Files
platform-external-webrtc/p2p/base/turn_port.cc
Philipp Hancke 29d16c0ed6 stun/turn: use hostname when reconstructing the url
in the case of an ip address the hostname() call will return
that. This may also avoid leaking IP addresses from DNS resolutions
and is more similar to the url originally passed into the
peerconnection (but will for example produce a fully formed url and
resolves the port if none was given).

BUG=webrtc:13652

Change-Id: I000c66f7988b4b205e38c4dde5b888e48d8f6a0f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/250202
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Philipp Hancke <philipp.hancke@googlemail.com>
Cr-Commit-Position: refs/heads/main@{#35898}
2022-02-03 12:18:50 +00:00

1889 lines
67 KiB
C++

/*
* Copyright 2012 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/base/turn_port.h"
#include <functional>
#include <memory>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/strings/match.h"
#include "absl/types/optional.h"
#include "api/transport/stun.h"
#include "p2p/base/connection.h"
#include "p2p/base/p2p_constants.h"
#include "rtc_base/async_packet_socket.h"
#include "rtc_base/byte_order.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/net_helpers.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "system_wrappers/include/field_trial.h"
namespace cricket {
// TODO(juberti): Move to stun.h when relay messages have been renamed.
static const int TURN_ALLOCATE_REQUEST = STUN_ALLOCATE_REQUEST;
// Attributes in comprehension-optional range,
// ignored by TURN server that doesn't know about them.
// https://tools.ietf.org/html/rfc5389#section-18.2
static const int STUN_ATTR_MULTI_MAPPING = 0xff04;
const int STUN_ATTR_TURN_LOGGING_ID = 0xff05;
// TODO(juberti): Extract to turnmessage.h
static const int TURN_DEFAULT_PORT = 3478;
static const int TURN_CHANNEL_NUMBER_START = 0x4000;
static const int TURN_PERMISSION_TIMEOUT = 5 * 60 * 1000; // 5 minutes
static const size_t TURN_CHANNEL_HEADER_SIZE = 4U;
// Retry at most twice (i.e. three different ALLOCATE requests) on
// STUN_ERROR_ALLOCATION_MISMATCH error per rfc5766.
static const size_t MAX_ALLOCATE_MISMATCH_RETRIES = 2;
static const int TURN_SUCCESS_RESULT_CODE = 0;
inline bool IsTurnChannelData(uint16_t msg_type) {
return ((msg_type & 0xC000) == 0x4000); // MSB are 0b01
}
static int GetRelayPreference(cricket::ProtocolType proto) {
switch (proto) {
case cricket::PROTO_TCP:
return ICE_TYPE_PREFERENCE_RELAY_TCP;
case cricket::PROTO_TLS:
return ICE_TYPE_PREFERENCE_RELAY_TLS;
default:
RTC_DCHECK(proto == PROTO_UDP);
return ICE_TYPE_PREFERENCE_RELAY_UDP;
}
}
class TurnAllocateRequest : public StunRequest {
public:
explicit TurnAllocateRequest(TurnPort* port);
void Prepare(StunMessage* request) override;
void OnSent() override;
void OnResponse(StunMessage* response) override;
void OnErrorResponse(StunMessage* response) override;
void OnTimeout() override;
private:
// Handles authentication challenge from the server.
void OnAuthChallenge(StunMessage* response, int code);
void OnTryAlternate(StunMessage* response, int code);
void OnUnknownAttribute(StunMessage* response);
TurnPort* port_;
};
class TurnRefreshRequest : public StunRequest {
public:
explicit TurnRefreshRequest(TurnPort* port);
void Prepare(StunMessage* request) override;
void OnSent() override;
void OnResponse(StunMessage* response) override;
void OnErrorResponse(StunMessage* response) override;
void OnTimeout() override;
void set_lifetime(int lifetime) { lifetime_ = lifetime; }
private:
TurnPort* port_;
int lifetime_;
};
class TurnCreatePermissionRequest : public StunRequest,
public sigslot::has_slots<> {
public:
TurnCreatePermissionRequest(TurnPort* port,
TurnEntry* entry,
const rtc::SocketAddress& ext_addr,
const std::string& remote_ufrag);
void Prepare(StunMessage* request) override;
void OnSent() override;
void OnResponse(StunMessage* response) override;
void OnErrorResponse(StunMessage* response) override;
void OnTimeout() override;
private:
void OnEntryDestroyed(TurnEntry* entry);
TurnPort* port_;
TurnEntry* entry_;
rtc::SocketAddress ext_addr_;
std::string remote_ufrag_;
};
class TurnChannelBindRequest : public StunRequest, public sigslot::has_slots<> {
public:
TurnChannelBindRequest(TurnPort* port,
TurnEntry* entry,
int channel_id,
const rtc::SocketAddress& ext_addr);
void Prepare(StunMessage* request) override;
void OnSent() override;
void OnResponse(StunMessage* response) override;
void OnErrorResponse(StunMessage* response) override;
void OnTimeout() override;
private:
void OnEntryDestroyed(TurnEntry* entry);
TurnPort* port_;
TurnEntry* entry_;
int channel_id_;
rtc::SocketAddress ext_addr_;
};
// Manages a "connection" to a remote destination. We will attempt to bring up
// a channel for this remote destination to reduce the overhead of sending data.
