Files
platform-external-webrtc/modules/pacing/paced_sender.cc
Jonas Olsson 24923e8cfa Make some constants in the bitrate prober configurable.
This lets us change how many bytes and packets goes into the probes, as
well as some other things.

Bug: webrtc:10394
Change-Id: I26bb26a644e6f00366e9275228760c8744d63735
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/128424
Commit-Queue: Jonas Olsson <jonasolsson@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#27312}
2019-03-27 13:50:35 +00:00

499 lines
18 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/paced_sender.h"
#include <algorithm>
#include <utility>
#include "absl/memory/memory.h"
#include "logging/rtc_event_log/rtc_event_log.h"
#include "modules/congestion_controller/goog_cc/alr_detector.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "modules/utility/include/process_thread.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Time limit in milliseconds between packet bursts.
const int64_t kDefaultMinPacketLimitMs = 5;
const int64_t kCongestedPacketIntervalMs = 500;
const int64_t kPausedProcessIntervalMs = kCongestedPacketIntervalMs;
const int64_t kMaxElapsedTimeMs = 2000;
// Upper cap on process interval, in case process has not been called in a long
// time.
const int64_t kMaxIntervalTimeMs = 30;
bool IsDisabled(const WebRtcKeyValueConfig& field_trials,
absl::string_view key) {
return field_trials.Lookup(key).find("Disabled") == 0;
}
bool IsEnabled(const WebRtcKeyValueConfig& field_trials,
absl::string_view key) {
return field_trials.Lookup(key).find("Enabled") == 0;
}
} // namespace
const int64_t PacedSender::kMaxQueueLengthMs = 2000;
const float PacedSender::kDefaultPaceMultiplier = 2.5f;
PacedSender::PacedSender(Clock* clock,
PacketSender* packet_sender,
RtcEventLog* event_log,
const WebRtcKeyValueConfig* field_trials)
: PacedSender(clock,
packet_sender,
event_log,
field_trials
? *field_trials
: static_cast<const webrtc::WebRtcKeyValueConfig&>(
FieldTrialBasedConfig())) {}
PacedSender::PacedSender(Clock* clock,
PacketSender* packet_sender,
RtcEventLog* event_log,
const WebRtcKeyValueConfig& field_trials)
: clock_(clock),
packet_sender_(packet_sender),
alr_detector_(),
drain_large_queues_(!IsDisabled(field_trials, "WebRTC-Pacer-DrainQueue")),
send_padding_if_silent_(
IsEnabled(field_trials, "WebRTC-Pacer-PadInSilence")),
pace_audio_(!IsDisabled(field_trials, "WebRTC-Pacer-BlockAudio")),
min_packet_limit_ms_("", kDefaultMinPacketLimitMs),
last_timestamp_ms_(clock_->TimeInMilliseconds()),
paused_(false),
media_budget_(0),
padding_budget_(0),
prober_(field_trials),
probing_send_failure_(false),
estimated_bitrate_bps_(0),
min_send_bitrate_kbps_(0u),
max_padding_bitrate_kbps_(0u),
pacing_bitrate_kbps_(0),
time_last_process_us_(clock->TimeInMicroseconds()),
last_send_time_us_(clock->TimeInMicroseconds()),
first_sent_packet_ms_(-1),
packets_(clock->TimeInMicroseconds()),
packet_counter_(0),
pacing_factor_(kDefaultPaceMultiplier),
queue_time_limit(kMaxQueueLengthMs),
account_for_audio_(false) {
if (!drain_large_queues_) {
RTC_LOG(LS_WARNING) << "Pacer queues will not be drained,"
"pushback experiment must be enabled.";
}
ParseFieldTrial({&min_packet_limit_ms_},
field_trials.Lookup("WebRTC-Pacer-MinPacketLimitMs"));
UpdateBudgetWithElapsedTime(min_packet_limit_ms_);
}
PacedSender::~PacedSender() {}
void PacedSender::CreateProbeCluster(int bitrate_bps, int cluster_id) {
rtc::CritScope cs(&critsect_);
prober_.CreateProbeCluster(bitrate_bps, TimeMilliseconds(), cluster_id);
}
void PacedSender::Pause() {
{
rtc::CritScope cs(&critsect_);
if (!paused_)
RTC_LOG(LS_INFO) << "PacedSender paused.";
paused_ = true;
packets_.SetPauseState(true, TimeMilliseconds());
}
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to get
// a new (longer) estimate for when to call Process().
