/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/audio_processing_impl.h" #include #include #include "webrtc/base/checks.h" #include "webrtc/base/platform_file.h" #include "webrtc/base/trace_event.h" #include "webrtc/common_audio/audio_converter.h" #include "webrtc/common_audio/channel_buffer.h" #include "webrtc/common_audio/include/audio_util.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" extern "C" { #include "webrtc/modules/audio_processing/aec/aec_core.h" } #include "webrtc/modules/audio_processing/agc/agc_manager_direct.h" #include "webrtc/modules/audio_processing/audio_buffer.h" #include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h" #include "webrtc/modules/audio_processing/common.h" #include "webrtc/modules/audio_processing/echo_cancellation_impl.h" #include "webrtc/modules/audio_processing/echo_control_mobile_impl.h" #include "webrtc/modules/audio_processing/gain_control_impl.h" #include "webrtc/modules/audio_processing/high_pass_filter_impl.h" #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" #include "webrtc/modules/audio_processing/level_estimator_impl.h" #include "webrtc/modules/audio_processing/noise_suppression_impl.h" #include "webrtc/modules/audio_processing/processing_component.h" #include "webrtc/modules/audio_processing/transient/transient_suppressor.h" #include "webrtc/modules/audio_processing/voice_detection_impl.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/system_wrappers/include/file_wrapper.h" #include "webrtc/system_wrappers/include/logging.h" #include "webrtc/system_wrappers/include/metrics.h" #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Files generated at build-time by the protobuf compiler. #ifdef WEBRTC_ANDROID_PLATFORM_BUILD #include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h" #else #include "webrtc/audio_processing/debug.pb.h" #endif #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP #define RETURN_ON_ERR(expr) \ do { \ int err = (expr); \ if (err != kNoError) { \ return err; \ } \ } while (0) namespace webrtc { namespace { static bool LayoutHasKeyboard(AudioProcessing::ChannelLayout layout) { switch (layout) { case AudioProcessing::kMono: case AudioProcessing::kStereo: return false; case AudioProcessing::kMonoAndKeyboard: case AudioProcessing::kStereoAndKeyboard: return true; } assert(false); return false; } } // namespace // Throughout webrtc, it's assumed that success is represented by zero. static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero"); // This class has two main functionalities: // // 1) It is returned instead of the real GainControl after the new AGC has been // enabled in order to prevent an outside user from overriding compression // settings. It doesn't do anything in its implementation, except for // delegating the const methods and Enable calls to the real GainControl, so // AGC can still be disabled. // // 2) It is injected into AgcManagerDirect and implements volume callbacks for // getting and setting the volume level. It just caches this value to be used // in VoiceEngine later. class GainControlForNewAgc : public GainControl, public VolumeCallbacks { public: explicit GainControlForNewAgc(GainControlImpl* gain_control) : real_gain_control_(gain_control), volume_(0) {} // GainControl implementation. int Enable(bool enable) override { return real_gain_control_->Enable(enable); } bool is_enabled() const override { return real_gain_control_->is_enabled(); } int set_stream_analog_level(int level) override { volume_ = level; return AudioProcessing::kNoError; } int stream_analog_level() override { return volume_; } int set_mode(Mode mode) override { return AudioProcessing::kNoError; } Mode mode() const override { return GainControl::kAdaptiveAnalog; } int set_target_level_dbfs(int level) override { return AudioProcessing::kNoError; } int target_level_dbfs() const override { return real_gain_control_->target_level_dbfs(); } int set_compression_gain_db(int gain) override { return AudioProcessing::kNoError; } int compression_gain_db() const override { return real_gain_control_->compression_gain_db(); } int enable_limiter(bool enable) override { return AudioProcessing::kNoError; } bool is_limiter_enabled() const override { return real_gain_control_->is_limiter_enabled(); } int set_analog_level_limits(int minimum, int maximum) override { return AudioProcessing::kNoError; } int analog_level_minimum() const override { return real_gain_control_->analog_level_minimum(); } int analog_level_maximum() const override { return real_gain_control_->analog_level_maximum(); } bool stream_is_saturated() const override { return real_gain_control_->stream_is_saturated(); } // VolumeCallbacks implementation. void SetMicVolume(int volume) override { volume_ = volume; } int GetMicVolume() override { return volume_; } private: GainControl* real_gain_control_; int volume_; }; struct AudioProcessingImpl::ApmPublicSubmodules { ApmPublicSubmodules() : echo_cancellation(nullptr), echo_control_mobile(nullptr), gain_control(nullptr) {} // Accessed externally of APM without any lock acquired. EchoCancellationImpl* echo_cancellation; EchoControlMobileImpl* echo_control_mobile; GainControlImpl* gain_control; rtc::scoped_ptr high_pass_filter; rtc::scoped_ptr level_estimator; rtc::scoped_ptr noise_suppression; rtc::scoped_ptr voice_detection; rtc::scoped_ptr gain_control_for_new_agc; // Accessed internally from both render and capture. rtc::scoped_ptr transient_suppressor; rtc::scoped_ptr intelligibility_enhancer; }; struct AudioProcessingImpl::ApmPrivateSubmodules { explicit ApmPrivateSubmodules(Beamformer* beamformer) : beamformer(beamformer) {} // Accessed internally from capture or during initialization std::list component_list; rtc::scoped_ptr> beamformer; rtc::scoped_ptr agc_manager; }; const int AudioProcessing::kNativeSampleRatesHz[] = { AudioProcessing::kSampleRate8kHz, AudioProcessing::kSampleRate16kHz, AudioProcessing::kSampleRate32kHz, AudioProcessing::kSampleRate48kHz}; const size_t