/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/audio_processing_impl.h" #include #include "webrtc/base/platform_file.h" #include "webrtc/common_audio/include/audio_util.h" #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/modules/audio_processing/agc/agc_manager_direct.h" #include "webrtc/modules/audio_processing/audio_buffer.h" #include "webrtc/modules/audio_processing/beamformer/beamformer.h" #include "webrtc/modules/audio_processing/channel_buffer.h" #include "webrtc/modules/audio_processing/common.h" #include "webrtc/modules/audio_processing/echo_cancellation_impl.h" #include "webrtc/modules/audio_processing/echo_control_mobile_impl.h" #include "webrtc/modules/audio_processing/gain_control_impl.h" #include "webrtc/modules/audio_processing/high_pass_filter_impl.h" #include "webrtc/modules/audio_processing/level_estimator_impl.h" #include "webrtc/modules/audio_processing/noise_suppression_impl.h" #include "webrtc/modules/audio_processing/processing_component.h" #include "webrtc/modules/audio_processing/transient/transient_suppressor.h" #include "webrtc/modules/audio_processing/voice_detection_impl.h" #include "webrtc/modules/interface/module_common_types.h" #include "webrtc/system_wrappers/interface/compile_assert.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/system_wrappers/interface/file_wrapper.h" #include "webrtc/system_wrappers/interface/logging.h" #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Files generated at build-time by the protobuf compiler. #ifdef WEBRTC_ANDROID_PLATFORM_BUILD #include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h" #else #include "webrtc/audio_processing/debug.pb.h" #endif #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP #define RETURN_ON_ERR(expr) \ do { \ int err = expr; \ if (err != kNoError) { \ return err; \ } \ } while (0) namespace webrtc { // Throughout webrtc, it's assumed that success is represented by zero. COMPILE_ASSERT(AudioProcessing::kNoError == 0, no_error_must_be_zero); // This class has two main functionalities: // // 1) It is returned instead of the real GainControl after the new AGC has been // enabled in order to prevent an outside user from overriding compression // settings. It doesn't do anything in its implementation, except for // delegating the const methods and Enable calls to the real GainControl, so // AGC can still be disabled. // // 2) It is injected into AgcManagerDirect and implements volume callbacks for // getting and setting the volume level. It just caches this value to be used // in VoiceEngine later. class GainControlForNewAgc : public GainControl, public VolumeCallbacks { public: explicit GainControlForNewAgc(GainControlImpl* gain_control) : real_gain_control_(gain_control), volume_(0) { } // GainControl implementation. virtual int Enable(bool enable) OVERRIDE { return real_gain_control_->Enable(enable); } virtual bool is_enabled() const OVERRIDE { return real_gain_control_->is_enabled(); } virtual int set_stream_analog_level(int level) OVERRIDE { volume_ = level; return AudioProcessing::kNoError; } virtual int stream_analog_level() OVERRIDE { return volume_; } virtual int set_mode(Mode mode) OVERRIDE { return AudioProcessing::kNoError; } virtual Mode mode() const OVERRIDE { return GainControl::kAdaptiveAnalog; } virtual int set_target_level_dbfs(int level) OVERRIDE { return AudioProcessing::kNoError; } virtual int target_level_dbfs() const OVERRIDE { return real_gain_control_->target_level_dbfs(); } virtual int set_compression_gain_db(int gain) OVERRIDE { return AudioProcessing::kNoError; } virtual int compression_gain_db() const OVERRIDE { return real_gain_control_->compression_gain_db(); } virtual int enable_limiter(bool enable) OVERRIDE { return AudioProcessing::kNoError; } virtual bool is_limiter_enabled() const OVERRIDE { return real_gain_control_->is_limiter_enabled(); } virtual int set_analog_level_limits(int minimum, int maximum) OVERRIDE { return AudioProcessing::kNoError; } virtual int analog_level_minimum() const OVERRIDE { return real_gain_control_->analog_level_minimum(); } virtual int analog_level_maximum() const