 1) { RTC_LOG(LS_WARNING) << "The supplied FlexfecConfig contained multiple protected " "media streams, but our implementation currently only " "supports protecting a single media stream. " "To avoid confusion, disabling FlexFEC completely."; return nullptr; } const RtpState* rtp_state = nullptr; auto it = suspended_ssrcs.find(rtp.flexfec.ssrc); if (it != suspended_ssrcs.end()) { rtp_state = &it->second; } RTC_DCHECK_EQ(1U, rtp.flexfec.protected_media_ssrcs.size()); return absl::make_unique( rtp.flexfec.payload_type, rtp.flexfec.ssrc, rtp.flexfec.protected_media_ssrcs[0], rtp.mid, rtp.extensions, RTPSender::FecExtensionSizes(), rtp_state, Clock::GetRealTimeClock()); } } // namespace RtpVideoSender::RtpVideoSender( const std::vector& ssrcs, std::map suspended_ssrcs, const std::map& states, const RtpConfig& rtp_config, const RtcpConfig& rtcp_config, Transport* send_transport, const RtpSenderObservers& observers, RtpTransportControllerSendInterface* transport, RtcEventLog* event_log, RateLimiter* retransmission_limiter) : active_(false), module_process_thread_(nullptr), suspended_ssrcs_(std::move(suspended_ssrcs)), flexfec_sender_(MaybeCreateFlexfecSender(rtp_config, suspended_ssrcs_)), rtp_modules_( CreateRtpRtcpModules(ssrcs, rtp_config.flexfec.protected_media_ssrcs, rtcp_config, send_transport, observers.intra_frame_callback, transport->GetBandwidthObserver(), transport, observers.rtcp_rtt_stats, flexfec_sender_.get(), observers.bitrate_observer, observers.frame_count_observer, observers.rtcp_type_observer, observers.send_delay_observer, observers.send_packet_observer, event_log, retransmission_limiter, observers.overhead_observer, transport->keepalive_config())), rtp_config_(rtp_config), transport_(transport) { RTC_DCHECK_EQ(ssrcs.size(), rtp_modules_.size()); module_process_thread_checker_.DetachFromThread(); // SSRCs are assumed to be sorted in the same order as |rtp_modules|. for (uint32_t ssrc : ssrcs) { // Restore state if it previously existed. const RtpPayloadState* state = nullptr; auto it = states.find(ssrc); if (it != states.end()) { state = &it->second; shared_frame_id_ = std::max(shared_frame_id_, state->shared_frame_id); } params_.push_back(RtpPayloadParams(ssrc, state)); } // RTP/RTCP initialization. // We add the highest spatial layer first to ensure it'll be prioritized // when sending padding, with the hope that the packet rate will be smaller, // and that it's more important to protect than the lower layers. // TODO(nisse): Consider moving registration with PacketRouter last, after the // modules are fully configured. for (auto& rtp_rtcp : rtp_modules_) { constexpr bool remb_candidate = true; transport->packet_router()->AddSendRtpModule(rtp_rtcp.get(), remb_candidate); } for (size_t i = 0; i < rtp_config_.extensions.size(); ++i) { const std::string& extension = rtp_config_.extensions[i].uri; int id = rtp_config_.extensions[i].id; // One-byte-extension local identifiers are in the range 1-14 inclusive. RTC_DCHECK_GE(id, 1); RTC_DCHECK_LE(id, 14); RTC_DCHECK(RtpExtension::IsSupportedForVideo(extension)); for (auto& rtp_rtcp : rtp_modules_) { RTC_CHECK_EQ(0, rtp_rtcp->RegisterSendRtpHeaderExtension( StringToRtpExtensionType(extension), id)); } } ConfigureProtection(rtp_config); ConfigureSsrcs(rtp_config); if (!rtp_config.mid.empty()) { for (auto& rtp_rtcp : rtp_modules_) { rtp_rtcp->SetMid(rtp_config.mid); } } // TODO(pbos): Should we set CNAME on all RTP modules? rtp_modules_.front()->SetCNAME(rtp_config.c_name.c_str()); for (auto& rtp_rtcp : rtp_modules_) { rtp_rtcp->RegisterRtcpStatisticsCallback(observers.rtcp_stats); rtp_rtcp->RegisterSendChannelRtpStatisticsCallback(observers.rtp_stats); rtp_rtcp->SetMaxRtpPacketSize(rtp_config.max_packet_size); rtp_rtcp->RegisterVideoSendPayload(rtp_config.payload_type, rtp_config.payload_name.c_str()); } } RtpVideoSender::~RtpVideoSender() { for (auto& rtp_rtcp : rtp_modules_) { transport_->packet_router()->RemoveSendRtpModule(rtp_rtcp.get()); } } void RtpVideoSender::RegisterProcessThread( ProcessThread* module_process_thread) { RTC_DCHECK_RUN_ON(&module_process_thread_checker_); RTC_DCHECK(!module_process_thread_); module_process_thread_ = module_process_thread; for (auto& rtp_rtcp : rtp_modules_) module_process_thread_->RegisterModule(rtp_rtcp.get(), RTC_FROM_HERE); } void RtpVideoSender::DeRegisterProcessThread() { RTC_DCHECK_RUN_ON(&module_process_thread_checker_); for (auto& rtp_rtcp : rtp_modules_) module_process_thread_->DeRegisterModule(rtp_rtcp.get()); } void RtpVideoSender::SetActive(bool active) { rtc::CritScope lock(&crit_); if (active_ == active) return; const std::vector active_modules(rtp_modules_.size(), active); SetActiveModules(active_modules); } void RtpVideoSender::SetActiveModules(const std::vector active_modules) { rtc::CritScope lock(&crit_); RTC_DCHECK_EQ(rtp_modules_.size(), active_modules.size()); active_ = false; for (size_t i = 0; i < active_modules.size(); ++i) { if (active_modules[i]) { active_ = true; } // Sends a kRtcpByeCode when going from true to false. rtp_modules_[i]->SetSendingStatus(active_modules[i]); // If set to false this module won't send media. rtp_modules_[i]->SetSendingMediaStatus(active_modules[i]); } } bool RtpVideoSender::IsActive() { rtc::CritScope lock(&crit_); return active_ && !rtp_modules_.empty(); } EncodedImageCallback::Result RtpVideoSender::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) { rtc::CritScope lock(&crit_); RTC_DCHECK(!rtp_modules_.empty()); if (!active_) return Result(Result::ERROR_SEND_FAILED); shared_frame_id_++; size_t stream_index = 0; if (codec_specific_info && (codec_specific_info->codecType == kVideoCodecVP8 || codec_specific_info->codecType == kVideoCodecH264 || codec_specific_info->codecType == kVideoCodecGeneric)) { // Map spatial index to simulcast. stream_index = encoded_image.SpatialIndex().value_or(0); } RTC_DCHECK_LT(stream_index, rtp_modules_.size()); RTPVideoHeader rtp_video_header = params_[stream_index].GetRtpVideoHeader( encoded_image, codec_specific_info, shared_frame_id_); uint32_t frame_id; if (!rtp_modules_[stream_index]->Sending()) { // The payload router could be active but this module isn't sending. return Result(Result::ERROR_SEND_FAILED); } bool send_result = rtp_modules_[stream_index]->SendOutgoingData( encoded_image._frameType, rtp_config_.payload_type, encoded_image.Timestamp(), encoded_image.capture_time_ms_, encoded_image._buffer, encoded_image._length, fragmentation, &rtp_video_header, &frame_id); if (!send_result) return Result(Result::ERROR_SEND_FAILED); return Result(Result::OK, frame_id); } void RtpVideoSender::OnBitrateAllocationUpdated( const VideoBitrateAllocation& bitrate) { rtc::CritScope lock(&crit_); if (IsActive()) { if (rtp_modules_.size() == 1) { // If spatial scalability is enabled, it is covered by a single stream. rtp_modules_[0]->SetVideoBitrateAllocation(bitrate); } else { std::vector> layer_bitrates = bitrate.GetSimulcastAllocations(); // Simulcast is in use, split the VideoBitrateAllocation into one struct // per rtp stream, moving over the temporal layer allocation. for (size_t i = 0; i < rtp_modules_.size(); ++i) { // The next spatial layer could be used if the current one is // inactive. if (layer_bitrates[i]) { rtp_modules_[i]->SetVideoBitrateAllocation(*layer_bitrates[i]); } else { // Signal a 0 bitrate on a simulcast stream. rtp_modules_[i]->SetVideoBitrateAllocation(VideoBitrateAllocation()); } } } } } void RtpVideoSender::ConfigureProtection(const RtpConfig& rtp_config) { // Consistency of FlexFEC parameters is checked in MaybeCreateFlexfecSender. const bool flexfec_enabled = (flexfec_sender_ != nullptr); // Consistency of NACK and RED+ULPFEC parameters is checked in this function. const bool nack_enabled = rtp_config.nack.rtp_history_ms > 0; int red_payload_type = rtp_config.ulpfec.red_payload_type; int ulpfec_payload_type = rtp_config.ulpfec.ulpfec_payload_type; // Shorthands. auto IsRedEnabled = [&]() { return red_payload_type >= 0; }; auto IsUlpfecEnabled = [&]() { return ulpfec_payload_type >= 0; }; auto DisableRedAndUlpfec = [&]() { red_payload_type = -1; ulpfec_payload_type = -1; }; if (webrtc::field_trial::IsEnabled("WebRTC-DisableUlpFecExperiment")) { RTC_LOG(LS_INFO) << "Experiment to disable sending ULPFEC is enabled."; DisableRedAndUlpfec(); } // If enabled, FlexFEC takes priority over RED+ULPFEC. if (flexfec_enabled) { if (IsUlpfecEnabled()) { RTC_LOG(LS_INFO) << "Both FlexFEC and ULPFEC are configured. Disabling ULPFEC."; } DisableRedAndUlpfec(); } // Payload types without picture ID cannot determine that a stream is complete // without retransmitting FEC, so using ULPFEC + NACK for H.264 (for instance) // is a waste of bandwidth since FEC packets still have to be transmitted. // Note that this is not the case with FlexFEC. if (nack_enabled && IsUlpfecEnabled() && !PayloadTypeSupportsSkippingFecPackets(rtp_config.payload_name)) { RTC_LOG(LS_WARNING) << "Transmitting payload type without picture ID using " "NACK+ULPFEC is a waste of bandwidth since ULPFEC packets " "also have to be retransmitted. Disabling ULPFEC."; DisableRedAndUlpfec(); } // Verify payload types. if (IsUlpfecEnabled() ^ IsRedEnabled()) { RTC_LOG(LS_WARNING) << "Only RED or only ULPFEC enabled, but not both. Disabling both."; DisableRedAndUlpfec(); } for (auto& rtp_rtcp : rtp_modules_) { // Set NACK. rtp_rtcp->SetStorePacketsStatus(true, kMinSendSidePacketHistorySize); // Set RED/ULPFEC information. rtp_rtcp->SetUlpfecConfig(red_payload_type, ulpfec_payload_type); } } bool RtpVideoSender::FecEnabled() const { const bool flexfec_enabled = (flexfec_sender_ != nullptr); int ulpfec_payload_type = rtp_config_.ulpfec.ulpfec_payload_type; return flexfec_enabled || ulpfec_payload_type >= 0; } bool RtpVideoSender::NackEnabled() const { const bool nack_enabled = rtp_config_.nack.rtp_history_ms > 0; return nack_enabled; } void RtpVideoSender::DeliverRtcp(const uint8_t* packet, size_t length) { // Runs on a network thread. for (auto& rtp_rtcp : rtp_modules_) rtp_rtcp->IncomingRtcpPacket(packet, length); } void