/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for PacketBuffer class. #include "webrtc/modules/audio_coding/neteq/packet_buffer.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h" #include "webrtc/modules/audio_coding/neteq/packet.h" using ::testing::Return; using ::testing::_; namespace webrtc { // Helper class to generate packets. Packets must be deleted by the user. class PacketGenerator { public: PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size); virtual ~PacketGenerator() {} void Reset(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size); Packet* NextPacket(int payload_size_bytes); uint16_t seq_no_; uint32_t ts_; uint8_t pt_; int frame_size_; }; PacketGenerator::PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size) { Reset(seq_no, ts, pt, frame_size); } void PacketGenerator::Reset(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size) { seq_no_ = seq_no; ts_ = ts; pt_ = pt; frame_size_ = frame_size; } Packet* PacketGenerator::NextPacket(int payload_size_bytes) { Packet* packet = new Packet; packet->header.sequenceNumber = seq_no_; packet->header.timestamp = ts_; packet->header.payloadType = pt_; packet->header.markerBit = false; packet->header.ssrc = 0x12345678; packet->header.numCSRCs = 0; packet->header.paddingLength = 0; packet->payload_length = payload_size_bytes; packet->primary = true; packet->payload = new uint8_t[payload_size_bytes]; ++seq_no_; ts_ += frame_size_; return packet; } struct PacketsToInsert { uint16_t sequence_number; uint32_t timestamp; uint8_t payload_type; bool primary; // Order of this packet to appear upon extraction, after inserting a series // of packets. A negative number means that it should have been discarded // before extraction. int extract_order; }; // Start of test definitions. TEST(PacketBuffer, CreateAndDestroy) { PacketBuffer* buffer = new PacketBuffer(10); // 10 packets. EXPECT_TRUE(buffer->Empty()); delete buffer; } TEST(PacketBuffer, InsertPacket) { PacketBuffer buffer(10); // 10 packets. PacketGenerator gen(17u, 4711u, 0, 10); const int payload_len = 100; Packet* packet = gen.NextPacket(payload_len); EXPECT_EQ(0, buffer.InsertPacket(packet)); uint32_t next_ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); EXPECT_EQ(4711u, next_ts); EXPECT_FALSE(buffer.Empty()); EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); const RTPHeader* hdr = buffer.NextRtpHeader(); EXPECT_EQ(&(packet->header), hdr); // Compare pointer addresses. // Do not explicitly flush buffer or delete packet to test that it is deleted // with the buffer. (Tested with Valgrind or similar tool.) } // Test to flush buffer. TEST(PacketBuffer, FlushBuffer) { PacketBuffer buffer(10); // 10 packets. PacketGenerator gen(0, 0, 0, 10); const int payload_len = 10; // Insert 10 small packets; should be ok. for (int i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet)); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); EXPECT_FALSE(buffer.Empty()); buffer.Flush(); // Buffer should delete the payloads itself. EXPECT_EQ(0u, buffer.NumPacketsInBuffer()); EXPECT_TRUE(buffer.Empty()); } // Test to fill the buffer over the limits, and verify that it flushes. TEST(PacketBuffer, OverfillBuffer) { PacketBuffer buffer(10); // 10 packets. PacketGenerator gen(0, 0, 0, 10); // Insert 10 small packets; should be ok. const int payload_len = 10; int i; for (i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet)); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); uint32_t next_ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); EXPECT_EQ(0u, next_ts); // Expect first inserted packet to be first in line. // Insert 11th packet; should flush the buffer and insert it after flushing. Packet* packet = gen.NextPacket(payload_len); EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacket(packet)); EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); // Expect last inserted packet to be first in line. EXPECT_EQ(packet->header.timestamp, next_ts); // Flush buffer to delete all packets. buffer.Flush(); } // Test inserting a list of packets. TEST(PacketBuffer, InsertPacketList) { PacketBuffer buffer(10); // 10 packets. PacketGenerator gen(0, 0, 0, 10); PacketList list; const int payload_len = 10; // Insert 10 small packets. for (int i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); list.push_back(packet); } MockDecoderDatabase