OVERRIDE { return real_gain_control_->analog_level_maximum(); } virtual bool stream_is_saturated() const OVERRIDE { return real_gain_control_->stream_is_saturated(); } // VolumeCallbacks implementation. virtual void SetMicVolume(int volume) OVERRIDE { volume_ = volume; } virtual int GetMicVolume() OVERRIDE { return volume_; } private: GainControl* real_gain_control_; int volume_; }; AudioProcessing* AudioProcessing::Create(int id) { return Create(); } AudioProcessing* AudioProcessing::Create() { Config config; return Create(config); } AudioProcessing* AudioProcessing::Create(const Config& config) { AudioProcessingImpl* apm = new AudioProcessingImpl(config); if (apm->Initialize() != kNoError) { delete apm; apm = NULL; } return apm; } AudioProcessingImpl::AudioProcessingImpl(const Config& config) : echo_cancellation_(NULL), echo_control_mobile_(NULL), gain_control_(NULL), high_pass_filter_(NULL), level_estimator_(NULL), noise_suppression_(NULL), voice_detection_(NULL), crit_(CriticalSectionWrapper::CreateCriticalSection()), #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP debug_file_(FileWrapper::Create()), event_msg_(new audioproc::Event()), #endif fwd_in_format_(kSampleRate16kHz, 1), fwd_proc_format_(kSampleRate16kHz), fwd_out_format_(kSampleRate16kHz, 1), rev_in_format_(kSampleRate16kHz, 1), rev_proc_format_(kSampleRate16kHz, 1), split_rate_(kSampleRate16kHz), stream_delay_ms_(0), delay_offset_ms_(0), was_stream_delay_set_(false), output_will_be_muted_(false), key_pressed_(false), #if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) use_new_agc_(false), #else use_new_agc_(config.Get().enabled), #endif transient_suppressor_enabled_(config.Get().enabled), beamformer_enabled_(config.Get().enabled), array_geometry_(config.Get().array_geometry) { echo_cancellation_ = new EchoCancellationImpl(this, crit_); component_list_.push_back(echo_cancellation_); echo_control_mobile_ = new EchoControlMobileImpl(this, crit_); component_list_.push_back(echo_control_mobile_); gain_control_ = new GainControlImpl(this, crit_); component_list_.push_back(gain_control_); high_pass_filter_ = new HighPassFilterImpl(this, crit_); component_list_.push_back(high_pass_filter_); level_estimator_ = new LevelEstimatorImpl(this, crit_); component_list_.push_back(level_estimator_); noise_suppression_ = new NoiseSuppressionImpl(this, crit_); component_list_.push_back(noise_suppression_); voice_detection_ = new VoiceDetectionImpl(this, crit_); component_list_.push_back(voice_detection_); gain_control_for_new_agc_.reset(new GainControlForNewAgc(gain_control_)); SetExtraOptions(config); } AudioProcessingImpl::~AudioProcessingImpl() { { CriticalSectionScoped crit_scoped(crit_); // Depends on gain_control_ and gain_control_for_new_agc_. agc_manager_.reset(); // Depends on gain_control_. gain_control_for_new_agc_.reset(); while (!component_list_.empty()) { ProcessingComponent* component = component_list_.front(); component->Destroy(); delete component; component_list_.pop_front(); } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { debug_file_->CloseFile(); } #endif } delete crit_; crit_ = NULL; } int AudioProcessingImpl::Initialize() { CriticalSectionScoped crit_scoped(crit_); return InitializeLocked(); } int AudioProcessingImpl::set_sample_rate_hz(int rate) { CriticalSectionScoped crit_scoped(crit_); return InitializeLocked(rate, rate, rev_in_format_.rate(), fwd_in_format_.num_channels(), fwd_out_format_.num_channels(), rev_in_format_.num_channels()); } int AudioProcessingImpl::Initialize(int input_sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, ChannelLayout input_layout, ChannelLayout output_layout, ChannelLayout reverse_layout) { CriticalSectionScoped crit_scoped(crit_); return InitializeLocked(input_sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz, ChannelsFromLayout(input_layout), ChannelsFromLayout(output_layout), ChannelsFromLayout(reverse_layout)); } int AudioProcessingImpl::InitializeLocked() { const int fwd_audio_buffer_channels = beamformer_enabled_ ? fwd_in_format_.num_channels() : fwd_out_format_.num_channels(); render_audio_.reset(new