/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Modified from the Chromium original: // src/media/base/sinc_resampler.cc // Input buffer layout, dividing the total buffer into regions (r0_ - r5_): // // |----------------|-----------------------------------------|----------------| // // kBlockSize + kKernelSize / 2 // <---------------------------------------------------------> // r0_ // // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 // <---------------> <---------------> <---------------> <---------------> // r1_ r2_ r3_ r4_ // // kBlockSize // <---------------------------------------> // r5_ // // The algorithm: // // 1) Consume input frames into r0_ (r1_ is zero-initialized). // 2) Position kernel centered at start of r0_ (r2_) and generate output frames // until kernel is centered at start of r4_ or we've finished generating all // the output frames. // 3) Copy r3_ to r1_ and r4_ to r2_. // 4) Consume input frames into r5_ (zero-pad if we run out of input). // 5) Goto (2) until all of input is consumed. // // Note: we're glossing over how the sub-sample handling works with // |virtual_source_idx_|, etc. // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include "webrtc/common_audio/resampler/sinc_resampler.h" #include "webrtc/system_wrappers/interface/compile_assert.h" #include "webrtc/system_wrappers/interface/cpu_features_wrapper.h" #include "webrtc/typedefs.h" #include #include #include namespace webrtc { static double SincScaleFactor(double io_ratio) { // |sinc_scale_factor| is basically the normalized cutoff frequency of the // low-pass filter. double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0; // The sinc function is an idealized brick-wall filter, but since we're // windowing it the transition from pass to stop does not happen right away. // So we should adjust the low pass filter cutoff slightly downward to avoid // some aliasing at the very high-end. // TODO(crogers): this value is empirical and to be more exact should vary // depending on kKernelSize. sinc_scale_factor *= 0.9; return sinc_scale_factor; } SincResampler::SincResampler(double io_sample_rate_ratio, SincResamplerCallback* read_cb, int block_size) : io_sample_rate_ratio_(io_sample_rate_ratio), virtual_source_idx_(0), buffer_primed_(false), read_cb_(read_cb), block_size_(block_size), buffer_size_(block_size_ + kKernelSize), // Create input buffers with a 16-byte alignment for SSE optimizations. kernel_storage_(static_cast( AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), kernel_pre_sinc_storage_(static_cast( AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), kernel_window_storage_(static_cast( AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), input_buffer_(static_cast( AlignedMalloc(sizeof(float) * buffer_size_, 16))), #if defined(WEBRTC_ARCH_X86_FAMILY) && !defined(__SSE__) convolve_proc_(WebRtc_GetCPUInfo(kSSE2) ? Convolve_SSE : Convolve_C), #elif defined(WEBRTC_ARCH_ARM_V7) && !defined(WEBRTC_ARCH_ARM_NEON) convolve_proc_(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON ? Convolve_NEON : Convolve_C), #endif // Setup various region pointers in the buffer (see diagram above). r0_(input_buffer_.get() + kKernelSize / 2), r1_(input_buffer_.get()), r2_(r0_), r3_(r0_ + block_size_ - kKernelSize / 2), r4_(r0_ + block_size_), r5_(r0_ + kKernelSize / 2) { Initialize(); InitializeKernel(); } SincResampler::SincResampler(double io_sample_rate_ratio, SincResamplerCallback* read_cb) : io_sample_rate_ratio_(io_sample_rate_ratio), virtual_source_idx_(0), buffer_primed_(false), read_cb_(read_cb), block_size_(kDefaultBlockSize), buffer_size_(kDefaultBufferSize), // Create input buffers with a 16-byte alignment for SSE