class TurnEntry : public sigslot::has_slots<> {
public:
enum BindState { STATE_UNBOUND, STATE_BINDING, STATE_BOUND };
TurnEntry(TurnPort* port,
int channel_id,
const rtc::SocketAddress& ext_addr,
const std::string remote_ufrag);
TurnPort* port() { return port_; }
int channel_id() const { return channel_id_; }
// For testing only.
void set_channel_id(int channel_id) { channel_id_ = channel_id; }
const rtc::SocketAddress& address() const { return ext_addr_; }
BindState state() const { return state_; }
// If the destruction timestamp is set, that means destruction has been
// scheduled (will occur TURN_PERMISSION_TIMEOUT after it's scheduled).
absl::optional<int64_t> destruction_timestamp() {
return destruction_timestamp_;
}
void set_destruction_timestamp(int64_t destruction_timestamp) {
destruction_timestamp_.emplace(destruction_timestamp);
}
void reset_destruction_timestamp() { destruction_timestamp_.reset(); }
// Helper methods to send permission and channel bind requests.
void SendCreatePermissionRequest(int delay);
void SendChannelBindRequest(int delay);
// Sends a packet to the given destination address.
// This will wrap the packet in STUN if necessary.
int Send(const void* data,
size_t size,
bool payload,
const rtc::PacketOptions& options);
void OnCreatePermissionSuccess();
void OnCreatePermissionError(StunMessage* response, int code);
void OnCreatePermissionTimeout();
void OnChannelBindSuccess();
void OnChannelBindError(StunMessage* response, int code);
void OnChannelBindTimeout();
// Signal sent when TurnEntry is destroyed.
sigslot::signal1<TurnEntry*> SignalDestroyed;
const std::string& get_remote_ufrag() const { return remote_ufrag_; }
void set_remote_ufrag(const std::string& remote_ufrag) {
remote_ufrag_ = remote_ufrag;
}
private:
TurnPort* port_;
int channel_id_;
rtc::SocketAddress ext_addr_;
BindState state_;
// An unset value indicates that this entry is scheduled to be destroyed. It
// is also used as an ID of the event scheduling. When the destruction event
// actually fires, the TurnEntry will be destroyed only if the timestamp here
// matches the one in the firing event.
absl::optional<int64_t> destruction_timestamp_;
std::string remote_ufrag_;
};
TurnPort::TurnPort(rtc::Thread* thread,
rtc::PacketSocketFactory* factory,
rtc::Network* network,
rtc::AsyncPacketSocket* socket,
const std::string& username,
const std::string& password,
const ProtocolAddress& server_address,
const RelayCredentials& credentials,
int server_priority,
webrtc::TurnCustomizer* customizer)
: Port(thread, RELAY_PORT_TYPE, factory, network, username, password),
server_address_(server_address),
tls_cert_verifier_(nullptr),
credentials_(credentials),
socket_(socket),
error_(0),
stun_dscp_value_(rtc::DSCP_NO_CHANGE),
request_manager_(thread),
next_channel_number_(TURN_CHANNEL_NUMBER_START),
state_(STATE_CONNECTING),
server_priority_(server_priority),
allocate_mismatch_retries_(0),
turn_customizer_(customizer) {
request_manager_.SignalSendPacket.connect(this, &TurnPort::OnSendStunPacket);
}
TurnPort::TurnPort(rtc::Thread* thread,
rtc::PacketSocketFactory* factory,
rtc::Network* network,
uint16_t min_port,
uint16_t max_port,
const std::string& username,
const std::string& password,
const ProtocolAddress& server_address,
const RelayCredentials& credentials,
int server_priority,
const std::vector<std::string>& tls_alpn_protocols,
const std::vector<std::string>& tls_elliptic_curves,
webrtc::TurnCustomizer* customizer,
rtc::SSLCertificateVerifier* tls_cert_verifier)
: Port(thread,
RELAY_PORT_TYPE,
factory,
network,
min_port,
max_port,
username,
password),
server_address_(server_address),
tls_alpn_protocols_(tls_alpn_protocols),
tls_elliptic_curves_(tls_elliptic_curves),
tls_cert_verifier_(tls_cert_verifier),
credentials_(credentials),
socket_(NULL),
error_(0),
stun_dscp_value_(rtc::DSCP_NO_CHANGE),
request_manager_(thread),
next_channel_number_(TURN_CHANNEL_NUMBER_START),
state_(STATE_CONNECTING),
server_priority_(server_priority),
allocate_mismatch_retries_(0),
turn_customizer_(customizer) {
request_manager_.SignalSendPacket.connect(this, &TurnPort::OnSendStunPacket);
}
TurnPort::~TurnPort() {
// TODO(juberti): Should this even be necessary?