AudioBuffer(rev_in_format_.samples_per_channel(), rev_in_format_.num_channels(), rev_proc_format_.samples_per_channel(), rev_proc_format_.num_channels(), rev_proc_format_.samples_per_channel())); capture_audio_.reset(new AudioBuffer(fwd_in_format_.samples_per_channel(), fwd_in_format_.num_channels(), fwd_proc_format_.samples_per_channel(), fwd_audio_buffer_channels, fwd_out_format_.samples_per_channel())); // Initialize all components. std::list::iterator it; for (it = component_list_.begin(); it != component_list_.end(); ++it) { int err = (*it)->Initialize(); if (err != kNoError) { return err; } } int err = InitializeExperimentalAgc(); if (err != kNoError) { return err; } err = InitializeTransient(); if (err != kNoError) { return err; } InitializeBeamformer(); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { int err = WriteInitMessage(); if (err != kNoError) { return err; } } #endif return kNoError; } int AudioProcessingImpl::InitializeLocked(int input_sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, int num_input_channels, int num_output_channels, int num_reverse_channels) { if (input_sample_rate_hz <= 0 || output_sample_rate_hz <= 0 || reverse_sample_rate_hz <= 0) { return kBadSampleRateError; } if (num_output_channels > num_input_channels) { return kBadNumberChannelsError; } // Only mono and stereo supported currently. if (num_input_channels > 2 || num_input_channels < 1 || num_output_channels > 2 || num_output_channels < 1 || num_reverse_channels > 2 || num_reverse_channels < 1) { return kBadNumberChannelsError; } fwd_in_format_.set(input_sample_rate_hz, num_input_channels); fwd_out_format_.set(output_sample_rate_hz, num_output_channels); rev_in_format_.set(reverse_sample_rate_hz, num_reverse_channels); // We process at the closest native rate >= min(input rate, output rate)... int min_proc_rate = std::min(fwd_in_format_.rate(), fwd_out_format_.rate()); int fwd_proc_rate; if (min_proc_rate > kSampleRate16kHz) { fwd_proc_rate = kSampleRate32kHz; } else if (min_proc_rate > kSampleRate8kHz) { fwd_proc_rate = kSampleRate16kHz; } else { fwd_proc_rate = kSampleRate8kHz; } // ...with one exception. if (echo_control_mobile_->is_enabled() && min_proc_rate > kSampleRate16kHz) { fwd_proc_rate = kSampleRate16kHz; } fwd_proc_format_.set(fwd_proc_rate); // We normally process the reverse stream at 16 kHz. Unless... int rev_proc_rate = kSampleRate16kHz; if (fwd_proc_format_.rate() == kSampleRate8kHz) { // ...the forward stream is at 8 kHz. rev_proc_rate = kSampleRate8kHz; } else { if (rev_in_format_.rate() == kSampleRate32kHz) { // ...or the input is at 32 kHz, in which case we use the splitting // filter rather than the resampler. rev_proc_rate = kSampleRate32kHz; } } // Always downmix the reverse stream to mono for analysis. This has been // demonstrated to work well for AEC in most practical scenarios. rev_proc_format_.set(rev_proc_rate, 1); if (fwd_proc_format_.rate() == kSampleRate32kHz || fwd_proc_format_.rate() == kSampleRate48kHz) { split_rate_ = kSampleRate16kHz; } else { split_rate_ = fwd_proc_format_.rate(); } return InitializeLocked(); } // Calls InitializeLocked() if any of the audio parameters have changed from // their current values. int AudioProcessingImpl::MaybeInitializeLocked(int input_sample_rate_hz, int output_sample_rate_hz, int reverse_sample_rate_hz, int num_input_channels, int num_output_channels, int num_reverse_channels) { if (input_sample_rate_hz == fwd_in_format_.rate() && output_sample_rate_hz == fwd_out_format_.rate() && reverse_sample_rate_hz == rev_in_format_.rate() && num_input_channels == fwd_in_format_.num_channels() && num_output_channels == fwd_out_format_.num_channels() && num_reverse_channels == rev_in_format_.num_channels()) { return kNoError; } if (beamformer_enabled_ && (static_cast(num_input_channels) != array_geometry_.size() || num_output_channels > 1)) { return kBadNumberChannelsError; } return InitializeLocked(input_sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz, num_input_channels, num_output_channels, num_reverse_channels); } void AudioProcessingImpl::SetExtraOptions(const