if (process_thread_)
process_thread_->WakeUp(this);
}
void PacedSender::Resume() {
{
rtc::CritScope cs(&critsect_);
if (paused_)
RTC_LOG(LS_INFO) << "PacedSender resumed.";
paused_ = false;
packets_.SetPauseState(false, TimeMilliseconds());
}
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to
// refresh the estimate for when to call Process().
if (process_thread_)
process_thread_->WakeUp(this);
}
void PacedSender::SetCongestionWindow(int64_t congestion_window_bytes) {
rtc::CritScope cs(&critsect_);
congestion_window_bytes_ = congestion_window_bytes;
}
void PacedSender::UpdateOutstandingData(int64_t outstanding_bytes) {
rtc::CritScope cs(&critsect_);
outstanding_bytes_ = outstanding_bytes;
}
bool PacedSender::Congested() const {
if (congestion_window_bytes_ == kNoCongestionWindow)
return false;
return outstanding_bytes_ >= congestion_window_bytes_;
}
int64_t PacedSender::TimeMilliseconds() const {
int64_t time_ms = clock_->TimeInMilliseconds();
if (time_ms < last_timestamp_ms_) {
RTC_LOG(LS_WARNING)
<< "Non-monotonic clock behavior observed. Previous timestamp: "
<< last_timestamp_ms_ << ", new timestamp: " << time_ms;
RTC_DCHECK_GE(time_ms, last_timestamp_ms_);
time_ms = last_timestamp_ms_;
}
last_timestamp_ms_ = time_ms;
return time_ms;
}
void PacedSender::SetProbingEnabled(bool enabled) {
rtc::CritScope cs(&critsect_);
RTC_CHECK_EQ(0, packet_counter_);
prober_.SetEnabled(enabled);
}
void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) {
if (bitrate_bps == 0)
RTC_LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate.";
rtc::CritScope cs(&critsect_);
estimated_bitrate_bps_ = bitrate_bps;
padding_budget_.set_target_rate_kbps(
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
pacing_bitrate_kbps_ =
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
pacing_factor_;
if (!alr_detector_)
alr_detector_ = absl::make_unique<AlrDetector>(nullptr /*event_log*/);
alr_detector_->SetEstimatedBitrate(bitrate_bps);
}
void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps,
int padding_bitrate) {
rtc::CritScope cs(&critsect_);
min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000;
pacing_bitrate_kbps_ =
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
pacing_factor_;
max_padding_bitrate_kbps_ = padding_bitrate / 1000;
padding_budget_.set_target_rate_kbps(
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
}
void PacedSender::SetPacingRates(uint32_t pacing_rate_bps,
uint32_t padding_rate_bps) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_rate_bps > 0);
pacing_bitrate_kbps_ = pacing_rate_bps / 1000;
padding_budget_.set_target_rate_kbps(padding_rate_bps / 1000);
RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps="
<< pacing_bitrate_kbps_
<< " padding_budget_kbps=" << padding_rate_bps / 1000;
}
void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t bytes,
bool retransmission) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_bitrate_kbps_ > 0)
<< "SetPacingRate must be called before InsertPacket.";
int64_t now_ms = TimeMilliseconds();
prober_.OnIncomingPacket(bytes);
if (capture_time_ms < 0)
capture_time_ms = now_ms;
packets_.Push(RoundRobinPacketQueue::Packet(
priority, ssrc, sequence_number, capture_time_ms, now_ms, bytes,
retransmission, packet_counter_++));
}
void PacedSender::SetAccountForAudioPackets(bool account_for_audio) {
rtc::CritScope cs(&critsect_);
account_for_audio_ = account_for_audio;
}
int64_t PacedSender::ExpectedQueueTimeMs() const {
rtc::CritScope cs(&critsect_);
RTC_DCHECK_GT(pacing_bitrate_kbps_, 0);
return static_cast<int64_t>(packets_.SizeInBytes() * 8 /
pacing_bitrate_kbps_);
}
absl::optional<int64_t> PacedSender::GetApplicationLimitedRegionStartTime() {
rtc::CritScope cs(&critsect_);
if (!alr_detector_)
alr_detector_ = absl::make_unique<AlrDetector>(nullptr /*event_log*/);
return alr_detector_->GetApplicationLimitedRegionStartTime();
}
size_t PacedSender::QueueSizePackets() const {
rtc::CritScope cs(&critsect_);
return packets_.SizeInPackets();
}
int64_t PacedSender::QueueSizeBytes() const {
rtc::CritScope cs(&critsect_);
return packets_.SizeInBytes();
}
int64_t PacedSender::FirstSentPacketTimeMs() const {
rtc::CritScope cs(&critsect_);
return first_sent_packet_ms_;
}
int64_t PacedSender::QueueInMs() const {
rtc::CritScope cs(&critsect_);
int64_t oldest_packet = packets_.OldestEnqueueTimeMs();
if (oldest_packet == 0)
return 0;
return TimeMilliseconds() - oldest_packet;
}
int64_t PacedSender::TimeUntilNextProcess() {
rtc::CritScope cs(&critsect_);
int64_t elapsed_time_us =
clock_->TimeInMicroseconds() - time_last_process_us_;
int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000;
// When paused we wake up every 500 ms to send a padding packet to ensure
// we won't get stuck in the paused state due to no feedback being received.