// release the allocation by sending a refresh with
// lifetime 0.
if (ready()) {
Release();
}
while (!entries_.empty()) {
DestroyEntry(entries_.front());
}
if (!SharedSocket()) {
delete socket_;
}
}
rtc::SocketAddress TurnPort::GetLocalAddress() const {
return socket_ ? socket_->GetLocalAddress() : rtc::SocketAddress();
}
ProtocolType TurnPort::GetProtocol() const {
return server_address_.proto;
}
TlsCertPolicy TurnPort::GetTlsCertPolicy() const {
return tls_cert_policy_;
}
void TurnPort::SetTlsCertPolicy(TlsCertPolicy tls_cert_policy) {
tls_cert_policy_ = tls_cert_policy;
}
void TurnPort::SetTurnLoggingId(const std::string& turn_logging_id) {
turn_logging_id_ = turn_logging_id;
}
std::vector<std::string> TurnPort::GetTlsAlpnProtocols() const {
return tls_alpn_protocols_;
}
std::vector<std::string> TurnPort::GetTlsEllipticCurves() const {
return tls_elliptic_curves_;
}
void TurnPort::PrepareAddress() {
if (credentials_.username.empty() || credentials_.password.empty()) {
RTC_LOG(LS_ERROR) << "Allocation can't be started without setting the"
" TURN server credentials for the user.";
OnAllocateError(STUN_ERROR_UNAUTHORIZED,
"Missing TURN server credentials.");
return;
}
if (!server_address_.address.port()) {
// We will set default TURN port, if no port is set in the address.
server_address_.address.SetPort(TURN_DEFAULT_PORT);
}
if (!AllowedTurnPort(server_address_.address.port())) {
// This can only happen after a 300 ALTERNATE SERVER, since the port can't
// be created with a disallowed port number.
RTC_LOG(LS_ERROR) << "Attempt to start allocation with disallowed port# "
<< server_address_.address.port();
OnAllocateError(STUN_ERROR_SERVER_ERROR,
"Attempt to start allocation to a disallowed port");
return;
}
if (server_address_.address.IsUnresolvedIP()) {
ResolveTurnAddress(server_address_.address);
} else {
// If protocol family of server address doesn't match with local, return.
if (!IsCompatibleAddress(server_address_.address)) {
RTC_LOG(LS_ERROR) << "IP address family does not match. server: "
<< server_address_.address.family()
<< " local: " << Network()->GetBestIP().family();
OnAllocateError(STUN_ERROR_GLOBAL_FAILURE,
"IP address family does not match.");
return;
}
// Insert the current address to prevent redirection pingpong.
attempted_server_addresses_.insert(server_address_.address);
RTC_LOG(LS_INFO) << ToString() << ": Trying to connect to TURN server via "
<< ProtoToString(server_address_.proto) << " @ "
<< server_address_.address.ToSensitiveString();
if (!CreateTurnClientSocket()) {
RTC_LOG(LS_ERROR) << "Failed to create TURN client socket";
OnAllocateError(SERVER_NOT_REACHABLE_ERROR,
"Failed to create TURN client socket.");
return;
}
if (server_address_.proto == PROTO_UDP) {
// If its UDP, send AllocateRequest now.
// For TCP and TLS AllcateRequest will be sent by OnSocketConnect.