AudioProcessing::kNumNativeSampleRates = arraysize(AudioProcessing::kNativeSampleRatesHz); const int AudioProcessing::kMaxNativeSampleRateHz = AudioProcessing:: kNativeSampleRatesHz[AudioProcessing::kNumNativeSampleRates - 1]; const int AudioProcessing::kMaxAECMSampleRateHz = kSampleRate16kHz; AudioProcessing* AudioProcessing::Create() { Config config; return Create(config, nullptr); } AudioProcessing* AudioProcessing::Create(const Config& config) { return Create(config, nullptr); } AudioProcessing* AudioProcessing::Create(const Config& config, Beamformer* beamformer) { AudioProcessingImpl* apm = new AudioProcessingImpl(config, beamformer); if (apm->Initialize() != kNoError) { delete apm; apm = nullptr; } return apm; } AudioProcessingImpl::AudioProcessingImpl(const Config& config) : AudioProcessingImpl(config, nullptr) {} AudioProcessingImpl::AudioProcessingImpl(const Config& config, Beamformer* beamformer) : public_submodules_(new ApmPublicSubmodules()), private_submodules_(new ApmPrivateSubmodules(beamformer)), constants_(config.Get().startup_min_volume, #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) false, #else config.Get().enabled, #endif config.Get().enabled), #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) capture_(false, #else capture_(config.Get().enabled, #endif config.Get().array_geometry, config.Get().target_direction), capture_nonlocked_(config.Get().enabled) { { rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); public_submodules_->echo_cancellation = new EchoCancellationImpl(this, &crit_render_, &crit_capture_); public_submodules_->echo_control_mobile = new EchoControlMobileImpl(this, &crit_render_, &crit_capture_); public_submodules_->gain_control = new GainControlImpl(this, &crit_capture_, &crit_capture_); public_submodules_->high_pass_filter.reset( new HighPassFilterImpl(&crit_capture_)); public_submodules_->level_estimator.reset( new LevelEstimatorImpl(&crit_capture_)); public_submodules_->noise_suppression.reset( new NoiseSuppressionImpl(&crit_capture_)); public_submodules_->voice_detection.reset( new VoiceDetectionImpl(&crit_capture_)); public_submodules_->gain_control_for_new_agc.reset( new GainControlForNewAgc(public_submodules_->gain_control)); private_submodules_->component_list.push_back( public_submodules_->echo_cancellation); private_submodules_->component_list.push_back( public_submodules_->echo_control_mobile); private_submodules_->component_list.push_back( public_submodules_->gain_control); } SetExtraOptions(config); } AudioProcessingImpl::~AudioProcessingImpl() { // Depends on gain_control_ and // public_submodules_->gain_control_for_new_agc. private_submodules_->agc_manager.reset(); // Depends on gain_control_. public_submodules_->gain_control_for_new_agc.reset(); while (!private_submodules_->component_list.empty()) { ProcessingComponent* component = private_submodules_->component_list.front(); component->Destroy(); delete component; private_submodules_->component_list.pop_front(); } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { debug_dump_.debug_file->CloseFile(); } #endif } int AudioProcessingImpl::Initialize() { // Run in a single-threaded manner during initialization. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); return InitializeLocked(); } int AudioProcessingImpl::Initialize(int input_sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, ChannelLayout input_layout, ChannelLayout output_layout, ChannelLayout reverse_layout) { const ProcessingConfig processing_config = { {{input_sample_rate_hz, ChannelsFromLayout(input_layout), LayoutHasKeyboard(input_layout)}, {output_sample_rate_hz, ChannelsFromLayout(output_layout), LayoutHasKeyboard(output_layout)}, {reverse_sample_rate_hz, ChannelsFromLayout(reverse_layout), LayoutHasKeyboard(reverse_layout)}, {reverse_sample_rate_hz, ChannelsFromLayout(reverse_layout), LayoutHasKeyboard(reverse_layout)}}}; return Initialize(processing_config); } int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) { // Run in a single-threaded manner during initialization. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); return InitializeLocked(processing_config); } int AudioProcessingImpl::MaybeInitializeRender( const ProcessingConfig& processing_config) { return MaybeInitialize(processing_config); } int AudioProcessingImpl::MaybeInitializeCapture( const ProcessingConfig& processing_config) { return MaybeInitialize(processing_config); } // Calls InitializeLocked() if any of the audio parameters have changed from // their current values (needs to be called while holding the crit_render_lock). int AudioProcessingImpl::MaybeInitialize( const ProcessingConfig& processing_config) { // Called from both threads. Thread check is therefore not possible. if (processing_config == formats_.api_format) { return kNoError; } rtc::CritScope cs_capture(&crit_capture_); return InitializeLocked(processing_config); } int AudioProcessingImpl::InitializeLocked() { const int fwd_audio_buffer_channels = capture_nonlocked_.beamformer_enabled ? formats_.api_format.input_stream().num_channels() : formats_.api_format.output_stream().num_channels(); const int rev_audio_buffer_out_num_frames = formats_.api_format.reverse_output_stream().num_frames() == 0 ? formats_.rev_proc_format.num_frames() : formats_.api_format.reverse_output_stream().num_frames(); if (formats_.api_format.reverse_input_stream().num_channels() > 0) { render_.render_audio.reset(new AudioBuffer( formats_.api_format.reverse_input_stream().num_frames(), formats_.api_format.reverse_input_stream().num_channels(), formats_.rev_proc_format.num_frames(), formats_.rev_proc_format.num_channels(), rev_audio_buffer_out_num_frames)); if (rev_conversion_needed()) { render_.render_converter = AudioConverter::Create( formats_.api_format.reverse_input_stream().num_channels(), formats_.api_format.reverse_input_stream().num_frames(), formats_.api_format.reverse_output_stream().num_channels(), formats_.api_format.reverse_output_stream().num_frames()); } else { render_.render_converter.reset(nullptr); } } else { render_.render_audio.reset(nullptr); render_.render_converter.reset(nullptr); } capture_.capture_audio.reset( new AudioBuffer(formats_.api_format.input_stream().num_frames(), formats_.api_format.input_stream().num_channels(), capture_nonlocked_.fwd_proc_format.num_frames(), fwd_audio_buffer_channels, formats_.api_format.output_stream().num_frames())); // Initialize all components. for (auto item : private_submodules_->component_list) { int err = item->Initialize(); if (err != kNoError) { return err; } } InitializeExperimentalAgc(); InitializeTransient(); InitializeBeamformer(); InitializeIntelligibility(); InitializeHighPassFilter(); InitializeNoiseSuppression(); InitializeLevelEstimator(); InitializeVoiceDetection(); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { int err = WriteInitMessage(); if (err != kNoError) { return err; } } #endif return kNoError; } int AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) { for (const auto& stream : config.streams) { if (stream.num_channels() < 0) { return kBadNumberChannelsError; } if (stream.num_channels() > 0 && stream.sample_rate_hz() <= 0) { return kBadSampleRateError; } } const int num_in_channels = config.input_stream().num_channels(); const int num_out_channels = config.output_stream().num_channels(); // Need at least one input channel. // Need either one output channel or as many outputs as there are inputs. if (num_in_channels == 0 || !(num_out_channels == 1 || num_out_channels == num_in_channels)) { return kBadNumberChannelsError; } if (capture_nonlocked_.beamformer_enabled && static_cast(num_in_channels) != capture_.array_geometry.size()) { return kBadNumberChannelsError; } formats_.api_format = config; // We process at the closest native rate >= min(input rate, output rate)... const int min_proc_rate = std::min(formats_.api_format.input_stream().sample_rate_hz(), formats_.api_format.output_stream().sample_rate_hz()); int fwd_proc_rate; for (size_t i = 0; i < kNumNativeSampleRates; ++i) { fwd_proc_rate = kNativeSampleRatesHz[i]; if (fwd_proc_rate >= min_proc_rate) { break; } } // ...with one exception. if (public_submodules_->echo_control_mobile->is_enabled() && min_proc_rate > kMaxAECMSampleRateHz) { fwd_proc_rate = kMaxAECMSampleRateHz; } capture_nonlocked_.fwd_proc_format = StreamConfig(fwd_proc_rate); // We normally process the reverse stream at 16 kHz. Unless... int rev_proc_rate = kSampleRate16kHz; if (capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate8kHz) { // ...the forward stream is at 8 kHz. rev_proc_rate = kSampleRate8kHz; } else { if (formats_.api_format.reverse_input_stream().sample_rate_hz() == kSampleRate32kHz) { // ...or the input is at 32 kHz, in which case we use the splitting // filter rather than the resampler. rev_proc_rate = kSampleRate32kHz; } } // Always downmix the reverse stream to mono for analysis. This has been // demonstrated to work well for AEC in most practical scenarios. formats_.rev_proc_format = StreamConfig(rev_proc_rate, 1); if (capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate32kHz || capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate48kHz) { capture_nonlocked_.split_rate = kSampleRate16kHz; } else { capture_nonlocked_.split_rate = capture_nonlocked_.fwd_proc_format.sample_rate_hz(); } return InitializeLocked(); } void AudioProcessingImpl::SetExtraOptions(const Config& config) { // Run in a single-threaded manner when setting the extra options. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); for (auto item : private_submodules_->component_list) { item->SetExtraOptions(config); } if (capture_.transient_suppressor_enabled != config.Get().enabled) { capture_.transient_suppressor_enabled = config.Get().enabled; InitializeTransient(); } #ifdef WEBRTC_ANDROID_PLATFORM_BUILD if (capture_nonlocked_.beamformer_enabled != config.Get().enabled) { capture_nonlocked_.beamformer_enabled = config.Get().enabled; if (config.Get().array_geometry.size() > 1) { capture_.array_geometry = config.Get().array_geometry; } capture_.target_direction = config.Get().target_direction; InitializeBeamformer(); } #endif // WEBRTC_ANDROID_PLATFORM_BUILD } int AudioProcessingImpl::input_sample_rate_hz() const { // Accessed from outside APM, hence a lock is needed. rtc::CritScope cs(&crit_capture_); return formats_.api_format.input_stream().sample_rate_hz(); } int AudioProcessingImpl::proc_sample_rate_hz() const { // Used as callback from submodules, hence locking is not allowed. return capture_nonlocked_.fwd_proc_format.sample_rate_hz(); } int AudioProcessingImpl::proc_split_sample_rate_hz() const { // Used as callback from submodules, hence locking is not allowed. return capture_nonlocked_.split_rate; } int AudioProcessingImpl::num_reverse_channels() const { // Used as callback from submodules, hence locking is not allowed. return formats_.rev_proc_format.num_channels(); } int AudioProcessingImpl::num_input_channels() const { // Used as callback from submodules, hence locking is not allowed. return formats_.api_format.input_stream().num_channels(); } int AudioProcessingImpl::num_proc_channels() const { // Used as callback from submodules, hence locking is not allowed. return capture_nonlocked_.beamformer_enabled ? 