/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/tools/event_log_visualizer/analyzer.h" #include #include #include #include #include #include #include "webrtc/audio_receive_stream.h" #include "webrtc/audio_send_stream.h" #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/call.h" #include "webrtc/common_types.h" #include "webrtc/modules/congestion_controller/include/congestion_controller.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "webrtc/modules/rtp_rtcp/source/rtp_utility.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" #include "webrtc/video_receive_stream.h" #include "webrtc/video_send_stream.h" namespace webrtc { namespace plotting { namespace { std::string SsrcToString(uint32_t ssrc) { std::stringstream ss; ss << "SSRC " << ssrc; return ss.str(); } // Checks whether an SSRC is contained in the list of desired SSRCs. // Note that an empty SSRC list matches every SSRC. bool MatchingSsrc(uint32_t ssrc, const std::vector& desired_ssrc) { if (desired_ssrc.size() == 0) return true; return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) != desired_ssrc.end(); } double AbsSendTimeToMicroseconds(int64_t abs_send_time) { // The timestamp is a fixed point representation with 6 bits for seconds // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the // time in seconds and then multiply by 1000000 to convert to microseconds. static constexpr double kTimestampToMicroSec = 1000000.0 / static_cast(1 << 18); return abs_send_time * kTimestampToMicroSec; } // Computes the difference |later| - |earlier| where |later| and |earlier| // are counters that wrap at |modulus|. The difference is chosen to have the // least absolute value. For example if |modulus| is 8, then the difference will // be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will // be in [-4, 4]. int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) { RTC_DCHECK_LE(1, modulus); RTC_DCHECK_LT(later, modulus); RTC_DCHECK_LT(earlier, modulus); int64_t difference = static_cast(later) - static_cast(earlier); int64_t max_difference = modulus / 2; int64_t min_difference = max_difference - modulus + 1; if (difference > max_difference) { difference -= modulus; } if (difference < min_difference) { difference += modulus; } return difference; } void RegisterHeaderExtensions( const std::vector& extensions, webrtc::RtpHeaderExtensionMap* extension_map) { extension_map->Erase(); for (const webrtc::RtpExtension& extension : extensions) { extension_map->Register(webrtc::StringToRtpExtensionType(extension.uri), extension.id); } } constexpr float kLeftMargin = 0.01f; constexpr float kRightMargin = 0.02f; constexpr float kBottomMargin = 0.02f; constexpr float kTopMargin = 0.05f; } // namespace bool EventLogAnalyzer::StreamId::operator<(const StreamId& other) const { if (ssrc_ < other.ssrc_) { return true; } if (ssrc_ == other.ssrc_) { if (direction_ < other.direction_) { return true; } } return false; } bool EventLogAnalyzer::StreamId::operator==(const StreamId& other) const { return ssrc_ == other.ssrc_ && direction_ == other.direction_; } EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log) : parsed_log_(log), window_duration_(250000), step_(10000) { uint64_t first_timestamp = std::numeric_limits::max(); uint64_t last_timestamp = std::numeric_limits::min(); // Maps a stream identifier consisting of ssrc and direction // to the header extensions used by that stream, std::map extension_maps; PacketDirection direction; uint8_t header[IP_PACKET_SIZE]; size_t header_length; size_t total_length; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT && event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT && event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT && event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT && event_type != ParsedRtcEventLog::LOG_START && event_type != ParsedRtcEventLog::LOG_END) { uint64_t timestamp = parsed_log_.GetTimestamp(i); first_timestamp = std::min(first_timestamp, timestamp); last_timestamp = std::max(last_timestamp, timestamp); } switch (parsed_log_.GetEventType(i)) { case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: { VideoReceiveStream::Config config(nullptr); parsed_log_.GetVideoReceiveConfig(i, &config); StreamId stream(config.rtp.remote_ssrc, kIncomingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); for (auto kv : config.rtp.rtx) { StreamId rtx_stream(kv.second.ssrc, kIncomingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[rtx_stream]); } break; } case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: { VideoSendStream::Config config(nullptr); parsed_log_.GetVideoSendConfig(i, &config); for (auto ssrc : config.rtp.ssrcs) { StreamId stream(ssrc, kOutgoingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); } for (auto ssrc : config.rtp.rtx.ssrcs) { StreamId