/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This file includes unit tests for NetEQ. */ #include "webrtc/modules/audio_coding/neteq4/interface/neteq.h" #include #include // memset #include #include #include "gtest/gtest.h" #include "webrtc/modules/audio_coding/neteq4/test/NETEQTEST_RTPpacket.h" #include "webrtc/test/testsupport/fileutils.h" #include "webrtc/typedefs.h" namespace webrtc { class RefFiles { public: RefFiles(const std::string& input_file, const std::string& output_file); ~RefFiles(); template void ProcessReference(const T& test_results); template void ProcessReference( const T (&test_results)[n], size_t length); template void WriteToFile( const T (&test_results)[n], size_t length); template void ReadFromFileAndCompare( const T (&test_results)[n], size_t length); void WriteToFile(const NetEqNetworkStatistics& stats); void ReadFromFileAndCompare(const NetEqNetworkStatistics& stats); void WriteToFile(const RtcpStatistics& stats); void ReadFromFileAndCompare(const RtcpStatistics& stats); FILE* input_fp_; FILE* output_fp_; }; RefFiles::RefFiles(const std::string &input_file, const std::string &output_file) : input_fp_(NULL), output_fp_(NULL) { if (!input_file.empty()) { input_fp_ = fopen(input_file.c_str(), "rb"); EXPECT_TRUE(input_fp_ != NULL); } if (!output_file.empty()) { output_fp_ = fopen(output_file.c_str(), "wb"); EXPECT_TRUE(output_fp_ != NULL); } } RefFiles::~RefFiles() { if (input_fp_) { EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end. fclose(input_fp_); } if (output_fp_) fclose(output_fp_); } template void RefFiles::ProcessReference(const T& test_results) { WriteToFile(test_results); ReadFromFileAndCompare(test_results); } template void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) { WriteToFile(test_results, length); ReadFromFileAndCompare(test_results, length); } template void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) { if (output_fp_) { ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_)); } } template void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n], size_t length) { if (input_fp_) { // Read from ref file. T* ref = new T[length]; ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_)); // Compare ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length)); delete [] ref; } } void RefFiles::WriteToFile(const NetEqNetworkStatistics& stats) { if (output_fp_) { ASSERT_EQ(1u, fwrite(&stats, sizeof(NetEqNetworkStatistics), 1, output_fp_)); } } void RefFiles::ReadFromFileAndCompare( const NetEqNetworkStatistics& stats) { if (input_fp_) { // Read from ref file. size_t stat_size = sizeof(NetEqNetworkStatistics); NetEqNetworkStatistics ref_stats; ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_)); // Compare EXPECT_EQ(0, memcmp(&stats, &ref_stats, stat_size)); } } void RefFiles::WriteToFile(const RtcpStatistics& stats) { if (output_fp_) { ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1, output_fp_)); ASSERT_EQ(1u, fwrite(&(stats.cumulative_lost), sizeof(stats.cumulative_lost), 1, output_fp_)); ASSERT_EQ(1u, fwrite(&(stats.extended_max), sizeof(stats.extended_max), 1, output_fp_)); ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1, output_fp_)); } } void RefFiles::ReadFromFileAndCompare( const RtcpStatistics& stats) { if (input_fp_) { // Read from ref file. RtcpStatistics ref_stats; ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost), sizeof(ref_stats.fraction_lost), 1, input_fp_)); ASSERT_EQ(1u, fread(&(ref_stats.cumulative_lost), sizeof(ref_stats.cumulative_lost), 1, input_fp_)); ASSERT_EQ(1u, fread(&(ref_stats.extended_max), sizeof(ref_stats.extended_max), 1, input_fp_)); ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1, input_fp_)); // Compare EXPECT_EQ(ref_stats.fraction_lost, stats.fraction_lost); EXPECT_EQ(ref_stats.cumulative_lost, stats.cumulative_lost); EXPECT_EQ(ref_stats.extended_max, stats.extended_max); EXPECT_EQ(ref_stats.jitter, stats.jitter); } } class