Files
platform-external-webrtc/webrtc/modules/audio_coding/neteq/statistics_calculator.cc
minyue-webrtc 0c3ca753c5 Replacing NetEq discard rate with secondary discarded rate.
NetEq network statistics contains discard rate but has not been used and even not been implemented until recently.

According to w3c.github.io/webrtc-stats/#dom-rtcreceivedrtpstreamstats-packetsdiscarded,
this statistics needs to be replaced with an accumulative stats. Such work will be carried out separately.

Meanwhile, we need to add a rate to reflect rate of discarded redundant packets. See webrtc:8025.

In this CL, we replace the existing discard rate with secondary discarded rate, so as to
1. fulfill the requests on webrtc:8025
2. get ready to implement an accumulative statistics for discarded packets.

BUG: webrtc:7903,webrtc:8025
Change-Id: Idbf143a105db76ca15f0af54848e1448f2a810ec
Reviewed-on: https://chromium-review.googlesource.com/582863
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Minyue Li <minyue@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#19495}
2017-08-24 13:46:52 +00:00

325 lines
10 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/neteq/statistics_calculator.h"
#include <assert.h>
#include <string.h> // memset
#include <algorithm>
#include "webrtc/modules/audio_coding/neteq/decision_logic.h"
#include "webrtc/modules/audio_coding/neteq/delay_manager.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/rtc_base/safe_conversions.h"
#include "webrtc/system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
size_t AddIntToSizeTWithLowerCap(int a, size_t b) {
const size_t ret = b + a;
// If a + b is negative, resulting in a negative wrap, cap it to zero instead.
static_assert(sizeof(size_t) >= sizeof(int),
"int must not be wider than size_t for this to work");
return (a < 0 && ret > b) ? 0 : ret;
}
} // namespace
// Allocating the static const so that it can be passed by reference to
// RTC_DCHECK.
const size_t StatisticsCalculator::kLenWaitingTimes;
StatisticsCalculator::PeriodicUmaLogger::PeriodicUmaLogger(
const std::string& uma_name,
int report_interval_ms,
int max_value)
: uma_name_(uma_name),
report_interval_ms_(report_interval_ms),
max_value_(max_value),
timer_(0) {
}
StatisticsCalculator::PeriodicUmaLogger::~PeriodicUmaLogger() = default;
void StatisticsCalculator::PeriodicUmaLogger::AdvanceClock(int step_ms) {
timer_ += step_ms;
if (timer_ < report_interval_ms_) {
return;
}
LogToUma(Metric());
Reset();
timer_ -= report_interval_ms_;
RTC_DCHECK_GE(timer_, 0);
}
void StatisticsCalculator::PeriodicUmaLogger::LogToUma(int value) const {
RTC_HISTOGRAM_COUNTS_SPARSE(uma_name_, value, 1, max_value_, 50);
}
StatisticsCalculator::PeriodicUmaCount::PeriodicUmaCount(
const std::string& uma_name,
int report_interval_ms,
int max_value)
: PeriodicUmaLogger(uma_name, report_interval_ms, max_value) {
}
StatisticsCalculator::PeriodicUmaCount::~PeriodicUmaCount() {
// Log the count for the current (incomplete) interval.
LogToUma(Metric());
}
void StatisticsCalculator::PeriodicUmaCount::RegisterSample() {
++counter_;
}
int StatisticsCalculator::PeriodicUmaCount::Metric() const {
return counter_;
}
void StatisticsCalculator::PeriodicUmaCount::Reset() {
counter_ = 0;
}
StatisticsCalculator::PeriodicUmaAverage::PeriodicUmaAverage(
const std::string& uma_name,
int report_interval_ms,
int max_value)
: PeriodicUmaLogger(uma_name, report_interval_ms, max_value) {
}
StatisticsCalculator::PeriodicUmaAverage::~PeriodicUmaAverage() {