stream(ssrc, kOutgoingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); } break; } case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: { AudioReceiveStream::Config config; // TODO(terelius): Parse the audio configs once we have them. break; } case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: { AudioSendStream::Config config(nullptr); // TODO(terelius): Parse the audio configs once we have them. break; } case ParsedRtcEventLog::RTP_EVENT: { MediaType media_type; parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); StreamId stream(parsed_header.ssrc, direction); // Look up the extension_map and parse it again to get the extensions. if (extension_maps.count(stream) == 1) { RtpHeaderExtensionMap* extension_map = &extension_maps[stream]; rtp_parser.Parse(&parsed_header, extension_map); } uint64_t timestamp = parsed_log_.GetTimestamp(i); rtp_packets_[stream].push_back( LoggedRtpPacket(timestamp, parsed_header, total_length)); break; } case ParsedRtcEventLog::RTCP_EVENT: { uint8_t packet[IP_PACKET_SIZE]; MediaType media_type; parsed_log_.GetRtcpPacket(i, &direction, &media_type, packet, &total_length); RtpUtility::RtpHeaderParser rtp_parser(packet, total_length); RTPHeader parsed_header; RTC_CHECK(rtp_parser.ParseRtcp(&parsed_header)); uint32_t ssrc = parsed_header.ssrc; RTCPUtility::RTCPParserV2 rtcp_parser(packet, total_length, true); RTC_CHECK(rtcp_parser.IsValid()); RTCPUtility::RTCPPacketTypes packet_type = rtcp_parser.Begin(); while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) { switch (packet_type) { case RTCPUtility::RTCPPacketTypes::kTransportFeedback: { // Currently feedback is logged twice, both for audio and video. // Only act on one of them. if (media_type == MediaType::VIDEO) { std::unique_ptr rtcp_packet( rtcp_parser.ReleaseRtcpPacket()); StreamId stream(ssrc, direction); uint64_t timestamp = parsed_log_.GetTimestamp(i); rtcp_packets_[stream].push_back(LoggedRtcpPacket( timestamp, kRtcpTransportFeedback, std::move(rtcp_packet))); } break; } default: break; } rtcp_parser.Iterate(); packet_type = rtcp_parser.PacketType(); } break; } case ParsedRtcEventLog::LOG_START: { break; } case ParsedRtcEventLog::LOG_END: { break; } case ParsedRtcEventLog::BWE_PACKET_LOSS_EVENT: { BwePacketLossEvent bwe_update; bwe_update.timestamp = parsed_log_.GetTimestamp(i); parsed_log_.GetBwePacketLossEvent(i, &bwe_update.new_bitrate, &bwe_update.fraction_loss, &bwe_update.expected_packets); bwe_loss_updates_.push_back(bwe_update); break; } case ParsedRtcEventLog::BWE_PACKET_DELAY_EVENT: { break; } case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: { break; } case ParsedRtcEventLog::UNKNOWN_EVENT: { break; } } } if (last_timestamp < first_timestamp) { // No useful events in the log. first_timestamp = last_timestamp = 0; } begin_time_ = first_timestamp; end_time_ = last_timestamp; call_duration_s_ = static_cast(end_time_ - begin_time_) / 1000000; } class BitrateObserver : public CongestionController::Observer, public RemoteBitrateObserver { public: BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {} void OnNetworkChanged(uint32_t bitrate_bps, uint8_t fraction_loss, int64_t rtt_ms) override { last_bitrate_bps_ = bitrate_bps; bitrate_updated_ = true; } void OnReceiveBitrateChanged(const std::vector& ssrcs, uint32_t bitrate) override {} uint32_t last_bitrate_bps() const { return last_bitrate_bps_; } bool GetAndResetBitrateUpdated() { bool bitrate_updated = bitrate_updated_; bitrate_updated_ = false; return bitrate_updated; } private: uint32_t last_bitrate_bps_; bool bitrate_updated_; }; void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction, Plot* plot) { std::map time_series; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); if (direction == desired_direction) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { uint64_t timestamp = parsed_log_.GetTimestamp(i); float x = static_cast(timestamp - begin_time_) / 1000000; float y = total_length; time_series[parsed_header.ssrc].points.push_back( TimeSeriesPoint(x, y)); } } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series_list_.push_back(std::move(kv.second)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Incoming RTP packets"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Outgoing RTP packets"); } } // For each SSRC, plot the time between the consecutive playouts. void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) { std::map time_series; std::map last_playout; uint32_t ssrc; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) { parsed_log_.GetAudioPlayout(i, &ssrc); uint64_t timestamp = parsed_log_.GetTimestamp(i); if (MatchingSsrc(ssrc, desired_ssrc_)) { float x = static_cast(timestamp - begin_time_) / 1000000; float y = static_cast(timestamp - last_playout[ssrc]) / 1000; if (time_series[ssrc].