decoder_database; EXPECT_CALL(decoder_database, IsComfortNoise(0)) .WillRepeatedly(Return(false)); EXPECT_CALL(decoder_database, IsDtmf(0)) .WillRepeatedly(Return(false)); uint8_t current_pt = 0xFF; uint8_t current_cng_pt = 0xFF; EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacketList(&list, decoder_database, ¤t_pt, ¤t_cng_pt)); EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list. EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); EXPECT_EQ(0, current_pt); // Current payload type changed to 0. EXPECT_EQ(0xFF, current_cng_pt); // CNG payload type not changed. buffer.Flush(); // Clean up. EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test inserting a list of packets. Last packet is of a different payload type. // Expecting the buffer to flush. // TODO(hlundin): Remove this test when legacy operation is no longer needed. TEST(PacketBuffer, InsertPacketListChangePayloadType) { PacketBuffer buffer(10); // 10 packets. PacketGenerator gen(0, 0, 0, 10); PacketList list; const int payload_len = 10; // Insert 10 small packets. for (int i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); list.push_back(packet); } // Insert 11th packet of another payload type (not CNG). Packet* packet = gen.NextPacket(payload_len); packet->header.payloadType = 1; list.push_back(packet); MockDecoderDatabase decoder_database; EXPECT_CALL(decoder_database, IsComfortNoise(_)) .WillRepeatedly(Return(false)); EXPECT_CALL(decoder_database, IsDtmf(_)) .WillRepeatedly(Return(false)); uint8_t current_pt = 0xFF; uint8_t current_cng_pt = 0xFF; EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacketList(&list, decoder_database, ¤t_pt, ¤t_cng_pt)); EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list. EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); // Only the last packet. EXPECT_EQ(1, current_pt); // Current payload type changed to 0. EXPECT_EQ(0xFF, current_cng_pt); // CNG payload type not changed. buffer.Flush(); // Clean up. EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } TEST(PacketBuffer, ExtractOrderRedundancy) { PacketBuffer buffer(100); // 100 packets. const int kPackets = 18; const int kFrameSize = 10; const int kPayloadLength = 10; PacketsToInsert packet_facts[kPackets] = { {0xFFFD, 0xFFFFFFD7, 0, true, 0}, {0xFFFE, 0xFFFFFFE1, 0, true, 1}, {0xFFFE, 0xFFFFFFD7, 1, false, -1}, {0xFFFF, 0xFFFFFFEB, 0, true, 2}, {0xFFFF, 0xFFFFFFE1, 1, false, -1}, {0x0000, 0xFFFFFFF5, 0, true, 3}, {0x0000, 0xFFFFFFEB, 1, false, -1}, {0x0001, 0xFFFFFFFF, 0, true, 4}, {0x0001, 0xFFFFFFF5, 1, false, -1}, {0x0002, 0x0000000A, 0, true, 5}, {0x0002, 0xFFFFFFFF, 1, false, -1}, {0x0003, 0x0000000A, 1, false, -1}, {0x0004, 0x0000001E, 0, true, 7}, {0x0004, 0x00000014, 1, false, 6}, {0x0005, 0x0000001E, 0, true, -1}, {0x0005, 0x00000014, 1, false, -1}, {0x0006, 0x00000028, 0, true, 8}, {0x0006, 0x0000001E, 1, false, -1}, }; const size_t kExpectPacketsInBuffer = 9; std::vector expect_order(kExpectPacketsInBuffer); PacketGenerator gen(0, 0, 0, kFrameSize); for (int i = 0; i < kPackets; ++i) { gen.Reset(packet_facts[i].sequence_number, packet_facts[i].timestamp, packet_facts[i].payload_type, kFrameSize); Packet* packet = gen.NextPacket(kPayloadLength); packet->primary = packet_facts[i].primary; EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(packet)); if (packet_facts[i].extract_order >= 0) { expect_order[packet_facts[i].extract_order] = packet; } } EXPECT_EQ(kExpectPacketsInBuffer, buffer.NumPacketsInBuffer()); size_t drop_count; for (size_t i = 0; i < kExpectPacketsInBuffer; ++i) { Packet* packet = buffer.GetNextPacket(&drop_count); EXPECT_EQ(0u, drop_count); EXPECT_EQ(packet, expect_order[i]); // Compare pointer addresses. delete[] packet->payload; delete packet; } EXPECT_TRUE(buffer.Empty()); } TEST(PacketBuffer, DiscardPackets) { PacketBuffer buffer(100); // 100 packets. const uint16_t start_seq_no = 17; const uint32_t start_ts = 4711; const uint32_t ts_increment = 10; PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment); PacketList list; const int payload_len = 10; // Insert 10 small packets. for (int i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); buffer.InsertPacket(packet); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); // Discard them one by one and make sure that the right packets are at the // front of the buffer. uint32_t current_ts = start_ts; for (int i = 