NetEqDecodingTest : public ::testing::Test { protected: // NetEQ must be polled for data once every 10 ms. Thus, neither of the // constants below can be changed. static const int kTimeStepMs = 10; static const int kBlockSize8kHz = kTimeStepMs * 8; static const int kBlockSize16kHz = kTimeStepMs * 16; static const int kBlockSize32kHz = kTimeStepMs * 32; static const int kMaxBlockSize = kBlockSize32kHz; static const int kInitSampleRateHz = 8000; NetEqDecodingTest(); virtual void SetUp(); virtual void TearDown(); void SelectDecoders(NetEqDecoder* used_codec); void LoadDecoders(); void OpenInputFile(const std::string &rtp_file); void Process(NETEQTEST_RTPpacket* rtp_ptr, int* out_len); void DecodeAndCompare(const std::string &rtp_file, const std::string &ref_file); void DecodeAndCheckStats(const std::string &rtp_file, const std::string &stat_ref_file, const std::string &rtcp_ref_file); static void PopulateRtpInfo(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info); static void PopulateCng(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info, uint8_t* payload, int* payload_len); NetEq* neteq_; FILE* rtp_fp_; unsigned int sim_clock_; int16_t out_data_[kMaxBlockSize]; int output_sample_rate_; }; // Allocating the static const so that it can be passed by reference. const int NetEqDecodingTest::kTimeStepMs; const int NetEqDecodingTest::kBlockSize8kHz; const int NetEqDecodingTest::kBlockSize16kHz; const int NetEqDecodingTest::kBlockSize32kHz; const int NetEqDecodingTest::kMaxBlockSize; const int NetEqDecodingTest::kInitSampleRateHz; NetEqDecodingTest::NetEqDecodingTest() : neteq_(NULL), rtp_fp_(NULL), sim_clock_(0), output_sample_rate_(kInitSampleRateHz) { memset(out_data_, 0, sizeof(out_data_)); } void NetEqDecodingTest::SetUp() { neteq_ = NetEq::Create(kInitSampleRateHz); ASSERT_TRUE(neteq_); LoadDecoders(); } void NetEqDecodingTest::TearDown() { delete neteq_; if (rtp_fp_) fclose(rtp_fp_); } void NetEqDecodingTest::LoadDecoders() { // Load PCMu. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMu, 0)); // Load PCMa. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCMa, 8)); // Load iLBC. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderILBC, 102)); // Load iSAC. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISAC, 103)); // Load iSAC SWB. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACswb, 104)); // Load iSAC FB. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderISACfb, 105)); // Load PCM16B nb. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16B, 93)); // Load PCM16B wb. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bwb, 94)); // Load PCM16B swb32. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderPCM16Bswb32kHz, 95)); // Load CNG 8 kHz. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGnb, 13)); // Load CNG 16 kHz. ASSERT_EQ(0, neteq_->RegisterPayloadType(kDecoderCNGwb, 98)); } void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) { rtp_fp_ = fopen(rtp_file.c_str(), "rb"); ASSERT_TRUE(rtp_fp_ != NULL); ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_)); } void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int* out_len) { // Check if time to receive. while ((sim_clock_ >= rtp->time()) && (rtp->dataLen() >= 0)) { if (rtp->dataLen() > 0) { WebRtcRTPHeader rtpInfo; rtp->parseHeader(&rtpInfo); ASSERT_EQ(0, neteq_->InsertPacket( rtpInfo, rtp->payload(), rtp->payloadLen(), rtp->time() * (output_sample_rate_ / 1000))); } // Get next packet. ASSERT_NE(-1, rtp->readFromFile(rtp_fp_)); } // Get audio from NetEq. NetEqOutputType type; int num_channels; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, out_len, &num_channels, &type)); ASSERT_TRUE((*out_len == kBlockSize8kHz) || (*out_len == kBlockSize16kHz) || (*out_len == kBlockSize32kHz)); output_sample_rate_ = *out_len / 10 * 1000; // Increase time. sim_clock_ += kTimeStepMs; } void NetEqDecodingTest::DecodeAndCompare(const std::string &rtp_file, const