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } time_series[ssrc].points.push_back(TimeSeriesPoint(x, y)); last_playout[ssrc] = timestamp; } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series_list_.push_back(std::move(kv.second)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Audio playout"); } // For each SSRC, plot the time between the consecutive playouts. void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) { std::map time_series; std::map last_seqno; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); uint64_t timestamp = parsed_log_.GetTimestamp(i); if (direction == PacketDirection::kIncomingPacket) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { float x = static_cast(timestamp - begin_time_) / 1000000; int y = WrappingDifference(parsed_header.sequenceNumber, last_seqno[parsed_header.ssrc], 1ul << 16); if (time_series[parsed_header.ssrc].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } time_series[parsed_header.ssrc].points.push_back( TimeSeriesPoint(x, y)); last_seqno[parsed_header.ssrc] = parsed_header.sequenceNumber; } } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series_list_.push_back(std::move(kv.second)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin, kTopMargin); plot->SetTitle("Sequence number"); } void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; // Filter on direction and SSRC. if (stream_id.GetDirection() != kIncomingPacket || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = SsrcToString(stream_id.GetSsrc()); time_series.style = BAR_GRAPH; const std::vector& packet_stream = kv.second; int64_t last_abs_send_time = 0; int64_t last_timestamp = 0; for (const LoggedRtpPacket& packet : packet_stream) { if (packet.header.extension.hasAbsoluteSendTime) { int64_t send_time_diff = WrappingDifference(packet.header.extension.absoluteSendTime, last_abs_send_time, 1ul << 24); int64_t recv_time_diff = packet.timestamp - last_timestamp; last_abs_send_time = packet.header.extension.absoluteSendTime; last_timestamp = packet.timestamp; float x = static_cast(packet.timestamp - begin_time_) / 1000000; double y = static_cast(recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff)) / 1000; if (time_series.points.size() == 0) { // There were no previously logged packets for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } time_series.points.emplace_back(x, y); } } // Add the data set to the plot. plot->series_list_.push_back(std::move(time_series)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Network latency change between consecutive packets"); } void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; // Filter on direction and SSRC. if (stream_id.GetDirection() != kIncomingPacket || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = SsrcToString(stream_id.GetSsrc()); time_series.style = LINE_GRAPH; const std::vector& packet_stream = kv.second; int64_t last_abs_send_time = 0; int64_t last_timestamp = 0; double accumulated_delay_ms = 0; for (const LoggedRtpPacket& packet : packet_stream) { if (packet.header.extension.hasAbsoluteSendTime) { int64_t send_time_diff = WrappingDifference(packet.header.extension.absoluteSendTime, last_abs_send_time, 1ul << 24); int64_t recv_time_diff = packet.timestamp - last_timestamp; last_abs_send_time = packet.header.extension.absoluteSendTime; last_timestamp = packet.timestamp; float x = static_cast(packet.timestamp - begin_time_) / 1000000; accumulated_delay_ms += static_cast(recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff)) / 1000; if (time_series.points.size() == 0) { // There were no previously logged packets for this SSRC. // Generate a point, but place it on the x-axis. accumulated_delay_ms = 0; } time_series.points.emplace_back(x, accumulated_delay_ms); } } // Add the data set to the plot. plot->series_list_.push_back(std::move(time_series)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Accumulated network latency change"); } // Plot the total bandwidth used by all RTP streams. void EventLogAnalyzer::CreateTotalBitrateGraph( PacketDirection desired_direction, Plot* plot) { struct TimestampSize { TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} uint64_t timestamp; size_t size; }; std::vector packets; PacketDirection direction; size_t total_length; // Extract timestamps and sizes for the relevant packets. for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr, &total_length); if (direction == desired_direction) { uint64_t timestamp = parsed_log_.GetTimestamp(i); packets.push_back(TimestampSize(timestamp, total_length)); } } } size_t window_index_begin = 0; size_t window_index_end = 0; size_t bytes_in_window = 0; // Calculate a moving average of the bitrate and store in a TimeSeries. plot->series_list_.push_back(TimeSeries()); for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { while (window_index_end < packets.size() && packets[window_index_end].timestamp < time) { bytes_in_window += packets[window_index_end].size; window_index_end++; } while (window_index_begin < packets.size() && packets[window_index_begin].timestamp < time - window_duration_) { RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window); bytes_in_window -= packets[window_index_begin].size; window_index_begin++; } float window_duration_in_seconds = static_cast(window_duration_) / 1000000; float x = static_cast(time - begin_time_) / 1000000; float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y)); } // Set labels. if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->series_list_.back().label = "Incoming bitrate"; } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->series_list_.back().label = "Outgoing bitrate"; } plot->series_list_.back().style = LINE_GRAPH; // Overlay the send-side bandwidth estimate over the outgoing bitrate. if (desired_direction == kOutgoingPacket) { plot->series_list_.push_back(TimeSeries()); for (auto& bwe_update : bwe_loss_updates_) { float x = static_cast(bwe_update.timestamp - begin_time_) / 1000000; float y = static_cast(bwe_update.new_bitrate) / 1000; plot->series_list_.back().points.emplace_back(x, y); } plot->series_list_.back().label = "Loss-based estimate"; plot->series_list_.back().style = LINE_GRAPH; } plot->series_list_.back().style = LINE_GRAPH; plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Incoming RTP bitrate"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Outgoing RTP bitrate"); } } // For each SSRC, plot the bandwidth used by that stream. void EventLogAnalyzer::CreateStreamBitrateGraph( PacketDirection desired_direction, Plot* plot) { struct TimestampSize { TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} uint64_t timestamp; size_t size; }; std::map> packets; PacketDirection direction; MediaType media_type; uint8_t header[IP_PACKET_SIZE]; size_t header_length, total_length; // Extract timestamps and sizes for the relevant packets. for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); if (direction == desired_direction) { // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); // Filter on SSRC. if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) { uint64_t timestamp = parsed_log_.GetTimestamp(i); packets[parsed_header.ssrc].push_back( TimestampSize(timestamp, total_length)); } } } } for (auto& kv : packets) { size_t window_index_begin = 0; size_t window_index_end = 0; size_t bytes_in_window = 0; // Calculate a moving average of the bitrate and store in a TimeSeries. plot->series_list_.push_back(TimeSeries()); for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { while (window_index_end < kv.second.size() && kv.second[window_index_end].timestamp < time) { bytes_in_window += kv.second[window_index_end].size; window_index_end++; } while (window_index_begin < kv.second.size() && kv.second[window_index_begin].timestamp < time - window_duration_) { RTC_DCHECK_LE(kv.second[window_index_begin].size, bytes_in_window); bytes_in_window -= kv.second[window_index_begin].size; window_index_begin++; } float window_duration_in_seconds = static_cast(window_duration_) / 1000000; float x = static_cast(time - begin_time_) / 1000000; float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y)); } // Set labels. plot->series_list_.back().label = SsrcToString(kv.first); plot->series_list_.back().style = LINE_GRAPH; } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Incoming bitrate per stream"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Outgoing bitrate per stream"); } } void EventLogAnalyzer::CreateBweGraph(Plot* plot) { std::map outgoing_rtp; std::map incoming_rtcp; for (const auto& kv : rtp_packets_) { if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { for (const LoggedRtpPacket& rtp_packet : kv.second) outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); } } for (const auto& kv : rtcp_packets_) { if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { for (const LoggedRtcpPacket& rtcp_packet : kv.second) incoming_rtcp.insert( std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); } } SimulatedClock clock(0); BitrateObserver observer; RtcEventLogNullImpl null_event_log; CongestionController cc(&clock, &observer, &observer, &null_event_log); // TODO(holmer): Log the call config and use that here instead. static const uint32_t kDefaultStartBitrateBps = 300000; cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1); TimeSeries time_series; time_series.label = "BWE"; time_series.style = LINE_DOT_GRAPH; auto rtp_iterator = outgoing_rtp.begin(); auto rtcp_iterator = incoming_rtcp.begin(); auto NextRtpTime = [&]() { if (rtp_iterator != outgoing_rtp.end()) return