/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/congestion_controller/probe_controller.h" #include #include #include "webrtc/base/logging.h" #include "webrtc/base/safe_conversions.h" #include "webrtc/system_wrappers/include/metrics.h" namespace webrtc { namespace { // Number of deltas between probes per cluster. On the very first cluster, // we will need kProbeDeltasPerCluster + 1 probes, but on a cluster following // another, we need kProbeDeltasPerCluster probes. constexpr int kProbeDeltasPerCluster = 5; // Maximum waiting time from the time of initiating probing to getting // the measured results back. constexpr int64_t kMaxWaitingTimeForProbingResultMs = 1000; // Value of |min_bitrate_to_probe_further_bps_| that indicates // further probing is disabled. constexpr int kExponentialProbingDisabled = 0; // Default probing bitrate limit. Applied only when the application didn't // specify max bitrate. constexpr int64_t kDefaultMaxProbingBitrateBps = 5000000; // This is a limit on how often probing can be done when there is a BW // drop detected in ALR. constexpr int64_t kAlrProbingIntervalMinMs = 5000; // Interval between probes when ALR periodic probing is enabled. constexpr int64_t kAlrPeriodicProbingIntervalMs = 5000; // Minimum probe bitrate percentage to probe further for repeated probes, // relative to the previous probe. For example, if 1Mbps probe results in // 80kbps, then we'll probe again at 1.6Mbps. In that case second probe won't be // sent if we get 600kbps from the first one. constexpr int kRepeatedProbeMinPercentage = 70; } // namespace ProbeController::ProbeController(PacedSender* pacer, Clock* clock) : pacer_(pacer), clock_(clock), network_state_(kNetworkUp), state_(State::kInit), min_bitrate_to_probe_further_bps_(kExponentialProbingDisabled), time_last_probing_initiated_ms_(0), estimated_bitrate_bps_(0), start_bitrate_bps_(0), max_bitrate_bps_(0), last_alr_probing_time_(clock_->TimeInMilliseconds()), enable_periodic_alr_probing_(false) {} void ProbeController::SetBitrates(int64_t min_bitrate_bps, int64_t start_bitrate_bps, int64_t max_bitrate_bps) { rtc::CritScope cs(&critsect_); if (start_bitrate_bps > 0) { start_bitrate_bps_ = start_bitrate_bps; } else if (start_bitrate_bps_ == 0) { start_bitrate_bps_ = min_bitrate_bps; } int64_t old_max_bitrate_bps = max_bitrate_bps_; max_bitrate_bps_ = max_bitrate_bps; switch (state_) { case State::kInit: if (network_state_ == kNetworkUp) InitiateExponentialProbing(); break; case State::kWaitingForProbingResult: break; case State::kProbingComplete: // Initiate probing when |max_bitrate_| was increased mid-call. if (estimated_bitrate_bps_ != kExponentialProbingDisabled && estimated_bitrate_bps_ < old_max_bitrate_bps && max_bitrate_bps_ > old_max_bitrate_bps) { InitiateProbing(clock_->TimeInMilliseconds(), {max_bitrate_bps}, false); } break; } } void ProbeController::OnNetworkStateChanged(NetworkState network_state) { rtc::CritScope cs(&critsect_); network_state_ = network_state; if (network_state_ == kNetworkUp && state_ == State::kInit) InitiateExponentialProbing(); } void ProbeController::InitiateExponentialProbing() { RTC_DCHECK(network_state_ == kNetworkUp); RTC_DCHECK(state_ == State::kInit); RTC_DCHECK_GT(start_bitrate_bps_, 0); // When probing at 1.8 Mbps ( 6x 300), this represents a threshold of // 1.2 Mbps to continue probing. InitiateProbing(clock_->TimeInMilliseconds(), {3 * start_bitrate_bps_, 6 * start_bitrate_bps_}, true); } void ProbeController::SetEstimatedBitrate(int64_t bitrate_bps) { rtc::CritScope