std::string &ref_file) { OpenInputFile(rtp_file); std::string ref_out_file = ""; if (ref_file.empty()) { ref_out_file = webrtc::test::OutputPath() + "neteq_out.pcm"; } RefFiles ref_files(ref_file, ref_out_file); NETEQTEST_RTPpacket rtp; ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); int i = 0; while (rtp.dataLen() >= 0) { std::ostringstream ss; ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. int out_len; ASSERT_NO_FATAL_FAILURE(Process(&rtp, &out_len)); ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len)); } } void NetEqDecodingTest::DecodeAndCheckStats(const std::string &rtp_file, const std::string &stat_ref_file, const std::string &rtcp_ref_file) { OpenInputFile(rtp_file); std::string stat_out_file = ""; if (stat_ref_file.empty()) { stat_out_file = webrtc::test::OutputPath() + "neteq_network_stats.dat"; } RefFiles network_stat_files(stat_ref_file, stat_out_file); std::string rtcp_out_file = ""; if (rtcp_ref_file.empty()) { rtcp_out_file = webrtc::test::OutputPath() + "neteq_rtcp_stats.dat"; } RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file); NETEQTEST_RTPpacket rtp; ASSERT_GT(rtp.readFromFile(rtp_fp_), 0); while (rtp.dataLen() >= 0) { int out_len; Process(&rtp, &out_len); // Query the network statistics API once per second if (sim_clock_ % 1000 == 0) { // Process NetworkStatistics. NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); network_stat_files.ProcessReference(network_stats); // Process RTCPstat. RtcpStatistics rtcp_stats; neteq_->GetRtcpStatistics(&rtcp_stats); rtcp_stat_files.ProcessReference(rtcp_stats); } } } void NetEqDecodingTest::PopulateRtpInfo(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info) { rtp_info->header.sequenceNumber = frame_index; rtp_info->header.timestamp = timestamp; rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->header.payloadType = 94; // PCM16b WB codec. rtp_info->header.markerBit = 0; } void NetEqDecodingTest::PopulateCng(int frame_index, int timestamp, WebRtcRTPHeader* rtp_info, uint8_t* payload, int* payload_len) { rtp_info->header.sequenceNumber = frame_index; rtp_info->header.timestamp = timestamp; rtp_info->header.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->header.payloadType = 98; // WB CNG. rtp_info->header.markerBit = 0; payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. *payload_len = 1; // Only noise level, no spectral parameters. } TEST_F(NetEqDecodingTest, TestBitExactness) { const std::string kInputRtpFile = webrtc::test::ProjectRootPath() + "resources/audio_coding/neteq_universal_new.rtp"; #if defined(_MSC_VER) && (_MSC_VER >= 1700) // For Visual Studio 2012 and later, we will have to use the generic reference // file, rather than the windows-specific one. const std::string kInputRefFile = webrtc::test::ProjectRootPath() + "resources/audio_coding/neteq_universal_ref.pcm"; #else const std::string kInputRefFile = webrtc::test::ResourcePath("audio_coding/neteq_universal_ref", "pcm"); #endif DecodeAndCompare(kInputRtpFile, kInputRefFile); } TEST_F(NetEqDecodingTest, TestNetworkStatistics) { const std::string kInputRtpFile = webrtc::test::ProjectRootPath() + "resources/audio_coding/neteq_universal_new.rtp"; #if defined(_MSC_VER) && (_MSC_VER >= 1700) // For Visual Studio 2012 and later, we will have to use the generic reference // file, rather than the windows-specific one. const std::string kNetworkStatRefFile = webrtc::test::ProjectRootPath() + "resources/audio_coding/neteq_network_stats.dat"; #else const std::string kNetworkStatRefFile = webrtc::test::ResourcePath("audio_coding/neteq_network_stats", "dat"); #endif const std::string kRtcpStatRefFile = webrtc::test::ResourcePath("audio_coding/neteq_rtcp_stats", "dat"); DecodeAndCheckStats(kInputRtpFile, kNetworkStatRefFile, kRtcpStatRefFile); } // TODO(hlundin): Re-enable test once the statistics interface is up and again. TEST_F(NetEqDecodingTest, TestFrameWaitingTimeStatistics) { // Use fax mode to avoid time-scaling. This is to simplify the testing of // packet waiting times in the packet buffer. neteq_->SetPlayoutMode(kPlayoutFax); ASSERT_EQ(kPlayoutFax, neteq_->PlayoutMode()); // Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio. size_t num_frames = 30; const int kSamples = 10 * 16; const int kPayloadBytes = kSamples * 2; for (size_t i = 0; i < num_frames; ++i) { uint16_t payload[kSamples] = {0}; WebRtcRTPHeader rtp_info; rtp_info.header.sequenceNumber = i; rtp_info.header.timestamp = i * kSamples; rtp_info.header.ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info.header.payloadType = 94; // PCM16b WB codec. rtp_info.header.markerBit = 0; ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, reinterpret_cast(payload), kPayloadBytes, 0)); } // Pull out all data. for (size_t i = 0; i < num_frames; ++i) { int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } std::vector waiting_times; neteq_->WaitingTimes(&waiting_times); int len = waiting_times.size(); EXPECT_EQ(num_frames, waiting_times.size()); // Since all frames are dumped into NetEQ at once, but pulled out with 10 ms // spacing (per definition), we expect the delay to increase with 10 ms for // each packet. for (size_t i = 0; i < waiting_times.size(); ++i) { EXPECT_EQ(static_cast(i + 1) * 10, waiting_times[i]); } // Check statistics again and make sure it's been reset. neteq_->WaitingTimes(&waiting_times); len = waiting_times.size(); EXPECT_EQ(0, len); // Process > 100 frames, and make sure that that we get statistics // only for 100 frames. Note the new SSRC, causing NetEQ to reset. num_frames = 110; for (size_t i = 0; i < num_frames; ++i) { uint16_t payload[kSamples] = {0}; WebRtcRTPHeader rtp_info; rtp_info.header.sequenceNumber = i; rtp_info.header.timestamp = i * kSamples; rtp_info.header.ssrc = 0x1235; // Just an arbitrary SSRC. rtp_info.header.payloadType = 94; // PCM16b WB codec. rtp_info.header.markerBit = 0; ASSERT_EQ(0, neteq_->InsertPacket( rtp_info, reinterpret_cast(payload), kPayloadBytes, 0)); int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } neteq_->WaitingTimes(&waiting_times); EXPECT_EQ(100u, waiting_times.size()); } TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) { const int kNumFrames = 3000; // Needed for convergence. int frame_index = 0; const int kSamples = 10 * 16; const int kPayloadBytes = kSamples * 2; while (frame_index < kNumFrames) { // Insert one packet each time, except every 10th time where we insert two // packets at once. This will create a negative clock-drift of approx. 10%. int num_packets = (frame_index % 10 == 0 ? 2 : 1); for (int n = 0; n < num_packets; ++n) { uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++frame_index; } // Pull out data once. int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(-103196, network_stats.clockdrift_ppm); } TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) { const int kNumFrames = 5000; // Needed for convergence. int frame_index = 0; const int kSamples = 10 * 16; const int kPayloadBytes = kSamples * 2; for (int i = 0; i < kNumFrames; ++i) { // Insert one packet each time, except every 10th time where we don't insert // any packet. This will create a positive clock-drift of approx. 11%. int num_packets = (i % 10 == 9 ? 0 : 1); for (int n = 0; n < num_packets; ++n) { uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++frame_index; } // Pull out data once. int out_len; int num_channels; NetEqOutputType type; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_EQ(110946, network_stats.clockdrift_ppm); } TEST_F(NetEqDecodingTest, LongCngWithClockDrift) { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 30; const int kSamples = kFrameSizeMs * 16; const int kPayloadBytes = kSamples * 2; // Apply a clock drift of -25 ms / s (sender faster than receiver). const double kDriftFactor = 1000.0 / (1000.0 + 25.0); double next_input_time_ms = 0.0; double t_ms; NetEqOutputType type; // Insert