SendRequest(new TurnAllocateRequest(this), 0);
}
}
}
bool TurnPort::CreateTurnClientSocket() {
RTC_DCHECK(!socket_ || SharedSocket());
if (server_address_.proto == PROTO_UDP && !SharedSocket()) {
socket_ = socket_factory()->CreateUdpSocket(
rtc::SocketAddress(Network()->GetBestIP(), 0), min_port(), max_port());
} else if (server_address_.proto == PROTO_TCP ||
server_address_.proto == PROTO_TLS) {
RTC_DCHECK(!SharedSocket());
int opts = rtc::PacketSocketFactory::OPT_STUN;
// Apply server address TLS and insecure bits to options.
if (server_address_.proto == PROTO_TLS) {
if (tls_cert_policy_ ==
TlsCertPolicy::TLS_CERT_POLICY_INSECURE_NO_CHECK) {
opts |= rtc::PacketSocketFactory::OPT_TLS_INSECURE;
} else {
opts |= rtc::PacketSocketFactory::OPT_TLS;
}
}
rtc::PacketSocketTcpOptions tcp_options;
tcp_options.opts = opts;
tcp_options.tls_alpn_protocols = tls_alpn_protocols_;
tcp_options.tls_elliptic_curves = tls_elliptic_curves_;
tcp_options.tls_cert_verifier = tls_cert_verifier_;
socket_ = socket_factory()->CreateClientTcpSocket(
rtc::SocketAddress(Network()->GetBestIP(), 0), server_address_.address,
proxy(), user_agent(), tcp_options);
}
if (!socket_) {
error_ = SOCKET_ERROR;
return false;
}
// Apply options if any.
for (SocketOptionsMap::iterator iter = socket_options_.begin();
iter != socket_options_.end(); ++iter) {
socket_->SetOption(iter->first, iter->second);
}
if (!SharedSocket()) {
// If socket is shared, AllocationSequence will receive the packet.
socket_->SignalReadPacket.connect(this, &TurnPort::OnReadPacket);
}
socket_->SignalReadyToSend.connect(this, &TurnPort::OnReadyToSend);
socket_->SignalSentPacket.connect(this, &TurnPort::OnSentPacket);
// TCP port is ready to send stun requests after the socket is connected,
// while UDP port is ready to do so once the socket is created.
if (server_address_.proto == PROTO_TCP ||
server_address_.proto == PROTO_TLS) {
socket_->SignalConnect.connect(this, &TurnPort::OnSocketConnect);
socket_->SignalClose.connect(this, &TurnPort::OnSocketClose);
} else {
state_ = STATE_CONNECTED;
}
return true;
}
void TurnPort::OnSocketConnect(rtc::AsyncPacketSocket* socket) {
// This slot should only be invoked if we're using a connection-oriented
// protocol.
RTC_DCHECK(server_address_.proto == PROTO_TCP ||
server_address_.proto == PROTO_TLS);
// Do not use this port if the socket bound to an address not associated with
// the desired network interface. This is seen in Chrome, where TCP sockets
// cannot be given a binding address, and the platform is expected to pick
// the correct local address.
//
// However, there are two situations in which we allow the bound address to
// not be one of the addresses of the requested interface:
// 1. The bound address is the loopback address. This happens when a proxy
// forces TCP to bind to only the localhost address (see issue 3927).
// 2. The bound address is the "any address". This happens when
// multiple_routes is disabled (see issue 4780).
//
// Note that, aside from minor differences in log statements, this logic is
// identical to that in TcpPort.
const rtc::SocketAddress& socket_address = socket->GetLocalAddress();
if (absl::c_none_of(Network()->GetIPs(),
[socket_address](const rtc::InterfaceAddress& addr) {
return socket_address.ipaddr() == addr;
})) {
if (socket->GetLocalAddress().IsLoopbackIP()) {
RTC_LOG(LS_WARNING) << "Socket is bound to the address:"
<< socket_address.ipaddr().ToSensitiveString()
<< ", rather than an address associated with network:"
<< Network()->ToString()
<< ". Still allowing it since it's localhost.";
} else if (IPIsAny(Network()->GetBestIP())) {
RTC_LOG(LS_WARNING)
<< "Socket is bound to the address:"
<< socket_address.ipaddr().ToSensitiveString()
<< ", rather than an address associated with network:"
<< Network()->ToString()
<< ". Still allowing it since it's the 'any' address"
", possibly caused by multiple_routes being disabled.";
} else {
RTC_LOG(LS_WARNING) << "Socket is bound to the address:"
<< socket_address.ipaddr().ToSensitiveString()
<< ", rather than an address associated with network:"
<< Network()->ToString() << ". Discarding TURN port.";
OnAllocateError(
STUN_ERROR_GLOBAL_FAILURE,
"Address not associated with the desired network interface.");
return;
}
}
state_ = STATE_CONNECTED; // It is ready to send stun requests.