1 : num_output_channels(); } int AudioProcessingImpl::num_output_channels() const { // Used as callback from submodules, hence locking is not allowed. return formats_.api_format.output_stream().num_channels(); } void AudioProcessingImpl::set_output_will_be_muted(bool muted) { rtc::CritScope cs(&crit_capture_); capture_.output_will_be_muted = muted; if (private_submodules_->agc_manager.get()) { private_submodules_->agc_manager->SetCaptureMuted( capture_.output_will_be_muted); } } int AudioProcessingImpl::ProcessStream(const float* const* src, size_t samples_per_channel, int input_sample_rate_hz, ChannelLayout input_layout, int output_sample_rate_hz, ChannelLayout output_layout, float* const* dest) { TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_ChannelLayout"); StreamConfig input_stream; StreamConfig output_stream; { // Access the formats_.api_format.input_stream beneath the capture lock. // The lock must be released as it is later required in the call // to ProcessStream(,,,); rtc::CritScope cs(&crit_capture_); input_stream = formats_.api_format.input_stream(); output_stream = formats_.api_format.output_stream(); } input_stream.set_sample_rate_hz(input_sample_rate_hz); input_stream.set_num_channels(ChannelsFromLayout(input_layout)); input_stream.set_has_keyboard(LayoutHasKeyboard(input_layout)); output_stream.set_sample_rate_hz(output_sample_rate_hz); output_stream.set_num_channels(ChannelsFromLayout(output_layout)); output_stream.set_has_keyboard(LayoutHasKeyboard(output_layout)); if (samples_per_channel != input_stream.num_frames()) { return kBadDataLengthError; } return ProcessStream(src, input_stream, output_stream, dest); } int AudioProcessingImpl::ProcessStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) { TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_StreamConfig"); ProcessingConfig processing_config; { // Acquire the capture lock in order to safely call the function // that retrieves the render side data. This function accesses apm // getters that need the capture lock held when being called. rtc::CritScope cs_capture(&crit_capture_); public_submodules_->echo_cancellation->ReadQueuedRenderData(); public_submodules_->echo_control_mobile->ReadQueuedRenderData(); public_submodules_->gain_control->ReadQueuedRenderData(); if (!src || !dest) { return kNullPointerError; } processing_config = formats_.api_format; } processing_config.input_stream() = input_config; processing_config.output_stream() = output_config; { // Do conditional reinitialization. rtc::CritScope cs_render(&crit_render_); RETURN_ON_ERR(MaybeInitializeCapture(processing_config)); } rtc::CritScope cs_capture(&crit_capture_); assert(processing_config.input_stream().num_frames() == formats_.api_format.input_stream().num_frames()); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { RETURN_ON_ERR(WriteConfigMessage(false)); debug_dump_.capture.event_msg->set_type(audioproc::Event::STREAM); audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream(); const size_t channel_size = sizeof(float) * formats_.api_format.input_stream().num_frames(); for (int i = 0; i < formats_.api_format.input_stream().num_channels(); ++i) msg->add_input_channel(src[i], channel_size); } #endif capture_.capture_audio->CopyFrom(src, formats_.api_format.input_stream()); RETURN_ON_ERR(ProcessStreamLocked()); capture_.capture_audio->CopyTo(formats_.api_format.output_stream(), dest); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream(); const size_t channel_size = sizeof(float) * formats_.api_format.output_stream().num_frames(); for (int i = 0; i < formats_.api_format.output_stream().num_channels(); ++i) msg->add_output_channel(dest[i], channel_size); RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(), &crit_debug_, &debug_dump_.capture)); } #endif return kNoError; } int AudioProcessingImpl::ProcessStream(AudioFrame* frame) { TRACE_EVENT0("webrtc", "AudioProcessing::ProcessStream_AudioFrame"); { // Acquire the capture lock in order to safely call the function // that retrieves the render side data. This function accesses apm // getters that need the capture lock held when being called. // The lock needs to be released as // public_submodules_->echo_control_mobile->is_enabled() aquires this lock // as well. rtc::CritScope cs_capture(&crit_capture_); public_submodules_->echo_cancellation->ReadQueuedRenderData(); public_submodules_->echo_control_mobile->ReadQueuedRenderData(); public_submodules_->gain_control->ReadQueuedRenderData(); } if (!frame) { return kNullPointerError; } // Must be a native rate. if (frame->sample_rate_hz_ != kSampleRate8kHz && frame->sample_rate_hz_ != kSampleRate16kHz && frame->sample_rate_hz_ != kSampleRate32kHz && frame->sample_rate_hz_ != kSampleRate48kHz) { return kBadSampleRateError; } if (public_submodules_->echo_control_mobile->is_enabled() && frame->sample_rate_hz_ > kMaxAECMSampleRateHz) { LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates"; return kUnsupportedComponentError; } ProcessingConfig processing_config; { // Aquire lock for the access of api_format. // The lock is released immediately due to the conditional // reinitialization. rtc::CritScope cs_capture(&crit_capture_); // TODO(ajm): The input and output rates and channels are currently // constrained to be identical in the int16 interface. processing_config = formats_.api_format; } processing_config.input_stream().set_sample_rate_hz(frame->sample_rate_hz_); processing_config.input_stream().set_num_channels(frame->num_channels_); processing_config.output_stream().set_sample_rate_hz(frame->sample_rate_hz_); processing_config.output_stream().set_num_channels(frame->num_channels_); { // Do conditional reinitialization. rtc::CritScope cs_render(&crit_render_); RETURN_ON_ERR(MaybeInitializeCapture(processing_config)); } rtc::CritScope cs_capture(&crit_capture_); if (frame->samples_per_channel_ != formats_.api_format.input_stream().num_frames()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { debug_dump_.capture.event_msg->set_type(audioproc::Event::STREAM); audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_input_data(frame->data_, data_size); } #endif capture_.capture_audio->DeinterleaveFrom(frame); RETURN_ON_ERR(ProcessStreamLocked()); capture_.capture_audio->InterleaveTo(frame, output_copy_needed(is_data_processed())); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_output_data(frame->data_, data_size); RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(), &crit_debug_, &debug_dump_.capture)); } #endif return kNoError; } int AudioProcessingImpl::ProcessStreamLocked() { #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { audioproc::Stream* msg = debug_dump_.capture.event_msg->mutable_stream(); msg->set_delay(capture_nonlocked_.stream_delay_ms); msg->set_drift( public_submodules_->echo_cancellation->stream_drift_samples()); msg->set_level(gain_control()->stream_analog_level()); msg->set_keypress(capture_.key_pressed); } #endif MaybeUpdateHistograms(); AudioBuffer* ca = capture_.capture_audio.get(); // For brevity. if (constants_.use_new_agc && public_submodules_->gain_control->is_enabled()) { private_submodules_->agc_manager->AnalyzePreProcess( ca->channels()[0], ca->num_channels(), capture_nonlocked_.fwd_proc_format.num_frames()); } bool data_processed = is_data_processed(); if (analysis_needed(data_processed)) { ca->SplitIntoFrequencyBands(); } if (constants_.intelligibility_enabled) { public_submodules_->intelligibility_enhancer->AnalyzeCaptureAudio( ca->split_channels_f(kBand0To8kHz), capture_nonlocked_.split_rate, ca->num_channels()); } if (capture_nonlocked_.beamformer_enabled) { private_submodules_->beamformer->ProcessChunk(*ca->split_data_f(), ca->split_data_f()); ca->set_num_channels(1); } public_submodules_->high_pass_filter->ProcessCaptureAudio(ca); RETURN_ON_ERR(public_submodules_->gain_control->AnalyzeCaptureAudio(ca)); public_submodules_->noise_suppression->AnalyzeCaptureAudio(ca); RETURN_ON_ERR(public_submodules_->echo_cancellation->ProcessCaptureAudio(ca)); if (public_submodules_->echo_control_mobile->is_enabled() && public_submodules_->noise_suppression->is_enabled()) { ca->CopyLowPassToReference(); } public_submodules_->noise_suppression->ProcessCaptureAudio(ca); RETURN_ON_ERR( public_submodules_->echo_control_mobile->ProcessCaptureAudio(ca)); public_submodules_->voice_detection->ProcessCaptureAudio(ca); if (constants_.use_new_agc && public_submodules_->gain_control->is_enabled() && (!capture_nonlocked_.beamformer_enabled || private_submodules_->beamformer->is_target_present())) { private_submodules_->agc_manager->Process( ca->split_bands_const(0)[kBand0To8kHz], ca->num_frames_per_band(), capture_nonlocked_.split_rate); } RETURN_ON_ERR(public_submodules_->gain_control->ProcessCaptureAudio(ca)); if (synthesis_needed(data_processed)) { ca->MergeFrequencyBands(); } // TODO(aluebs): Investigate if the transient suppression placement should be // before or after the AGC. if (capture_.transient_suppressor_enabled) { float voice_probability = private_submodules_->agc_manager.get() ? private_submodules_->agc_manager->voice_probability() : 1.f; public_submodules_->transient_suppressor->Suppress( ca->channels_f()[0], ca->num_frames(), ca->num_channels(), ca->split_bands_const_f(0)[kBand0To8kHz], ca->num_frames_per_band(), ca->keyboard_data(), ca->num_keyboard_frames(), voice_probability, capture_.key_pressed); } // The level estimator operates on the recombined data. public_submodules_->level_estimator->ProcessStream(ca); capture_.was_stream_delay_set = false; return kNoError; } int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data, size_t samples_per_channel, int rev_sample_rate_hz, ChannelLayout layout) { TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_ChannelLayout"); rtc::CritScope cs(&crit_render_); const StreamConfig reverse_config = { rev_sample_rate_hz, ChannelsFromLayout(layout), LayoutHasKeyboard(layout), }; if (samples_per_channel != reverse_config.num_frames()) { return kBadDataLengthError; } return AnalyzeReverseStreamLocked(data, reverse_config, reverse_config); } int AudioProcessingImpl::ProcessReverseStream( const float* const* src, const StreamConfig& reverse_input_config, const StreamConfig& reverse_output_config, float* const* dest) { TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_StreamConfig"); rtc::CritScope cs(&crit_render_); RETURN_ON_ERR(AnalyzeReverseStreamLocked(src, reverse_input_config, reverse_output_config)); if (is_rev_processed()) { render_.render_audio->CopyTo(formats_.api_format.reverse_output_stream(), dest); } else if (render_check_rev_conversion_needed()) { render_.render_converter->Convert(src, reverse_input_config.num_samples(), dest, reverse_output_config.num_samples()); } else { CopyAudioIfNeeded(src, reverse_input_config.num_frames(), reverse_input_config.num_channels(), dest); } return kNoError; } int AudioProcessingImpl::AnalyzeReverseStreamLocked( const float* const* src, const StreamConfig& reverse_input_config, const StreamConfig& reverse_output_config) { if (src == nullptr) { return kNullPointerError; } if (reverse_input_config.num_channels() <= 0) { return kBadNumberChannelsError; } ProcessingConfig processing_config = formats_.api_format; processing_config.reverse_input_stream() = reverse_input_config; processing_config.reverse_output_stream() = reverse_output_config; RETURN_ON_ERR(MaybeInitializeRender(processing_config)); assert(reverse_input_config.num_frames() == formats_.api_format.reverse_input_stream().num_frames()); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { debug_dump_.render.event_msg->set_type(audioproc::Event::REVERSE_STREAM); audioproc::ReverseStream* msg = debug_dump_.render.event_msg->mutable_reverse_stream(); const size_t channel_size = sizeof(float) * formats_.api_format.reverse_input_stream().num_frames(); for (int i = 0; i < formats_.api_format.reverse_input_stream().num_channels(); ++i) msg->add_channel(src[i], channel_size); RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(), &crit_debug_, &debug_dump_.render)); } #endif render_.render_audio->CopyFrom(src, formats_.api_format.reverse_input_stream()); return ProcessReverseStreamLocked(); } int AudioProcessingImpl::ProcessReverseStream(AudioFrame* frame) { TRACE_EVENT0("webrtc", "AudioProcessing::ProcessReverseStream_AudioFrame"); RETURN_ON_ERR(AnalyzeReverseStream(frame)); rtc::CritScope cs(&crit_render_); if (is_rev_processed()) { render_.render_audio->InterleaveTo(frame, true); } return kNoError; } int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) { TRACE_EVENT0("webrtc", "AudioProcessing::AnalyzeReverseStream_AudioFrame"); rtc::CritScope cs(&crit_render_); if (frame == nullptr) { return kNullPointerError; } // Must be a native rate. if (frame->sample_rate_hz_ != kSampleRate8kHz && frame->sample_rate_hz_ != kSampleRate16kHz && frame->sample_rate_hz_ != kSampleRate32kHz && frame->sample_rate_hz_ != kSampleRate48kHz) { return kBadSampleRateError; } // This interface does not tolerate different forward and reverse rates. if (frame->sample_rate_hz_ != formats_.api_format.input_stream().sample_rate_hz()) { return kBadSampleRateError; } if (frame->num_channels_ <= 0) { return kBadNumberChannelsError; } ProcessingConfig processing_config = formats_.api_format; processing_config.reverse_input_stream().set_sample_rate_hz( frame->sample_rate_hz_); processing_config.reverse_input_stream().set_num_channels( frame->num_channels_); processing_config.reverse_output_stream().set_sample_rate_hz( frame->sample_rate_hz_); processing_config.reverse_output_stream().set_num_channels( frame->num_channels_); RETURN_ON_ERR(MaybeInitializeRender(processing_config)); if (frame->samples_per_channel_ != formats_.api_format.reverse_input_stream().num_frames()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_dump_.debug_file->Open()) { debug_dump_.render.event_msg->set_type(audioproc::Event::REVERSE_STREAM); audioproc::ReverseStream* msg = debug_dump_.render.event_msg->mutable_reverse_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_data(frame->data_, data_size); RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(), &crit_debug_, &debug_dump_.render)); } #endif render_.render_audio->DeinterleaveFrom(frame); return ProcessReverseStreamLocked(); } int AudioProcessingImpl::ProcessReverseStreamLocked() { AudioBuffer* ra = render_.render_audio.get(); // For brevity. if (formats_.rev_proc_format.sample_rate_hz() == kSampleRate32kHz) { ra->SplitIntoFrequencyBands(); } if (constants_.intelligibility_enabled) { // Currently run in single-threaded mode when the intelligibility // enhancer is activated. // TODO(peah): Fix to be properly multi-threaded. rtc::CritScope cs(&crit_capture_); public_submodules_->intelligibility_enhancer->ProcessRenderAudio( ra->split_channels_f(kBand0To8kHz), capture_nonlocked_.split_rate, ra->num_channels()); } RETURN_ON_ERR(public_submodules_->echo_cancellation->ProcessRenderAudio(ra)); RETURN_ON_ERR( public_submodules_->echo_control_mobile->ProcessRenderAudio(ra)); if (!constants_.use_new_agc) { RETURN_ON_ERR(public_submodules_->gain_control->ProcessRenderAudio(ra)); } if (formats_.rev_proc_format.sample_rate_hz() == kSampleRate32kHz && is_rev_processed()) { ra->MergeFrequencyBands(); } return kNoError; } int AudioProcessingImpl::set_stream_delay_ms(int delay) { rtc::CritScope cs(&crit_capture_); Error retval = kNoError; capture_.was_stream_delay_set = true; delay += capture_.delay_offset_ms; if (delay < 0) { delay = 0; retval = kBadStreamParameterWarning; } // TODO(ajm): the max is rather arbitrarily chosen; investigate. if (delay > 500) { delay = 500; retval = kBadStreamParameterWarning; } capture_nonlocked_.stream_delay_ms = delay; return retval; } int AudioProcessingImpl::stream_delay_ms() const { // Used as callback from submodules, hence locking is not allowed. return capture_nonlocked_.stream_delay_ms; } bool AudioProcessingImpl::was_stream_delay_set() const { // Used as callback from submodules, hence locking is not allowed. return capture_.was_stream_delay_set; } void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) { rtc::CritScope cs(&crit_capture_); capture_.key_pressed = key_pressed; } void AudioProcessingImpl::set_delay_offset_ms(int offset) { rtc::CritScope cs(&crit_capture_); capture_.delay_offset_ms = offset; } int AudioProcessingImpl::delay_offset_ms() const { rtc::CritScope cs(&crit_capture_); return capture_.delay_offset_ms; } int AudioProcessingImpl::StartDebugRecording( const char filename[AudioProcessing::kMaxFilenameSize]) { // Run in a single-threaded manner. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); static_assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize, ""); if (filename == nullptr) { return kNullPointerError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stop any ongoing recording. if (debug_dump_.debug_file->Open()) { if (debug_dump_.debug_file->CloseFile() == -1) { return kFileError; } } if (debug_dump_.debug_file->OpenFile(filename, false) == -1) { debug_dump_.debug_file->CloseFile(); return kFileError; } RETURN_ON_ERR(WriteConfigMessage(true)); RETURN_ON_ERR(WriteInitMessage()); return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } int AudioProcessingImpl::StartDebugRecording(FILE* handle) { // Run in a single-threaded manner. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); if (handle == nullptr) { return kNullPointerError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stop any ongoing recording. if (debug_dump_.debug_file->Open()) { if (debug_dump_.debug_file->CloseFile() == -1) { return kFileError; } } if (debug_dump_.debug_file->OpenFromFileHandle(handle, true, false) == -1) { return kFileError; } RETURN_ON_ERR(WriteConfigMessage(true)); RETURN_ON_ERR(WriteInitMessage()); return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } int AudioProcessingImpl::StartDebugRecordingForPlatformFile( rtc::PlatformFile handle) { // Run in a single-threaded manner. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); FILE* stream = rtc::FdopenPlatformFileForWriting(handle); return StartDebugRecording(stream); } int AudioProcessingImpl::StopDebugRecording() { // Run in a single-threaded manner. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // We just return if recording hasn't started. if (debug_dump_.debug_file->Open()) { if (debug_dump_.debug_file->CloseFile() == -1) { return kFileError; } } return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } EchoCancellation* AudioProcessingImpl::echo_cancellation() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. return public_submodules_->echo_cancellation; } EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. return public_submodules_->echo_control_mobile; } GainControl* AudioProcessingImpl::gain_control() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. if (constants_.use_new_agc) { return public_submodules_->gain_control_for_new_agc.get(); } return public_submodules_->gain_control; } HighPassFilter* AudioProcessingImpl::high_pass_filter() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. return public_submodules_->high_pass_filter.get(); } LevelEstimator* AudioProcessingImpl::level_estimator() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. return public_submodules_->level_estimator.get(); } NoiseSuppression* AudioProcessingImpl::noise_suppression() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. return public_submodules_->noise_suppression.get(); } VoiceDetection* AudioProcessingImpl::voice_detection() const { // Adding a lock here has no effect as it allows any access to the submodule // from the returned pointer. return public_submodules_->voice_detection.get(); } bool AudioProcessingImpl::is_data_processed() const { if (capture_nonlocked_.beamformer_enabled) { return true; } int enabled_count = 0; for (auto item : private_submodules_->component_list) { if (item->is_component_enabled()) { enabled_count++; } } if (public_submodules_->high_pass_filter->is_enabled()) { enabled_count++; } if (public_submodules_->noise_suppression->is_enabled()) { enabled_count++; } if (public_submodules_->level_estimator->is_enabled()) { enabled_count++; } if (public_submodules_->voice_detection->is_enabled()) { enabled_count++; } // Data is unchanged if no components are enabled, or if only // public_submodules_->level_estimator // or public_submodules_->voice_detection is enabled. if (enabled_count == 0) { return false; } else if (enabled_count == 1) { if (public_submodules_->level_estimator->is_enabled() || public_submodules_->voice_detection->is_enabled()) { return false; } } else if (enabled_count == 2) { if (public_submodules_->level_estimator->is_enabled() && public_submodules_->voice_detection->is_enabled()) { return false; } } return true; } bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const { // Check if we've upmixed or downmixed the audio. return ((formats_.api_format.output_stream().num_channels() != formats_.api_format.input_stream().num_channels()) || is_data_processed || capture_.transient_suppressor_enabled); } bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const { return (is_data_processed && (capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate32kHz || capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate48kHz)); } bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const { if (!is_data_processed && !public_submodules_->voice_detection->is_enabled() && !capture_.transient_suppressor_enabled) { // Only public_submodules_->level_estimator is enabled. return false; } else if (capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate32kHz || capture_nonlocked_.fwd_proc_format.sample_rate_hz() == kSampleRate48kHz) { // Something besides public_submodules_->level_estimator is enabled, and we // have super-wb. return true; } return false; } bool AudioProcessingImpl::is_rev_processed() const { return constants_.intelligibility_enabled && public_submodules_->intelligibility_enhancer->active(); } bool AudioProcessingImpl::render_check_rev_conversion_needed() const { return rev_conversion_needed(); } bool AudioProcessingImpl::rev_conversion_needed() const { return (formats_.api_format.reverse_input_stream() != formats_.api_format.reverse_output_stream()); } void AudioProcessingImpl::InitializeExperimentalAgc() { if (constants_.use_new_agc) { if (!private_submodules_->agc_manager.get()) { private_submodules_->agc_manager.reset(new AgcManagerDirect( public_submodules_->gain_control, public_submodules_->gain_control_for_new_agc.get(), constants_.agc_startup_min_volume)); } private_submodules_->agc_manager->Initialize(); private_submodules_->agc_manager->SetCaptureMuted( capture_.output_will_be_muted); } } void AudioProcessingImpl::InitializeTransient() { if (capture_.transient_suppressor_enabled) { if (!public_submodules_->transient_suppressor.get()) { public_submodules_->transient_suppressor.reset(new TransientSuppressor()); } public_submodules_->transient_suppressor->Initialize( capture_nonlocked_.fwd_proc_format.sample_rate_hz(), capture_nonlocked_.split_rate, num_proc_channels()); } } void AudioProcessingImpl::InitializeBeamformer() { if (capture_nonlocked_.beamformer_enabled) { if (!private_submodules_->beamformer) { private_submodules_->beamformer.reset(new NonlinearBeamformer( capture_.array_geometry, capture_.target_direction)); } private_submodules_->beamformer->Initialize(kChunkSizeMs, capture_nonlocked_.split_rate); } } void AudioProcessingImpl::InitializeIntelligibility() { if (constants_.intelligibility_enabled) { IntelligibilityEnhancer::Config config; config.sample_rate_hz = capture_nonlocked_.split_rate; config.num_capture_channels = capture_.capture_audio->num_channels(); config.num_render_channels = render_.render_audio->num_channels(); public_submodules_->intelligibility_enhancer.reset( new IntelligibilityEnhancer(config)); } } void AudioProcessingImpl::InitializeHighPassFilter() { public_submodules_->high_pass_filter->Initialize(num_proc_channels(), proc_sample_rate_hz()); } void AudioProcessingImpl::InitializeNoiseSuppression() { public_submodules_->noise_suppression->Initialize(num_proc_channels(), proc_sample_rate_hz()); } void AudioProcessingImpl::InitializeLevelEstimator() { public_submodules_->level_estimator->Initialize(); } void AudioProcessingImpl::InitializeVoiceDetection() { public_submodules_->voice_detection->Initialize(proc_split_sample_rate_hz()); } void AudioProcessingImpl::MaybeUpdateHistograms() { static const int kMinDiffDelayMs = 60; if (echo_cancellation()->is_enabled()) { // Activate delay_jumps_ counters if we know echo_cancellation is runnning. // If a stream has echo we know that the echo_cancellation is in process. if (capture_.stream_delay_jumps == -1 && echo_cancellation()->stream_has_echo()) { capture_.stream_delay_jumps = 