cs(&critsect_); int64_t now_ms = clock_->TimeInMilliseconds(); if (state_ == State::kWaitingForProbingResult) { // Continue probing if probing results indicate channel has greater // capacity. LOG(LS_INFO) << "Measured bitrate: " << bitrate_bps << " Minimum to probe further: " << min_bitrate_to_probe_further_bps_; if (min_bitrate_to_probe_further_bps_ != kExponentialProbingDisabled && bitrate_bps > min_bitrate_to_probe_further_bps_) { // Double the probing bitrate. InitiateProbing(now_ms, {2 * bitrate_bps}, true); } } // Detect a drop in estimated BW when operating in ALR and not already // probing. The current response is to initiate a single probe session at the // previous bitrate and immediately use the reported bitrate as the new // bitrate. // // If the probe session fails, the assumption is that this drop was a // real one from a competing flow or something else on the network and // it ramps up from bitrate_bps. if (state_ == State::kProbingComplete && pacer_->GetApplicationLimitedRegionStartTime() && bitrate_bps < estimated_bitrate_bps_ / 2 && (now_ms - last_alr_probing_time_) > kAlrProbingIntervalMinMs) { LOG(LS_INFO) << "Detected big BW drop in ALR, start probe."; // Track how often we probe in response to BW drop in ALR. RTC_HISTOGRAM_COUNTS_10000("WebRTC.BWE.AlrProbingIntervalInS", (now_ms - last_alr_probing_time_) / 1000); InitiateProbing(now_ms, {estimated_bitrate_bps_}, false); last_alr_probing_time_ = now_ms; // TODO(isheriff): May want to track when we did ALR probing in order // to reset |last_alr_probing_time_| if we validate that it was a // drop due to exogenous event. } estimated_bitrate_bps_ = bitrate_bps; } void ProbeController::EnablePeriodicAlrProbing(bool enable) { rtc::CritScope cs(&critsect_); enable_periodic_alr_probing_ = enable; } void ProbeController::Process() { rtc::CritScope cs(&critsect_); int64_t now_ms = clock_->TimeInMilliseconds(); if (state_ == State::kWaitingForProbingResult && (now_ms - time_last_probing_initiated_ms_) > kMaxWaitingTimeForProbingResultMs) { LOG(LS_INFO) << "kWaitingForProbingResult: timeout"; state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } if (state_ != State::kProbingComplete || !enable_periodic_alr_probing_) return; // Probe bandwidth periodically when in ALR state. rtc::Optional alr_start_time = pacer_->GetApplicationLimitedRegionStartTime(); if (alr_start_time) { int64_t next_probe_time_ms = std::max(*alr_start_time, time_last_probing_initiated_ms_) + kAlrPeriodicProbingIntervalMs; if (now_ms >= next_probe_time_ms) { InitiateProbing(now_ms, {estimated_bitrate_bps_ * 2}, true); } } } void ProbeController::InitiateProbing( int64_t now_ms, std::initializer_list bitrates_to_probe, bool probe_further) { bool first_cluster = true; for (int64_t bitrate : bitrates_to_probe) { int64_t max_probe_bitrate_bps = max_bitrate_bps_ > 0 ? max_bitrate_bps_ : kDefaultMaxProbingBitrateBps; if (bitrate > max_probe_bitrate_bps) { bitrate = max_probe_bitrate_bps; probe_further = false; } if (first_cluster) { pacer_->CreateProbeCluster(rtc::checked_cast(bitrate), kProbeDeltasPerCluster + 1); first_cluster = false; } else { pacer_->CreateProbeCluster(rtc::checked_cast(bitrate), kProbeDeltasPerCluster); } } time_last_probing_initiated_ms_ = now_ms; if (probe_further) { state_ = State::kWaitingForProbingResult; min_bitrate_to_probe_further_bps_ = (*(bitrates_to_probe.end() - 1)) * kRepeatedProbeMinPercentage / 100; } else { state_ = State::kProbingComplete; min_bitrate_to_probe_further_bps_ = kExponentialProbingDisabled; } } } // namespace webrtc