speech for 5 seconds. const int kSpeechDurationMs = 5000; for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++seq_no; timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs) * kDriftFactor; } // Pull out data once. int out_len; int num_channels; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } EXPECT_EQ(kOutputNormal, type); int32_t delay_before = timestamp - neteq_->PlayoutTimestamp(); // Insert CNG for 1 minute (= 60000 ms). const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. const int kCngDurationMs = 60000; for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; int payload_len; WebRtcRTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, payload_len, 0)); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += static_cast(kCngPeriodMs) * kDriftFactor; } // Pull out data once. int out_len; int num_channels; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); } EXPECT_EQ(kOutputCNG, type); // Insert speech again until output type is speech. while (type != kOutputNormal) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); ++seq_no; timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs) * kDriftFactor; } // Pull out data once. int out_len; int num_channels; ASSERT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &out_len, &num_channels, &type)); ASSERT_EQ(kBlockSize16kHz, out_len); // Increase clock. t_ms += 10; } int32_t delay_after = timestamp - neteq_->PlayoutTimestamp(); // Compare delay before and after, and make sure it differs less than 20 ms. EXPECT_LE(delay_after, delay_before + 20 * 16); EXPECT_GE(delay_after, delay_before - 20 * 16); } TEST_F(NetEqDecodingTest, UnknownPayloadType) { const int kPayloadBytes = 100; uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.header.payloadType = 1; // Not registered as a decoder. EXPECT_EQ(NetEq::kFail, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); EXPECT_EQ(NetEq::kUnknownRtpPayloadType, neteq_->LastError()); } TEST_F(NetEqDecodingTest, DecoderError) { const int kPayloadBytes = 100; uint8_t payload[kPayloadBytes] = {0}; WebRtcRTPHeader rtp_info; PopulateRtpInfo(0, 0, &rtp_info); rtp_info.header.payloadType = 103; // iSAC, but the payload is invalid. EXPECT_EQ(0, neteq_->InsertPacket(rtp_info, payload, kPayloadBytes, 0)); NetEqOutputType type; // Set all of |out_data_| to 1, and verify that it was set to 0 by the call // to GetAudio. for (int i = 0; i < kMaxBlockSize; ++i) { out_data_[i] = 1; } int num_channels; int samples_per_channel; EXPECT_EQ(NetEq::kFail, neteq_->GetAudio(kMaxBlockSize, out_data_, &samples_per_channel, &num_channels, &type)); // Verify that there is a decoder error to check. EXPECT_EQ(NetEq::kDecoderErrorCode, neteq_->LastError()); // Code 6730 is an iSAC error code. EXPECT_EQ(6730, neteq_->LastDecoderError()); // Verify that the first 160 samples are set to 0, and that the remaining // samples are left unmodified. static const int kExpectedOutputLength = 160; // 10 ms at 16 kHz sample rate. for (int i = 0; i < kExpectedOutputLength; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(0, out_data_[i]); } for (int i = kExpectedOutputLength; i < kMaxBlockSize; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(1, out_data_[i]); } } TEST_F(NetEqDecodingTest, GetAudioBeforeInsertPacket) { NetEqOutputType type; // Set all of |out_data_| to 1, and verify that it was set to 0 by the call // to GetAudio. for (int i = 0; i < kMaxBlockSize; ++i) { out_data_[i] = 1; } int num_channels; int samples_per_channel; EXPECT_EQ(0, neteq_->GetAudio(kMaxBlockSize, out_data_, &samples_per_channel, &num_channels, &type)); // Verify that the first block of samples is set to 0. static const int kExpectedOutputLength = kInitSampleRateHz / 100; // 10 ms at initial sample rate. for (int i = 0; i < kExpectedOutputLength; ++i) { std::ostringstream ss; ss << "i = " << i; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. EXPECT_EQ(0, out_data_[i]); } } } // namespace