if (server_address_.address.IsUnresolvedIP()) {
server_address_.address = socket_->GetRemoteAddress();
}
RTC_LOG(LS_INFO) << "TurnPort connected to "
<< socket->GetRemoteAddress().ToSensitiveString()
<< " using tcp.";
SendRequest(new TurnAllocateRequest(this), 0);
}
void TurnPort::OnSocketClose(rtc::AsyncPacketSocket* socket, int error) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Connection with server failed with error: "
<< error;
RTC_DCHECK(socket == socket_);
Close();
}
void TurnPort::OnAllocateMismatch() {
if (allocate_mismatch_retries_ >= MAX_ALLOCATE_MISMATCH_RETRIES) {
RTC_LOG(LS_WARNING) << ToString() << ": Giving up on the port after "
<< allocate_mismatch_retries_
<< " retries for STUN_ERROR_ALLOCATION_MISMATCH";
OnAllocateError(STUN_ERROR_ALLOCATION_MISMATCH,
"Maximum retries reached for allocation mismatch.");
return;
}
RTC_LOG(LS_INFO) << ToString()
<< ": Allocating a new socket after "
"STUN_ERROR_ALLOCATION_MISMATCH, retry: "
<< allocate_mismatch_retries_ + 1;
if (SharedSocket()) {
ResetSharedSocket();
} else {
delete socket_;
}
socket_ = NULL;
ResetNonce();
PrepareAddress();
++allocate_mismatch_retries_;
}
Connection* TurnPort::CreateConnection(const Candidate& remote_candidate,
CandidateOrigin origin) {
// TURN-UDP can only connect to UDP candidates.
if (!SupportsProtocol(remote_candidate.protocol())) {
return nullptr;
}
if (state_ == STATE_DISCONNECTED || state_ == STATE_RECEIVEONLY) {
return nullptr;
}
// If the remote endpoint signaled us an mDNS candidate, we do not form a pair
// with the relay candidate to avoid IP leakage in the CreatePermission
// request.
if (absl::EndsWith(remote_candidate.address().hostname(), LOCAL_TLD)) {
return nullptr;
}
// A TURN port will have two candiates, STUN and TURN. STUN may not
// present in all cases. If present stun candidate will be added first
// and TURN candidate later.
for (size_t index = 0; index < Candidates().size(); ++index) {
const Candidate& local_candidate = Candidates()[index];
if (local_candidate.type() == RELAY_PORT_TYPE &&
local_candidate.address().family() ==
remote_candidate.address().family()) {
// Create an entry, if needed, so we can get our permissions set up
// correctly.
if (CreateOrRefreshEntry(remote_candidate.address(), next_channel_number_,
remote_candidate.username())) {
// An entry was created.
next_channel_number_++;
}
ProxyConnection* conn =
new ProxyConnection(this, index, remote_candidate);
AddOrReplaceConnection(conn);
return conn;
}
}
return nullptr;
}
bool TurnPort::FailAndPruneConnection(const rtc::SocketAddress& address) {
Connection* conn = GetConnection(address);
if (conn != nullptr) {
conn->FailAndPrune();
return true;
}
return false;
}
int TurnPort::SetOption(rtc::Socket::Option opt, int value) {
// Remember the last requested DSCP value, for STUN traffic.
if (opt == rtc::Socket::OPT_DSCP)
stun_dscp_value_ = static_cast<rtc::DiffServCodePoint>(value);
if (!socket_) {
// If socket is not created yet, these options will be applied during socket
// creation.
socket_options_[opt] = value;
return 0;
}
return socket_->SetOption(opt, value);
}
int TurnPort::GetOption(rtc::Socket::Option opt, int* value) {
if (!socket_) {
SocketOptionsMap::const_iterator it = socket_options_.find(opt);
if (it == socket_options_.end()) {
return -1;
}
*value = it->second;
return 0;
}
return socket_->GetOption(opt, value);
}
int TurnPort::GetError() {
return error_;
}
int TurnPort::SendTo(const void* data,
size_t size,
const rtc::SocketAddress& addr,
const rtc::PacketOptions& options,
bool payload) {
// Try to find an entry for this specific address; we should have one.