// Log the average for the current (incomplete) interval.
LogToUma(Metric());
}
void StatisticsCalculator::PeriodicUmaAverage::RegisterSample(int value) {
sum_ += value;
++counter_;
}
int StatisticsCalculator::PeriodicUmaAverage::Metric() const {
return counter_ == 0 ? 0 : static_cast<int>(sum_ / counter_);
}
void StatisticsCalculator::PeriodicUmaAverage::Reset() {
sum_ = 0.0;
counter_ = 0;
}
StatisticsCalculator::StatisticsCalculator()
: preemptive_samples_(0),
accelerate_samples_(0),
added_zero_samples_(0),
expanded_speech_samples_(0),
expanded_noise_samples_(0),
discarded_packets_(0),
lost_timestamps_(0),
timestamps_since_last_report_(0),
secondary_decoded_samples_(0),
discarded_secondary_packets_(0),
delayed_packet_outage_counter_(
"WebRTC.Audio.DelayedPacketOutageEventsPerMinute",
60000, // 60 seconds report interval.
100),
excess_buffer_delay_("WebRTC.Audio.AverageExcessBufferDelayMs",
60000, // 60 seconds report interval.
1000) {}
StatisticsCalculator::~StatisticsCalculator() = default;
void StatisticsCalculator::Reset() {
preemptive_samples_ = 0;
accelerate_samples_ = 0;
added_zero_samples_ = 0;
expanded_speech_samples_ = 0;
expanded_noise_samples_ = 0;
secondary_decoded_samples_ = 0;
discarded_secondary_packets_ = 0;
waiting_times_.clear();
}
void StatisticsCalculator::ResetMcu() {
discarded_packets_ = 0;
lost_timestamps_ = 0;
timestamps_since_last_report_ = 0;
}
void StatisticsCalculator::ExpandedVoiceSamples(size_t num_samples) {
expanded_speech_samples_ += num_samples;
}
void StatisticsCalculator::ExpandedNoiseSamples(size_t num_samples) {
expanded_noise_samples_ += num_samples;
}
void StatisticsCalculator::ExpandedVoiceSamplesCorrection(int num_samples) {
expanded_speech_samples_ =
AddIntToSizeTWithLowerCap(num_samples, expanded_speech_samples_);
}
void StatisticsCalculator::ExpandedNoiseSamplesCorrection(int num_samples) {
expanded_noise_samples_ =
AddIntToSizeTWithLowerCap(num_samples, expanded_noise_samples_);
}
void StatisticsCalculator::PreemptiveExpandedSamples(size_t num_samples) {
preemptive_samples_ += num_samples;
}
void StatisticsCalculator::AcceleratedSamples(size_t num_samples) {
accelerate_samples_ += num_samples;
}
void StatisticsCalculator::AddZeros(size_t num_samples) {
added_zero_samples_ += num_samples;
}
void StatisticsCalculator::PacketsDiscarded(size_t num_packets) {
discarded_packets_ += num_packets;
}
void StatisticsCalculator::SecondaryPacketsDiscarded(size_t num_packets) {
discarded_secondary_packets_ += num_packets;
}
void StatisticsCalculator::LostSamples(size_t num_samples) {
lost_timestamps_ += num_samples;
}
void StatisticsCalculator::IncreaseCounter(size_t num_samples, int fs_hz) {
const int time_step_ms =
rtc::CheckedDivExact(static_cast<int>(1000 * num_samples), fs_hz);
delayed_packet_outage_counter_.AdvanceClock(time_step_ms);
excess_buffer_delay_.AdvanceClock(time_step_ms);
timestamps_since_last_report_ += static_cast<uint32_t>(num_samples);
if (timestamps_since_last_report_ >
static_cast<uint32_t>(fs_hz * kMaxReportPeriod)) {
lost_timestamps_ = 0;
timestamps_since_last_report_ = 0;
discarded_packets_ = 0;
}
}
void StatisticsCalculator::SecondaryDecodedSamples(int num_samples) {
secondary_decoded_samples_ += num_samples;
}
void StatisticsCalculator::LogDelayedPacketOutageEvent(int outage_duration_ms) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.DelayedPacketOutageEventMs",
outage_duration_ms, 1 /* min */, 2000 /* max */,
100 /* bucket count */);