Config& config) { CriticalSectionScoped crit_scoped(crit_); std::list::iterator it; for (it = component_list_.begin(); it != component_list_.end(); ++it) (*it)->SetExtraOptions(config); if (transient_suppressor_enabled_ != config.Get().enabled) { transient_suppressor_enabled_ = config.Get().enabled; InitializeTransient(); } } int AudioProcessingImpl::input_sample_rate_hz() const { CriticalSectionScoped crit_scoped(crit_); return fwd_in_format_.rate(); } int AudioProcessingImpl::sample_rate_hz() const { CriticalSectionScoped crit_scoped(crit_); return fwd_in_format_.rate(); } int AudioProcessingImpl::proc_sample_rate_hz() const { return fwd_proc_format_.rate(); } int AudioProcessingImpl::proc_split_sample_rate_hz() const { return split_rate_; } int AudioProcessingImpl::num_reverse_channels() const { return rev_proc_format_.num_channels(); } int AudioProcessingImpl::num_input_channels() const { return fwd_in_format_.num_channels(); } int AudioProcessingImpl::num_output_channels() const { return fwd_out_format_.num_channels(); } void AudioProcessingImpl::set_output_will_be_muted(bool muted) { output_will_be_muted_ = muted; CriticalSectionScoped lock(crit_); if (agc_manager_.get()) { agc_manager_->SetCaptureMuted(output_will_be_muted_); } } bool AudioProcessingImpl::output_will_be_muted() const { return output_will_be_muted_; } int AudioProcessingImpl::ProcessStream(const float* const* src, int samples_per_channel, int input_sample_rate_hz, ChannelLayout input_layout, int output_sample_rate_hz, ChannelLayout output_layout, float* const* dest) { CriticalSectionScoped crit_scoped(crit_); if (!src || !dest) { return kNullPointerError; } RETURN_ON_ERR(MaybeInitializeLocked(input_sample_rate_hz, output_sample_rate_hz, rev_in_format_.rate(), ChannelsFromLayout(input_layout), ChannelsFromLayout(output_layout), rev_in_format_.num_channels())); if (samples_per_channel != fwd_in_format_.samples_per_channel()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::STREAM); audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t channel_size = sizeof(float) * fwd_in_format_.samples_per_channel(); for (int i = 0; i < fwd_in_format_.num_channels(); ++i) msg->add_input_channel(src[i], channel_size); } #endif capture_audio_->CopyFrom(src, samples_per_channel, input_layout); RETURN_ON_ERR(ProcessStreamLocked()); if (output_copy_needed(is_data_processed())) { capture_audio_->CopyTo(fwd_out_format_.samples_per_channel(), output_layout, dest); } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t channel_size = sizeof(float) * fwd_out_format_.samples_per_channel(); for (int i = 0; i < fwd_out_format_.num_channels(); ++i) msg->add_output_channel(dest[i], channel_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif return kNoError; } int AudioProcessingImpl::ProcessStream(AudioFrame* frame) { CriticalSectionScoped crit_scoped(crit_); if (!frame) { return kNullPointerError; } // Must be a native rate. if (frame->sample_rate_hz_ != kSampleRate8kHz && frame->sample_rate_hz_ != kSampleRate16kHz && frame->sample_rate_hz_ != kSampleRate32kHz && frame->sample_rate_hz_ != kSampleRate48kHz) { return kBadSampleRateError; } if (echo_control_mobile_->is_enabled() && frame->sample_rate_hz_ > kSampleRate16kHz) { LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates"; return kUnsupportedComponentError; } // TODO(ajm): The input and output rates and channels are currently // constrained to be identical in the int16 interface. RETURN_ON_ERR(MaybeInitializeLocked(frame->sample_rate_hz_, frame->sample_rate_hz_, rev_in_format_.rate(), frame->num_channels_, frame->num_channels_, rev_in_format_.num_channels())); if (frame->samples_per_channel_ != fwd_in_format_.samples_per_channel()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::STREAM); audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_input_data(frame->data_, data_size); } #endif capture_audio_->DeinterleaveFrom(frame); RETURN_ON_ERR(ProcessStreamLocked()); capture_audio_->InterleaveTo(frame, output_copy_needed(is_data_processed())); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { audioproc::Stream* msg = event_msg_->mutable_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_output_data(frame->data_, data_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif return kNoError; } int AudioProcessingImpl::ProcessStreamLocked() { #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { audioproc::Stream* msg = event_msg_->mutable_stream(); msg->set_delay(stream_delay_ms_); msg->set_drift(echo_cancellation_->stream_drift_samples()); msg->set_level(gain_control_->stream_analog_level()); msg->set_keypress(key_pressed_); } #endif AudioBuffer* ca = capture_audio_.get(); // For brevity. if (use_new_agc_ && gain_control_->is_enabled()) { agc_manager_->AnalyzePreProcess(ca->data(0), ca->num_channels(), fwd_proc_format_.samples_per_channel()); } bool data_processed = is_data_processed(); if (analysis_needed(data_processed)) { ca->SplitIntoFrequencyBands(); } #ifdef WEBRTC_BEAMFORMER if (beamformer_enabled_) { beamformer_->ProcessChunk(ca->split_channels_const_f(kBand0To8kHz), ca->split_channels_const_f(kBand8To16kHz), ca->num_channels(), ca->samples_per_split_channel(), ca->split_channels_f(kBand0To8kHz), ca->split_channels_f(kBand8To16kHz)); ca->set_num_channels(1); } #endif RETURN_ON_ERR(high_pass_filter_->ProcessCaptureAudio(ca)); RETURN_ON_ERR(gain_control_->AnalyzeCaptureAudio(ca)); RETURN_ON_ERR(noise_suppression_->AnalyzeCaptureAudio(ca)); RETURN_ON_ERR(echo_cancellation_->ProcessCaptureAudio(ca)); if (echo_control_mobile_->is_enabled() && noise_suppression_->is_enabled()) { ca->CopyLowPassToReference(); } RETURN_ON_ERR(noise_suppression_->ProcessCaptureAudio(ca)); RETURN_ON_ERR(echo_control_mobile_->ProcessCaptureAudio(ca)); RETURN_ON_ERR(voice_detection_->ProcessCaptureAudio(ca)); if (use_new_agc_ && gain_control_->is_enabled()) { agc_manager_->Process(ca->split_bands_const(0)[kBand0To8kHz], ca->samples_per_split_channel(), split_rate_); } RETURN_ON_ERR(gain_control_->ProcessCaptureAudio(ca)); if (synthesis_needed(data_processed)) { ca->MergeFrequencyBands(); } // TODO(aluebs): Investigate if the transient suppression placement should be // before or after the AGC. if (transient_suppressor_enabled_) { float voice_probability = agc_manager_.get() ? agc_manager_->voice_probability() : 1.f; transient_suppressor_->Suppress(ca->data_f(0), ca->samples_per_channel(), ca->num_channels(), ca->split_bands_const_f(0)[kBand0To8kHz], ca->samples_per_split_channel(), ca->keyboard_data(), ca->samples_per_keyboard_channel(), voice_probability, key_pressed_); } // The level estimator operates on the recombined data. RETURN_ON_ERR(level_estimator_->ProcessStream(ca)); was_stream_delay_set_ = false; return kNoError; } int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data, int samples_per_channel, int sample_rate_hz, ChannelLayout layout) { CriticalSectionScoped crit_scoped(crit_); if (data == NULL) { return kNullPointerError; } const int num_channels = ChannelsFromLayout(layout); RETURN_ON_ERR(MaybeInitializeLocked(fwd_in_format_.rate(), fwd_out_format_.rate(), sample_rate_hz, fwd_in_format_.num_channels(), fwd_out_format_.num_channels(), num_channels)); if (samples_per_channel != rev_in_format_.samples_per_channel()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::REVERSE_STREAM); audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream(); const size_t channel_size = sizeof(float) * rev_in_format_.samples_per_channel(); for (int i = 0; i < num_channels; ++i) msg->add_channel(data[i], channel_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif render_audio_->CopyFrom(data, samples_per_channel, layout); return AnalyzeReverseStreamLocked(); } int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) { CriticalSectionScoped crit_scoped(crit_); if (frame == NULL) { return kNullPointerError; } // Must be a native rate. if (frame->sample_rate_hz_ != kSampleRate8kHz && frame->sample_rate_hz_ != kSampleRate16kHz && frame->sample_rate_hz_ != kSampleRate32kHz && frame->sample_rate_hz_ != kSampleRate48kHz) { return kBadSampleRateError; } // This interface does not tolerate different forward and reverse rates. if (frame->sample_rate_hz_ != fwd_in_format_.rate()) { return