0; i < 10; ++i) { uint32_t ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts)); EXPECT_EQ(current_ts, ts); EXPECT_EQ(PacketBuffer::kOK, buffer.DiscardNextPacket()); current_ts += ts_increment; } EXPECT_TRUE(buffer.Empty()); } TEST(PacketBuffer, Reordering) { PacketBuffer buffer(100); // 100 packets. const uint16_t start_seq_no = 17; const uint32_t start_ts = 4711; const uint32_t ts_increment = 10; PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment); const int payload_len = 10; // Generate 10 small packets and insert them into a PacketList. Insert every // odd packet to the front, and every even packet to the back, thus creating // a (rather strange) reordering. PacketList list; for (int i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); if (i % 2) { list.push_front(packet); } else { list.push_back(packet); } } MockDecoderDatabase decoder_database; EXPECT_CALL(decoder_database, IsComfortNoise(0)) .WillRepeatedly(Return(false)); EXPECT_CALL(decoder_database, IsDtmf(0)) .WillRepeatedly(Return(false)); uint8_t current_pt = 0xFF; uint8_t current_cng_pt = 0xFF; EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacketList(&list, decoder_database, ¤t_pt, ¤t_cng_pt)); EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); // Extract them and make sure that come out in the right order. uint32_t current_ts = start_ts; for (int i = 0; i < 10; ++i) { Packet* packet = buffer.GetNextPacket(NULL); ASSERT_FALSE(packet == NULL); EXPECT_EQ(current_ts, packet->header.timestamp); current_ts += ts_increment; delete [] packet->payload; delete packet; } EXPECT_TRUE(buffer.Empty()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } TEST(PacketBuffer, Failures) { const uint16_t start_seq_no = 17; const uint32_t start_ts = 4711; const uint32_t ts_increment = 10; int payload_len = 100; PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment); PacketBuffer* buffer = new PacketBuffer(100); // 100 packets. Packet* packet = NULL; EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(packet)); packet = gen.NextPacket(payload_len); delete [] packet->payload; packet->payload = NULL; EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(packet)); // Packet is deleted by the PacketBuffer. // Buffer should still be empty. Test all empty-checks. uint32_t temp_ts; EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextTimestamp(&temp_ts)); EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextHigherTimestamp(0, &temp_ts)); EXPECT_EQ(NULL, buffer->NextRtpHeader()); EXPECT_EQ(NULL, buffer->GetNextPacket(NULL)); EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->DiscardNextPacket()); EXPECT_EQ(0, buffer->DiscardAllOldPackets(0)); // 0 packets discarded. // Insert one packet to make the buffer non-empty. packet = gen.NextPacket(payload_len); EXPECT_EQ(PacketBuffer::kOK, buffer->InsertPacket(packet)); EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextTimestamp(NULL)); EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextHigherTimestamp(0, NULL)); delete buffer; // Insert packet list of three packets, where the second packet has an invalid // payload. Expect first packet to be inserted, and the remaining two to be // discarded. buffer = new PacketBuffer(100); // 100 packets. PacketList list; list.push_back(gen.NextPacket(payload_len)); // Valid packet. packet = gen.NextPacket(payload_len); delete [] packet->payload; packet->payload = NULL; // Invalid. list.push_back(packet); list.push_back(gen.NextPacket(payload_len)); // Valid packet. MockDecoderDatabase decoder_database; EXPECT_CALL(decoder_database, IsComfortNoise(0)) .WillRepeatedly(Return(false)); EXPECT_CALL(decoder_database, IsDtmf(0)) .WillRepeatedly(Return(false)); uint8_t current_pt = 0xFF; uint8_t current_cng_pt = 0xFF; EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacketList(&list, decoder_database, ¤t_pt, ¤t_cng_pt)); EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list. EXPECT_EQ(1u, buffer->NumPacketsInBuffer()); delete buffer; EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test packet comparison function. // The function should return true if the first packet "goes before" the second. TEST(PacketBuffer, ComparePackets) { PacketGenerator gen(0, 0, 0, 10); Packet* a = gen.NextPacket(10); // SN = 0, TS = 0. Packet* b = gen.NextPacket(10); // SN = 1, TS = 10. EXPECT_FALSE(*a == *b); EXPECT_TRUE(*a != *b); EXPECT_TRUE(*a < *b); EXPECT_FALSE(*a > *b); EXPECT_TRUE(*a <= *b); EXPECT_FALSE(*a >= *b); // Testing wrap-around case; 'a' is earlier but has a larger timestamp value. a->header.timestamp = 0xFFFFFFFF - 10; EXPECT_FALSE(*a == *b); EXPECT_TRUE(*a != *b); EXPECT_TRUE(*a < *b); EXPECT_FALSE(*a > *b); EXPECT_TRUE(*a <= *b); EXPECT_FALSE(*a >= *b); // Test equal packets. EXPECT_TRUE(*a == *a); EXPECT_FALSE(*a != *a); EXPECT_FALSE(*a < *a); EXPECT_FALSE(*a > *a); EXPECT_TRUE(*a <= *a); EXPECT_TRUE(*a >= *a); // Test equal timestamps but different sequence numbers (0 and 1). a->header.timestamp = b->header.timestamp; EXPECT_FALSE(*a == *b); EXPECT_TRUE(*a != *b); EXPECT_TRUE(*a < *b); EXPECT_FALSE(*a > *b); EXPECT_TRUE(*a <= *b); EXPECT_FALSE(*a >= *b); // Test equal timestamps but different sequence numbers (32767 and 1). a->header.sequenceNumber = 0xFFFF; EXPECT_FALSE(*a == *b); EXPECT_TRUE(*a != *b); EXPECT_TRUE(*a < *b); EXPECT_FALSE(*a > *b); EXPECT_TRUE(*a <= *b); EXPECT_FALSE(*a >= *b); // Test equal timestamps and sequence numbers, but only 'b' is primary. a->header.sequenceNumber = b->header.sequenceNumber; a->primary = false; b->primary = true; EXPECT_FALSE(*a == *b); EXPECT_TRUE(*a != *b); EXPECT_FALSE(*a < *b); EXPECT_TRUE(*a > *b); EXPECT_FALSE(*a <= *b); EXPECT_TRUE(*a >= *b); delete [] a->payload; delete a; delete [] b->payload; delete b; } // Test the DeleteFirstPacket DeleteAllPackets methods. TEST(PacketBuffer, DeleteAllPackets) { PacketGenerator gen(0, 0, 0, 10); PacketList list; const int payload_len = 10; // Insert 10 small packets. for (int i = 0; i < 10; ++i) { Packet* packet = gen.NextPacket(payload_len); list.push_back(packet); } EXPECT_TRUE(PacketBuffer::DeleteFirstPacket(&list)); EXPECT_EQ(9u, list.size()); PacketBuffer::DeleteAllPackets(&list); EXPECT_TRUE(list.empty()); EXPECT_FALSE(PacketBuffer::DeleteFirstPacket(&list)); } namespace { void TestIsObsoleteTimestamp(uint32_t limit_timestamp) { // Check with zero horizon, which implies that the horizon is at 2^31, i.e., // half the timestamp range. static const uint32_t kZeroHorizon = 0; static const uint32_t k2Pow31Minus1 = 0x7FFFFFFF; // Timestamp on the limit is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp, limit_timestamp, kZeroHorizon)); // 1 sample behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - 1, limit_timestamp, kZeroHorizon)); // 2^31 - 1 samples behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - k2Pow31Minus1, limit_timestamp, kZeroHorizon)); // 1 sample ahead is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp + 1, limit_timestamp, kZeroHorizon)); // If |t1-t2|=2^31 and t1>t2, t2 is older than t1 but not the opposite. uint32_t other_timestamp = limit_timestamp + (1 << 31); uint32_t lowest_timestamp = std::min(limit_timestamp, other_timestamp); uint32_t highest_timestamp = std::max(limit_timestamp, other_timestamp); EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp( lowest_timestamp, highest_timestamp, kZeroHorizon)); EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( highest_timestamp, lowest_timestamp, kZeroHorizon)); // Fixed horizon at 10 samples. static const uint32_t kHorizon = 10; // Timestamp on the limit is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp, limit_timestamp, kHorizon)); // 1 sample behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - 1, limit_timestamp, kHorizon)); // 9 samples behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - 9, limit_timestamp, kHorizon)); // 10 samples behind is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - 10, limit_timestamp, kHorizon)); // 2^31 - 1 samples behind is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - k2Pow31Minus1, limit_timestamp, kHorizon)); // 1 sample ahead is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp + 1, limit_timestamp, kHorizon)); // 2^31 samples ahead is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp + (1 << 31), limit_timestamp, kHorizon)); } } // namespace // Test the IsObsoleteTimestamp method with different limit timestamps. TEST(PacketBuffer, IsObsoleteTimestamp) { TestIsObsoleteTimestamp(0); TestIsObsoleteTimestamp(1); TestIsObsoleteTimestamp(0xFFFFFFFF); // -1 in uint32_t. TestIsObsoleteTimestamp(0x80000000); // 2^31. TestIsObsoleteTimestamp(0x80000001); // 2^31 + 1. TestIsObsoleteTimestamp(0x7FFFFFFF); // 2^31 - 1. } } // namespace webrtc