delayed_packet_outage_counter_.RegisterSample();
}
void StatisticsCalculator::StoreWaitingTime(int waiting_time_ms) {
excess_buffer_delay_.RegisterSample(waiting_time_ms);
RTC_DCHECK_LE(waiting_times_.size(), kLenWaitingTimes);
if (waiting_times_.size() == kLenWaitingTimes) {
// Erase first value.
waiting_times_.pop_front();
}
waiting_times_.push_back(waiting_time_ms);
}
void StatisticsCalculator::GetNetworkStatistics(
int fs_hz,
size_t num_samples_in_buffers,
size_t samples_per_packet,
const DelayManager& delay_manager,
const DecisionLogic& decision_logic,
NetEqNetworkStatistics *stats) {
if (fs_hz <= 0 || !stats) {
assert(false);
return;
}
stats->added_zero_samples = added_zero_samples_;
stats->current_buffer_size_ms =
static_cast<uint16_t>(num_samples_in_buffers * 1000 / fs_hz);
const int ms_per_packet = rtc::dchecked_cast<int>(
decision_logic.packet_length_samples() / (fs_hz / 1000));
stats->preferred_buffer_size_ms = (delay_manager.TargetLevel() >> 8) *
ms_per_packet;
stats->jitter_peaks_found = delay_manager.PeakFound();
stats->clockdrift_ppm =
rtc::saturated_cast<int32_t>(delay_manager.EstimatedClockDriftPpm());
stats->packet_loss_rate =
CalculateQ14Ratio(lost_timestamps_, timestamps_since_last_report_);
stats->accelerate_rate =
CalculateQ14Ratio(accelerate_samples_, timestamps_since_last_report_);
stats->preemptive_rate =
CalculateQ14Ratio(preemptive_samples_, timestamps_since_last_report_);
stats->expand_rate =
CalculateQ14Ratio(expanded_speech_samples_ + expanded_noise_samples_,
timestamps_since_last_report_);
stats->speech_expand_rate =
CalculateQ14Ratio(expanded_speech_samples_,
timestamps_since_last_report_);
stats->secondary_decoded_rate =
CalculateQ14Ratio(secondary_decoded_samples_,
timestamps_since_last_report_);
const size_t discarded_secondary_samples =
discarded_secondary_packets_ * samples_per_packet;
stats->secondary_discarded_rate = CalculateQ14Ratio(
discarded_secondary_samples,
discarded_secondary_samples + secondary_decoded_samples_);
if (waiting_times_.size() == 0) {
stats->mean_waiting_time_ms = -1;
stats->median_waiting_time_ms = -1;
stats->min_waiting_time_ms = -1;
stats->max_waiting_time_ms = -1;
} else {
std::sort(waiting_times_.begin(), waiting_times_.end());
// Find mid-point elements. If the size is odd, the two values
// |middle_left| and |middle_right| will both be the one middle element; if
// the size is even, they will be the the two neighboring elements at the
// middle of the list.
const int middle_left = waiting_times_[(waiting_times_.size() - 1) / 2];
const int middle_right = waiting_times_[waiting_times_.size() / 2];
// Calculate the average of the two. (Works also for odd sizes.)
stats->median_waiting_time_ms = (middle_left + middle_right) / 2;
stats->min_waiting_time_ms = waiting_times_.front();
stats->max_waiting_time_ms = waiting_times_.back();
double sum = 0;
for (auto time : waiting_times_) {
sum += time;
}
stats->mean_waiting_time_ms = static_cast<int>(sum / waiting_times_.size());
}
// Reset counters.
ResetMcu();
Reset();
}
uint16_t StatisticsCalculator::CalculateQ14Ratio(size_t numerator,
uint32_t denominator) {
if (numerator == 0) {
return 0;
} else if (numerator < denominator) {
// Ratio must be smaller than 1 in Q14.
assert((numerator << 14) / denominator < (1 << 14));
return static_cast<uint16_t>((numerator << 14) / denominator);
} else {
// Will not produce a ratio larger than 1, since this is probably an error.
return 1 << 14;
}
}
} // namespace webrtc