RtpVideoSender::ProtectionRequest(const FecProtectionParams* delta_params, const FecProtectionParams* key_params, uint32_t* sent_video_rate_bps, uint32_t* sent_nack_rate_bps, uint32_t* sent_fec_rate_bps) { *sent_video_rate_bps = 0; *sent_nack_rate_bps = 0; *sent_fec_rate_bps = 0; for (auto& rtp_rtcp : rtp_modules_) { uint32_t not_used = 0; uint32_t module_video_rate = 0; uint32_t module_fec_rate = 0; uint32_t module_nack_rate = 0; rtp_rtcp->SetFecParameters(*delta_params, *key_params); rtp_rtcp->BitrateSent(¬_used, &module_video_rate, &module_fec_rate, &module_nack_rate); *sent_video_rate_bps += module_video_rate; *sent_nack_rate_bps += module_nack_rate; *sent_fec_rate_bps += module_fec_rate; } } void RtpVideoSender::SetMaxRtpPacketSize(size_t max_rtp_packet_size) { for (auto& rtp_rtcp : rtp_modules_) { rtp_rtcp->SetMaxRtpPacketSize(max_rtp_packet_size); } } void RtpVideoSender::ConfigureSsrcs(const RtpConfig& rtp_config) { // Configure regular SSRCs. for (size_t i = 0; i < rtp_config.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config.ssrcs[i]; RtpRtcp* const rtp_rtcp = rtp_modules_[i].get(); rtp_rtcp->SetSSRC(ssrc); // Restore RTP state if previous existed. auto it = suspended_ssrcs_.find(ssrc); if (it != suspended_ssrcs_.end()) rtp_rtcp->SetRtpState(it->second); } // Set up RTX if available. if (rtp_config.rtx.ssrcs.empty()) return; // Configure RTX SSRCs. RTC_DCHECK_EQ(rtp_config.rtx.ssrcs.size(), rtp_config.ssrcs.size()); for (size_t i = 0; i < rtp_config.rtx.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config.rtx.ssrcs[i]; RtpRtcp* const rtp_rtcp = rtp_modules_[i].get(); rtp_rtcp->SetRtxSsrc(ssrc); auto it = suspended_ssrcs_.find(ssrc); if (it != suspended_ssrcs_.end()) rtp_rtcp->SetRtxState(it->second); } // Configure RTX payload types. RTC_DCHECK_GE(rtp_config.rtx.payload_type, 0); for (auto& rtp_rtcp : rtp_modules_) { rtp_rtcp->SetRtxSendPayloadType(rtp_config.rtx.payload_type, rtp_config.payload_type); rtp_rtcp->SetRtxSendStatus(kRtxRetransmitted | kRtxRedundantPayloads); } if (rtp_config.ulpfec.red_payload_type != -1 && rtp_config.ulpfec.red_rtx_payload_type != -1) { for (auto& rtp_rtcp : rtp_modules_) { rtp_rtcp->SetRtxSendPayloadType(rtp_config.ulpfec.red_rtx_payload_type, rtp_config.ulpfec.red_payload_type); } } } void RtpVideoSender::OnNetworkAvailability(bool network_available) { for (auto& rtp_rtcp : rtp_modules_) { rtp_rtcp->SetRTCPStatus(network_available ? rtp_config_.rtcp_mode : RtcpMode::kOff); } } std::map RtpVideoSender::GetRtpStates() const { std::map rtp_states; for (size_t i = 0; i < rtp_config_.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config_.ssrcs[i]; RTC_DCHECK_EQ(ssrc, rtp_modules_[i]->SSRC()); rtp_states[ssrc] = rtp_modules_[i]->GetRtpState(); } for (size_t i = 0; i < rtp_config_.rtx.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config_.rtx.ssrcs[i]; rtp_states[ssrc] = rtp_modules_[i]->GetRtxState(); } if (flexfec_sender_) { uint32_t ssrc = rtp_config_.flexfec.ssrc; rtp_states[ssrc] = flexfec_sender_->GetRtpState(); } return rtp_states; } std::map RtpVideoSender::GetRtpPayloadStates() const { rtc::CritScope lock(&crit_); std::map payload_states; for (const auto& param : params_) { payload_states[param.ssrc()] = param.state(); payload_states[param.ssrc()].shared_frame_id = shared_frame_id_; } return payload_states; } } // namespace webrtc