0; } if (capture_.aec_system_delay_jumps == -1 && echo_cancellation()->stream_has_echo()) { capture_.aec_system_delay_jumps = 0; } // Detect a jump in platform reported system delay and log the difference. const int diff_stream_delay_ms = capture_nonlocked_.stream_delay_ms - capture_.last_stream_delay_ms; if (diff_stream_delay_ms > kMinDiffDelayMs && capture_.last_stream_delay_ms != 0) { RTC_HISTOGRAM_COUNTS_SPARSE( "WebRTC.Audio.PlatformReportedStreamDelayJump", diff_stream_delay_ms, kMinDiffDelayMs, 1000, 100); if (capture_.stream_delay_jumps == -1) { capture_.stream_delay_jumps = 0; // Activate counter if needed. } capture_.stream_delay_jumps++; } capture_.last_stream_delay_ms = capture_nonlocked_.stream_delay_ms; // Detect a jump in AEC system delay and log the difference. const int frames_per_ms = rtc::CheckedDivExact(capture_nonlocked_.split_rate, 1000); const int aec_system_delay_ms = WebRtcAec_system_delay(echo_cancellation()->aec_core()) / frames_per_ms; const int diff_aec_system_delay_ms = aec_system_delay_ms - capture_.last_aec_system_delay_ms; if (diff_aec_system_delay_ms > kMinDiffDelayMs && capture_.last_aec_system_delay_ms != 0) { RTC_HISTOGRAM_COUNTS_SPARSE("WebRTC.Audio.AecSystemDelayJump", diff_aec_system_delay_ms, kMinDiffDelayMs, 1000, 100); if (capture_.aec_system_delay_jumps == -1) { capture_.aec_system_delay_jumps = 0; // Activate counter if needed. } capture_.aec_system_delay_jumps++; } capture_.last_aec_system_delay_ms = aec_system_delay_ms; } } void AudioProcessingImpl::UpdateHistogramsOnCallEnd() { // Run in a single-threaded manner. rtc::CritScope cs_render(&crit_render_); rtc::CritScope cs_capture(&crit_capture_); if (capture_.stream_delay_jumps > -1) { RTC_HISTOGRAM_ENUMERATION_SPARSE( "WebRTC.Audio.NumOfPlatformReportedStreamDelayJumps", capture_.stream_delay_jumps, 51); } capture_.stream_delay_jumps = -1; capture_.last_stream_delay_ms = 0; if (capture_.aec_system_delay_jumps > -1) { RTC_HISTOGRAM_ENUMERATION_SPARSE("WebRTC.Audio.NumOfAecSystemDelayJumps", capture_.aec_system_delay_jumps, 51); } capture_.aec_system_delay_jumps = -1; capture_.last_aec_system_delay_ms = 0; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP int AudioProcessingImpl::WriteMessageToDebugFile( FileWrapper* debug_file, rtc::CriticalSection* crit_debug, ApmDebugDumpThreadState* debug_state) { int32_t size = debug_state->event_msg->ByteSize(); if (size <= 0) { return kUnspecifiedError; } #if defined(WEBRTC_ARCH_BIG_ENDIAN) // TODO(ajm): Use little-endian "on the wire". For the moment, we can be // pretty safe in assuming little-endian. #endif if (!debug_state->event_msg->SerializeToString(&debug_state->event_str)) { return kUnspecifiedError; } { // Ensure atomic writes of the message. rtc::CritScope cs_capture(crit_debug); // Write message preceded by its size. if (!debug_file->Write(&size, sizeof(int32_t))) { return kFileError; } if (!debug_file->Write(debug_state->event_str.data(), debug_state->event_str.length())) { return kFileError; } } debug_state->event_msg->Clear(); return kNoError; } int AudioProcessingImpl::WriteInitMessage() { debug_dump_.capture.event_msg->set_type(audioproc::Event::INIT); audioproc::Init* msg = debug_dump_.capture.event_msg->mutable_init(); msg->set_sample_rate(formats_.api_format.input_stream().sample_rate_hz()); msg->set_num_input_channels( formats_.api_format.input_stream().num_channels()); msg->set_num_output_channels( formats_.api_format.output_stream().num_channels()); msg->set_num_reverse_channels( formats_.api_format.reverse_input_stream().num_channels()); msg->set_reverse_sample_rate( formats_.api_format.reverse_input_stream().sample_rate_hz()); msg->set_output_sample_rate( formats_.api_format.output_stream().sample_rate_hz()); // TODO(ekmeyerson): Add reverse output fields to // debug_dump_.capture.event_msg. RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(), &crit_debug_, &debug_dump_.capture)); return kNoError; } int AudioProcessingImpl::WriteConfigMessage(bool forced) { audioproc::Config config; config.set_aec_enabled(public_submodules_->echo_cancellation->is_enabled()); config.set_aec_delay_agnostic_enabled( public_submodules_->echo_cancellation->is_delay_agnostic_enabled()); config.set_aec_drift_compensation_enabled( public_submodules_->echo_cancellation->is_drift_compensation_enabled()); config.set_aec_extended_filter_enabled( public_submodules_->echo_cancellation->is_extended_filter_enabled()); config.set_aec_suppression_level(static_cast( public_submodules_->echo_cancellation->suppression_level())); config.set_aecm_enabled( public_submodules_->echo_control_mobile->is_enabled()); config.set_aecm_comfort_noise_enabled( public_submodules_->echo_control_mobile->is_comfort_noise_enabled()); config.set_aecm_routing_mode(static_cast( public_submodules_->echo_control_mobile->routing_mode())); config.set_agc_enabled(public_submodules_->gain_control->is_enabled()); config.set_agc_mode( static_cast(public_submodules_->gain_control->mode())); config.set_agc_limiter_enabled( public_submodules_->gain_control->is_limiter_enabled()); config.set_noise_robust_agc_enabled(constants_.use_new_agc); config.set_hpf_enabled(public_submodules_->high_pass_filter->is_enabled()); config.set_ns_enabled(public_submodules_->noise_suppression->is_enabled()); config.set_ns_level( static_cast(public_submodules_->noise_suppression->level())); config.set_transient_suppression_enabled( capture_.transient_suppressor_enabled); std::string serialized_config = config.SerializeAsString(); if (!forced && debug_dump_.capture.last_serialized_config == serialized_config) { return kNoError; } debug_dump_.capture.last_serialized_config = serialized_config; debug_dump_.capture.event_msg->set_type(audioproc::Event::CONFIG); debug_dump_.capture.event_msg->mutable_config()->CopyFrom(config); RETURN_ON_ERR(WriteMessageToDebugFile(debug_dump_.debug_file.get(), &crit_debug_, &debug_dump_.capture)); return kNoError; } #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } // namespace webrtc