optimizations. kernel_storage_(static_cast( AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), kernel_pre_sinc_storage_(static_cast( AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), kernel_window_storage_(static_cast( AlignedMalloc(sizeof(float) * kKernelStorageSize, 16))), input_buffer_(static_cast( AlignedMalloc(sizeof(float) * buffer_size_, 16))), #if defined(WEBRTC_ARCH_X86_FAMILY) && !defined(__SSE__) convolve_proc_(WebRtc_GetCPUInfo(kSSE2) ? Convolve_SSE : Convolve_C), #elif defined(WEBRTC_ARCH_ARM_V7) && !defined(WEBRTC_ARCH_ARM_NEON) convolve_proc_(WebRtc_GetCPUFeaturesARM() & kCPUFeatureNEON ? Convolve_NEON : Convolve_C), #endif // Setup various region pointers in the buffer (see diagram above). r0_(input_buffer_.get() + kKernelSize / 2), r1_(input_buffer_.get()), r2_(r0_), r3_(r0_ + block_size_ - kKernelSize / 2), r4_(r0_ + block_size_), r5_(r0_ + kKernelSize / 2) { Initialize(); InitializeKernel(); } SincResampler::~SincResampler() {} void SincResampler::Initialize() { // Ensure kKernelSize is a multiple of 32 for easy SSE optimizations; causes // r0_ and r5_ (used for input) to always be 16-byte aligned by virtue of // input_buffer_ being 16-byte aligned. COMPILE_ASSERT(kKernelSize % 32 == 0); assert(block_size_ > kKernelSize); // Basic sanity checks to ensure buffer regions are laid out correctly: // r0_ and r2_ should always be the same position. assert(r0_ == r2_); // r1_ at the beginning of the buffer. assert(r1_ == input_buffer_.get()); // r1_ left of r2_, r2_ left of r5_ and r1_, r2_ size correct. assert(r2_ - r1_ == r5_ - r2_); // r3_ left of r4_, r5_ left of r0_ and r3_ size correct. assert(r4_ - r3_ == r5_ - r0_); // r3_, r4_ size correct and r4_ at the end of the buffer. assert(r4_ + (r4_ - r3_) == r1_ + buffer_size_); // r5_ size correct and at the end of the buffer. assert(r5_ + block_size_ == r1_ + buffer_size_); memset(kernel_storage_.get(), 0, sizeof(*kernel_storage_.get()) * kKernelStorageSize); memset(kernel_pre_sinc_storage_.get(), 0, sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize); memset(kernel_window_storage_.get(), 0, sizeof(*kernel_window_storage_.get()) * kKernelStorageSize); memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * buffer_size_); } void SincResampler::InitializeKernel() { // Blackman window parameters. static const double kAlpha = 0.16; static const double kA0 = 0.5 * (1.0 - kAlpha); static const double kA1 = 0.5; static const double kA2 = 0.5 * kAlpha; // Generates a set of windowed sinc() kernels. // We generate a range of sub-sample offsets from 0.0 to 1.0. const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { const float subsample_offset = static_cast(offset_idx) / kKernelOffsetCount; for (int i = 0; i < kKernelSize; ++i) { const int idx = i + offset_idx * kKernelSize; const float pre_sinc = M_PI * (i - kKernelSize / 2 - subsample_offset); kernel_pre_sinc_storage_.get()[idx] = pre_sinc; // Compute Blackman window, matching the offset of the sinc(). const float x = (i - subsample_offset) / kKernelSize; const float window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2 * cos(4.0 * M_PI * x); kernel_window_storage_.get()[idx] = window; // Compute the sinc with offset, then window the sinc() function and store // at the correct offset. if (pre_sinc == 0) { kernel_storage_.get()[idx] = sinc_scale_factor * window; } else { kernel_storage_.get()[idx] = window * sin(sinc_scale_factor * pre_sinc) / pre_sinc; } } } } void SincResampler::SetRatio(double io_sample_rate_ratio) { if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) < std::numeric_limits::epsilon()) { return; } io_sample_rate_ratio_ = io_sample_rate_ratio; // Optimize reinitialization by reusing values which are independent of // |sinc_scale_factor|. Provides a 3x speedup. const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_); for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) { for (int i = 0; i < kKernelSize; ++i) { const int idx = i + offset_idx * kKernelSize; const float window = kernel_window_storage_.get()[idx]; const float pre_sinc = kernel_pre_sinc_storage_.get()[idx]; if (pre_sinc == 0) { kernel_storage_.get()[idx] = sinc_scale_factor * window; } else { kernel_storage_.get()[idx] = window * sin(sinc_scale_factor * pre_sinc) / pre_sinc; } } } } // If we know the minimum architecture avoid function hopping for CPU detection. #if defined(WEBRTC_ARCH_X86_FAMILY) #if defined(__SSE__) #define CONVOLVE_FUNC Convolve_SSE #else // X86 CPU detection required. |convolve_proc_| will be set upon construction. // TODO(dalecurtis): Once Chrome moves to a SSE baseline this can be removed. #define CONVOLVE_FUNC convolve_proc_ #endif #elif defined(WEBRTC_ARCH_ARM_V7) #if defined(WEBRTC_ARCH_ARM_NEON) #define CONVOLVE_FUNC Convolve_NEON #else // NEON CPU detection required. |convolve_proc_| will be set upon construction. #define CONVOLVE_FUNC convolve_proc_ #endif #else // Unknown architecture. #define CONVOLVE_FUNC Convolve_C #endif void SincResampler::Resample(float* destination, int frames) { int remaining_frames = frames; // Step (1) -- Prime the input buffer at the start of the input stream. if (!buffer_primed_) { read_cb_->Run(r0_, block_size_ + kKernelSize / 2); buffer_primed_ = true; } // Step (2) -- Resample! while (remaining_frames) { while (virtual_source_idx_ < block_size_) { // |virtual_source_idx_| lies in between two kernel offsets so figure out // what they are. int source_idx = static_cast(virtual_source_idx_); double subsample_remainder = virtual_source_idx_ - source_idx; double virtual_offset_idx = subsample_remainder * kKernelOffsetCount; int offset_idx = static_cast(virtual_offset_idx); // We'll compute "convolutions" for the two kernels which straddle // |virtual_source_idx_|. float* k1 = kernel_storage_.get() + offset_idx * kKernelSize; float* k2 = k1 + kKernelSize; // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be // true so long as kKernelSize is a multiple of 16. assert((reinterpret_cast(k1) & 0x0F) == 0u); assert((reinterpret_cast(k2) & 0x0F) == 0u); // Initialize input pointer based on quantized |virtual_source_idx_|. float* input_ptr = r1_ + source_idx; // Figure out how much to weight each kernel's "convolution". double kernel_interpolation_factor = virtual_offset_idx - offset_idx; *destination++ = CONVOLVE_FUNC( input_ptr, k1, k2, kernel_interpolation_factor); // Advance the virtual index. virtual_source_idx_ += io_sample_rate_ratio_; if (!--remaining_frames) return; } // Wrap back around to the start. virtual_source_idx_ -= block_size_; // Step (3) Copy r3_ to r1_ and r4_ to r2_. // This wraps the last input frames back to the start of the buffer. memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * (kKernelSize / 2)); memcpy(r2_, r4_, sizeof(*input_buffer_.get()) * (kKernelSize / 2)); // Step (4) // Refresh the buffer with more input. read_cb_->Run(r5_, block_size_); } } #undef CONVOLVE_FUNC int SincResampler::ChunkSize() { return block_size_ / io_sample_rate_ratio_; } int SincResampler::BlockSize() { return block_size_; } void SincResampler::Flush() { virtual_source_idx_ = 0; buffer_primed_ = false; memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * buffer_size_); } float SincResampler::Convolve_C(const float* input_ptr, const float* k1, const float* k2, double kernel_interpolation_factor) { float sum1 = 0; float sum2 = 0; // Generate a single output sample. Unrolling this loop hurt performance in // local testing. int n = kKernelSize; while (n--) { sum1 += *input_ptr * *k1++; sum2 += *input_ptr++ * *k2++; } // Linearly interpolate the two "convolutions". return (1.0 - kernel_interpolation_factor) * sum1 + kernel_interpolation_factor * sum2; } } // namespace webrtc