kBadSampleRateError; } RETURN_ON_ERR(MaybeInitializeLocked(fwd_in_format_.rate(), fwd_out_format_.rate(), frame->sample_rate_hz_, fwd_in_format_.num_channels(), fwd_in_format_.num_channels(), frame->num_channels_)); if (frame->samples_per_channel_ != rev_in_format_.samples_per_channel()) { return kBadDataLengthError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP if (debug_file_->Open()) { event_msg_->set_type(audioproc::Event::REVERSE_STREAM); audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream(); const size_t data_size = sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_; msg->set_data(frame->data_, data_size); RETURN_ON_ERR(WriteMessageToDebugFile()); } #endif render_audio_->DeinterleaveFrom(frame); return AnalyzeReverseStreamLocked(); } int AudioProcessingImpl::AnalyzeReverseStreamLocked() { AudioBuffer* ra = render_audio_.get(); // For brevity. if (rev_proc_format_.rate() == kSampleRate32kHz) { ra->SplitIntoFrequencyBands(); } RETURN_ON_ERR(echo_cancellation_->ProcessRenderAudio(ra)); RETURN_ON_ERR(echo_control_mobile_->ProcessRenderAudio(ra)); if (!use_new_agc_) { RETURN_ON_ERR(gain_control_->ProcessRenderAudio(ra)); } return kNoError; } int AudioProcessingImpl::set_stream_delay_ms(int delay) { Error retval = kNoError; was_stream_delay_set_ = true; delay += delay_offset_ms_; if (delay < 0) { delay = 0; retval = kBadStreamParameterWarning; } // TODO(ajm): the max is rather arbitrarily chosen; investigate. if (delay > 500) { delay = 500; retval = kBadStreamParameterWarning; } stream_delay_ms_ = delay; return retval; } int AudioProcessingImpl::stream_delay_ms() const { return stream_delay_ms_; } bool AudioProcessingImpl::was_stream_delay_set() const { return was_stream_delay_set_; } void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) { key_pressed_ = key_pressed; } bool AudioProcessingImpl::stream_key_pressed() const { return key_pressed_; } void AudioProcessingImpl::set_delay_offset_ms(int offset) { CriticalSectionScoped crit_scoped(crit_); delay_offset_ms_ = offset; } int AudioProcessingImpl::delay_offset_ms() const { return delay_offset_ms_; } int AudioProcessingImpl::StartDebugRecording( const char filename[AudioProcessing::kMaxFilenameSize]) { CriticalSectionScoped crit_scoped(crit_); assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize); if (filename == NULL) { return kNullPointerError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stop any ongoing recording. if (debug_file_->Open()) { if (debug_file_->CloseFile() == -1) { return kFileError; } } if (debug_file_->OpenFile(filename, false) == -1) { debug_file_->CloseFile(); return kFileError; } int err = WriteInitMessage(); if (err != kNoError) { return err; } return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } int AudioProcessingImpl::StartDebugRecording(FILE* handle) { CriticalSectionScoped crit_scoped(crit_); if (handle == NULL) { return kNullPointerError; } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // Stop any ongoing recording. if (debug_file_->Open()) { if (debug_file_->CloseFile() == -1) { return kFileError; } } if (debug_file_->OpenFromFileHandle(handle, true, false) == -1) { return kFileError; } int err = WriteInitMessage(); if (err != kNoError) { return err; } return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } int AudioProcessingImpl::StartDebugRecordingForPlatformFile( rtc::PlatformFile handle) { FILE* stream = rtc::FdopenPlatformFileForWriting(handle); return StartDebugRecording(stream); } int AudioProcessingImpl::StopDebugRecording() { CriticalSectionScoped crit_scoped(crit_); #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP // We just return if recording hasn't started. if (debug_file_->Open()) { if (debug_file_->CloseFile() == -1) { return kFileError; } } return kNoError; #else return kUnsupportedFunctionError; #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } EchoCancellation* AudioProcessingImpl::echo_cancellation() const { return echo_cancellation_; } EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const { return echo_control_mobile_; } GainControl* AudioProcessingImpl::gain_control() const { if (use_new_agc_) { return gain_control_for_new_agc_.get(); } return gain_control_; } HighPassFilter* AudioProcessingImpl::high_pass_filter() const { return high_pass_filter_; } LevelEstimator* AudioProcessingImpl::level_estimator() const { return level_estimator_; } NoiseSuppression* AudioProcessingImpl::noise_suppression() const { return noise_suppression_; } VoiceDetection* AudioProcessingImpl::voice_detection() const { return voice_detection_; } bool AudioProcessingImpl::is_data_processed() const { if (beamformer_enabled_) { return true; } int enabled_count = 0; std::list::const_iterator it; for (it = component_list_.begin(); it != component_list_.end(); it++) { if ((*it)->is_component_enabled()) { enabled_count++; } } // Data is unchanged if no components are enabled, or if only level_estimator_ // or voice_detection_ is enabled. if (enabled_count == 0) { return false; } else if (enabled_count == 1) { if (level_estimator_->is_enabled() || voice_detection_->is_enabled()) { return false; } } else if (enabled_count == 2) { if (level_estimator_->is_enabled() && voice_detection_->is_enabled()) { return false; } } return true; } bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const { // Check if we've upmixed or downmixed the audio. return ((fwd_out_format_.num_channels() != fwd_in_format_.num_channels()) || is_data_processed || transient_suppressor_enabled_); } bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const { return (is_data_processed && (fwd_proc_format_.rate() == kSampleRate32kHz || fwd_proc_format_.rate() == kSampleRate48kHz)); } bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const { if (!is_data_processed && !voice_detection_->is_enabled() && !transient_suppressor_enabled_) { // Only level_estimator_ is enabled. return false; } else if (fwd_proc_format_.rate() == kSampleRate32kHz || fwd_proc_format_.rate() == kSampleRate48kHz) { // Something besides level_estimator_ is enabled, and we have super-wb. return true; } return false; } int AudioProcessingImpl::InitializeExperimentalAgc() { if (use_new_agc_) { if (!agc_manager_.get()) { agc_manager_.reset( new AgcManagerDirect(gain_control_, gain_control_for_new_agc_.get())); } agc_manager_->Initialize(); agc_manager_->SetCaptureMuted(output_will_be_muted_); } return kNoError; } int AudioProcessingImpl::InitializeTransient() { if (transient_suppressor_enabled_) { if (!transient_suppressor_.get()) { transient_suppressor_.reset(new TransientSuppressor()); } transient_suppressor_->Initialize(fwd_proc_format_.rate(), split_rate_, fwd_out_format_.num_channels()); } return kNoError; } void AudioProcessingImpl::InitializeBeamformer() { if (beamformer_enabled_) { #ifdef WEBRTC_BEAMFORMER beamformer_.reset(new Beamformer(kChunkSizeMs, split_rate_, array_geometry_)); #else assert(false); #endif } } #ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP int AudioProcessingImpl::WriteMessageToDebugFile() { int32_t size = event_msg_->ByteSize(); if (size <= 0) { return kUnspecifiedError; } #if defined(WEBRTC_ARCH_BIG_ENDIAN) // TODO(ajm): Use little-endian "on the wire". For the moment, we can be // pretty safe in assuming little-endian. #endif if (!event_msg_->SerializeToString(&event_str_)) { return kUnspecifiedError; } // Write message preceded by its size. if (!debug_file_->Write(&size, sizeof(int32_t))) { return kFileError; } if (!debug_file_->Write(event_str_.data(), event_str_.length())) { return kFileError; } event_msg_->Clear(); return kNoError; } int AudioProcessingImpl::WriteInitMessage() { event_msg_->set_type(audioproc::Event::INIT); audioproc::Init* msg = event_msg_->mutable_init(); msg->set_sample_rate(fwd_in_format_.rate()); msg->set_num_input_channels(fwd_in_format_.num_channels()); msg->set_num_output_channels(fwd_out_format_.num_channels()); msg->set_num_reverse_channels(rev_in_format_.num_channels()); msg->set_reverse_sample_rate(rev_in_format_.rate()); msg->set_output_sample_rate(fwd_out_format_.rate()); int err = WriteMessageToDebugFile(); if (err != kNoError) { return err; } return kNoError; } #endif // WEBRTC_AUDIOPROC_DEBUG_DUMP } // namespace webrtc