if (paused_)
return std::max<int64_t>(kPausedProcessIntervalMs - elapsed_time_ms, 0);
if (prober_.IsProbing()) {
int64_t ret = prober_.TimeUntilNextProbe(TimeMilliseconds());
if (ret > 0 || (ret == 0 && !probing_send_failure_))
return ret;
}
return std::max<int64_t>(min_packet_limit_ms_ - elapsed_time_ms, 0);
}
int64_t PacedSender::UpdateTimeAndGetElapsedMs(int64_t now_us) {
int64_t elapsed_time_ms = (now_us - time_last_process_us_ + 500) / 1000;
time_last_process_us_ = now_us;
if (elapsed_time_ms > kMaxElapsedTimeMs) {
RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time_ms
<< " ms) longer than expected, limiting to "
<< kMaxElapsedTimeMs << " ms";
elapsed_time_ms = kMaxElapsedTimeMs;
}
return elapsed_time_ms;
}
bool PacedSender::ShouldSendKeepalive(int64_t now_us) const {
if (send_padding_if_silent_ || paused_ || Congested()) {
// We send a padding packet every 500 ms to ensure we won't get stuck in
// congested state due to no feedback being received.
int64_t elapsed_since_last_send_us = now_us - last_send_time_us_;
if (elapsed_since_last_send_us >= kCongestedPacketIntervalMs * 1000) {
// We can not send padding unless a normal packet has first been sent. If
// we do, timestamps get messed up.
if (packet_counter_ > 0) {
return true;
}
}
}
return false;
}
void PacedSender::Process() {
rtc::CritScope cs(&critsect_);
int64_t now_us = clock_->TimeInMicroseconds();
int64_t elapsed_time_ms = UpdateTimeAndGetElapsedMs(now_us);
if (ShouldSendKeepalive(now_us)) {
critsect_.Leave();
size_t bytes_sent = packet_sender_->TimeToSendPadding(1, PacedPacketInfo());
critsect_.Enter();
OnPaddingSent(bytes_sent);
if (alr_detector_)
alr_detector_->OnBytesSent(bytes_sent, now_us / 1000);
}
if (paused_)
return;
if (elapsed_time_ms > 0) {
int target_bitrate_kbps = pacing_bitrate_kbps_;
size_t queue_size_bytes = packets_.SizeInBytes();
if (queue_size_bytes > 0) {
// Assuming equal size packets and input/output rate, the average packet
// has avg_time_left_ms left to get queue_size_bytes out of the queue, if
// time constraint shall be met. Determine bitrate needed for that.
packets_.UpdateQueueTime(TimeMilliseconds());
if (drain_large_queues_) {
int64_t avg_time_left_ms = std::max<int64_t>(
1, queue_time_limit - packets_.AverageQueueTimeMs());
int min_bitrate_needed_kbps =
static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms);
if (min_bitrate_needed_kbps > target_bitrate_kbps) {
target_bitrate_kbps = min_bitrate_needed_kbps;
RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
<< target_bitrate_kbps;
}
}
}
media_budget_.set_target_rate_kbps(target_bitrate_kbps);
UpdateBudgetWithElapsedTime(elapsed_time_ms);
}
bool is_probing = prober_.IsProbing();
PacedPacketInfo pacing_info;
size_t bytes_sent = 0;
size_t recommended_probe_size = 0;
if (is_probing) {
pacing_info = prober_.CurrentCluster();
recommended_probe_size = prober_.RecommendedMinProbeSize();
}
// The paused state is checked in the loop since it leaves the critical
// section allowing the paused state to be changed from other code.
while (!packets_.Empty() && !paused_) {
const auto* packet = GetPendingPacket(pacing_info);
if (packet == nullptr)
break;
critsect_.Leave();
bool success = packet_sender_->TimeToSendPacket(
packet->ssrc, packet->sequence_number, packet->capture_time_ms,
packet->retransmission, pacing_info);
critsect_.Enter();
if (success) {
bytes_sent += packet->bytes;
// Send succeeded, remove it from the queue.