static_cast(rtp_iterator->first); return std::numeric_limits::max(); }; auto NextRtcpTime = [&]() { if (rtcp_iterator != incoming_rtcp.end()) return static_cast(rtcp_iterator->first); return std::numeric_limits::max(); }; auto NextProcessTime = [&]() { if (rtcp_iterator != incoming_rtcp.end() || rtp_iterator != outgoing_rtp.end()) { return clock.TimeInMicroseconds() + std::max(cc.TimeUntilNextProcess() * 1000, 0); } return std::numeric_limits::max(); }; int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); while (time_us != std::numeric_limits::max()) { clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); if (clock.TimeInMicroseconds() >= NextRtcpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; if (rtcp.type == kRtcpTransportFeedback) { cc.GetTransportFeedbackObserver()->OnTransportFeedback( *static_cast(rtcp.packet.get())); } ++rtcp_iterator; } if (clock.TimeInMicroseconds() >= NextRtpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); const LoggedRtpPacket& rtp = *rtp_iterator->second; if (rtp.header.extension.hasTransportSequenceNumber) { RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); cc.GetTransportFeedbackObserver()->AddPacket( rtp.header.extension.transportSequenceNumber, rtp.total_length, 0); rtc::SentPacket sent_packet( rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); cc.OnSentPacket(sent_packet); } ++rtp_iterator; } if (clock.TimeInMicroseconds() >= NextProcessTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime()); cc.Process(); } if (observer.GetAndResetBitrateUpdated()) { uint32_t y = observer.last_bitrate_bps() / 1000; float x = static_cast(clock.TimeInMicroseconds() - begin_time_) / 1000000; time_series.points.emplace_back(x, y); } time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()}); } // Add the data set to the plot. plot->series_list_.push_back(std::move(time_series)); plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); plot->SetTitle("Simulated BWE behavior"); } void EventLogAnalyzer::CreateNetworkDelayFeebackGraph(Plot* plot) { std::map outgoing_rtp; std::map incoming_rtcp; for (const auto& kv : rtp_packets_) { if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { for (const LoggedRtpPacket& rtp_packet : kv.second) outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); } } for (const auto& kv : rtcp_packets_) { if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { for (const LoggedRtcpPacket& rtcp_packet : kv.second) incoming_rtcp.insert( std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); } } SimulatedClock clock(0); TransportFeedbackAdapter feedback_adapter(nullptr, &clock); TimeSeries time_series; time_series.label = "Network Delay Change"; time_series.style = LINE_DOT_GRAPH; int64_t estimated_base_delay_ms = std::numeric_limits::max(); auto rtp_iterator = outgoing_rtp.begin(); auto rtcp_iterator = incoming_rtcp.begin(); auto NextRtpTime = [&]() { if (rtp_iterator != outgoing_rtp.end()) return static_cast(rtp_iterator->first); return std::numeric_limits::max(); }; auto NextRtcpTime = [&]() { if (rtcp_iterator != incoming_rtcp.end()) return static_cast(rtcp_iterator->first); return std::numeric_limits::max(); }; int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); while (time_us != std::numeric_limits::max()) { clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); if (clock.TimeInMicroseconds() >= NextRtcpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; if (rtcp.type == kRtcpTransportFeedback) { std::vector feedback = feedback_adapter.GetPacketFeedbackVector( *static_cast(rtcp.packet.get())); for (const PacketInfo& packet : feedback) { int64_t y = packet.arrival_time_ms - packet.send_time_ms; float x = static_cast(clock.TimeInMicroseconds() - begin_time_) / 1000000; estimated_base_delay_ms = std::min(y, estimated_base_delay_ms); time_series.points.emplace_back(x, y); } } ++rtcp_iterator; } if (clock.TimeInMicroseconds() >= NextRtpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); const LoggedRtpPacket& rtp = *rtp_iterator->second; if (rtp.header.extension.hasTransportSequenceNumber) { RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); feedback_adapter.AddPacket(rtp.header.extension.transportSequenceNumber, rtp.total_length, 0); feedback_adapter.OnSentPacket( rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); } ++rtp_iterator; } time_us = std::min(NextRtpTime(), NextRtcpTime()); } // We assume that the base network delay (w/o queues) is the min delay // observed during the call. for (TimeSeriesPoint& point : time_series.points) point.y -= estimated_base_delay_ms; // Add the data set to the plot. plot->series_list_.push_back(std::move(time_series)); plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Network Delay Change."); } } // namespace plotting } // namespace webrtc