OnPacketSent(packet);
if (is_probing && bytes_sent > recommended_probe_size)
break;
} else {
// Send failed, put it back into the queue.
packets_.CancelPop(*packet);
break;
}
}
if (packets_.Empty() && !Congested()) {
// We can not send padding unless a normal packet has first been sent. If we
// do, timestamps get messed up.
if (packet_counter_ > 0) {
int padding_needed =
static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent)
: padding_budget_.bytes_remaining());
if (padding_needed > 0) {
critsect_.Leave();
size_t padding_sent =
packet_sender_->TimeToSendPadding(padding_needed, pacing_info);
critsect_.Enter();
bytes_sent += padding_sent;
OnPaddingSent(padding_sent);
}
}
}
if (is_probing) {
probing_send_failure_ = bytes_sent == 0;
if (!probing_send_failure_)
prober_.ProbeSent(TimeMilliseconds(), bytes_sent);
}
if (alr_detector_)
alr_detector_->OnBytesSent(bytes_sent, now_us / 1000);
}
void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) {
RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << process_thread;
rtc::CritScope cs(&process_thread_lock_);
process_thread_ = process_thread;
}
const RoundRobinPacketQueue::Packet* PacedSender::GetPendingPacket(
const PacedPacketInfo& pacing_info) {
// Since we need to release the lock in order to send, we first pop the
// element from the priority queue but keep it in storage, so that we can
// reinsert it if send fails.
const RoundRobinPacketQueue::Packet* packet = &packets_.BeginPop();
bool audio_packet = packet->priority == kHighPriority;
bool apply_pacing = !audio_packet || pace_audio_;
if (apply_pacing && (Congested() || (media_budget_.bytes_remaining() == 0 &&
pacing_info.probe_cluster_id ==
PacedPacketInfo::kNotAProbe))) {
packets_.CancelPop(*packet);
return nullptr;
}
return packet;
}
void PacedSender::OnPacketSent(const RoundRobinPacketQueue::Packet* packet) {
if (first_sent_packet_ms_ == -1)
first_sent_packet_ms_ = TimeMilliseconds();
bool audio_packet = packet->priority == kHighPriority;
if (!audio_packet || account_for_audio_) {
// Update media bytes sent.
// TODO(eladalon): TimeToSendPacket() can also return |true| in some
// situations where nothing actually ended up being sent to the network,
// and we probably don't want to update the budget in such cases.
// https://bugs.chromium.org/p/webrtc/issues/detail?id=8052
UpdateBudgetWithBytesSent(packet->bytes);
last_send_time_us_ = clock_->TimeInMicroseconds();
}
// Send succeeded, remove it from the queue.
packets_.FinalizePop(*packet);
}
void PacedSender::OnPaddingSent(size_t bytes_sent) {
if (bytes_sent > 0) {
UpdateBudgetWithBytesSent(bytes_sent);
}
last_send_time_us_ = clock_->TimeInMicroseconds();
}
void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) {
delta_time_ms = std::min(kMaxIntervalTimeMs, delta_time_ms);
media_budget_.IncreaseBudget(delta_time_ms);
padding_budget_.IncreaseBudget(delta_time_ms);
}
void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) {
outstanding_bytes_ += bytes_sent;
media_budget_.UseBudget(bytes_sent);
padding_budget_.UseBudget(bytes_sent);
}
void PacedSender::SetPacingFactor(float pacing_factor) {
rtc::CritScope cs(&critsect_);
pacing_factor_ = pacing_factor;
// Make sure new padding factor is applied immediately, otherwise we need to
// wait for the send bitrate estimate to be updated before this takes effect.
SetEstimatedBitrate(estimated_bitrate_bps_);
}
void PacedSender::SetQueueTimeLimit(int limit_ms) {
rtc::CritScope cs(&critsect_);
queue_time_limit = limit_ms;
}
} // namespace webrtc