TurnEntry* entry = FindEntry(addr);
if (!entry) {
RTC_LOG(LS_ERROR) << "Did not find the TurnEntry for address "
<< addr.ToSensitiveString();
return 0;
}
if (!ready()) {
error_ = ENOTCONN;
return SOCKET_ERROR;
}
// Send the actual contents to the server using the usual mechanism.
rtc::PacketOptions modified_options(options);
CopyPortInformationToPacketInfo(&modified_options.info_signaled_after_sent);
int sent = entry->Send(data, size, payload, modified_options);
if (sent <= 0) {
return SOCKET_ERROR;
}
// The caller of the function is expecting the number of user data bytes,
// rather than the size of the packet.
return static_cast<int>(size);
}
bool TurnPort::CanHandleIncomingPacketsFrom(
const rtc::SocketAddress& addr) const {
return server_address_.address == addr;
}
bool TurnPort::HandleIncomingPacket(rtc::AsyncPacketSocket* socket,
const char* data,
size_t size,
const rtc::SocketAddress& remote_addr,
int64_t packet_time_us) {
if (socket != socket_) {
// The packet was received on a shared socket after we've allocated a new
// socket for this TURN port.
return false;
}
// This is to guard against a STUN response from previous server after
// alternative server redirection. TODO(guoweis): add a unit test for this
// race condition.
if (remote_addr != server_address_.address) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Discarding TURN message from unknown address: "
<< remote_addr.ToSensitiveString()
<< " server_address_: "
<< server_address_.address.ToSensitiveString();
return false;
}
// The message must be at least the size of a channel header.
if (size < TURN_CHANNEL_HEADER_SIZE) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Received TURN message that was too short";
return false;
}
if (state_ == STATE_DISCONNECTED) {
RTC_LOG(LS_WARNING)
<< ToString()
<< ": Received TURN message while the TURN port is disconnected";
return false;
}
// Check the message type, to see if is a Channel Data message.
// The message will either be channel data, a TURN data indication, or
// a response to a previous request.
uint16_t msg_type = rtc::GetBE16(data);
if (IsTurnChannelData(msg_type)) {
HandleChannelData(msg_type, data, size, packet_time_us);
return true;
}
if (msg_type == TURN_DATA_INDICATION) {
HandleDataIndication(data, size, packet_time_us);
return true;
}
if (SharedSocket() && (msg_type == STUN_BINDING_RESPONSE ||
msg_type == STUN_BINDING_ERROR_RESPONSE)) {
RTC_LOG(LS_VERBOSE)
<< ToString()
<< ": Ignoring STUN binding response message on shared socket.";
return false;
}
request_manager_.CheckResponse(data, size);
return true;
}
void TurnPort::OnReadPacket(rtc::AsyncPacketSocket* socket,
const char* data,
size_t size,
const rtc::SocketAddress& remote_addr,
const int64_t& packet_time_us) {
HandleIncomingPacket(socket, data, size, remote_addr, packet_time_us);
}
void TurnPort::OnSentPacket(rtc::AsyncPacketSocket* socket,
const rtc::SentPacket& sent_packet) {
PortInterface::SignalSentPacket(sent_packet);
}
void TurnPort::OnReadyToSend(rtc::AsyncPacketSocket* socket) {
if (ready()) {
Port::OnReadyToSend();
}
}
bool TurnPort::SupportsProtocol(const std::string& protocol) const {
// Turn port only connects to UDP candidates.
return protocol == UDP_PROTOCOL_NAME;
}
// Update current server address port with the alternate server address port.
bool TurnPort::SetAlternateServer(const rtc::SocketAddress& address) {
// Check if we have seen this address before and reject if we did.
AttemptedServerSet::iterator iter = attempted_server_addresses_.find(address);
if (iter != attempted_server_addresses_.end()) {
RTC_LOG(LS_WARNING) << ToString() << ": Redirection to ["
<< address.ToSensitiveString()
<< "] ignored, allocation failed.";
return false;
}
// If protocol family of server address doesn't match with local, return.
if (!IsCompatibleAddress(address)) {
RTC_LOG(LS_WARNING) << "Server IP address family does not match with "
"local host address family type";
return false;
}
// Block redirects to a loopback address.
// See: https://bugs.chromium.org/p/chromium/issues/detail?id=649118
if (address.IsLoopbackIP()) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Blocking attempted redirect to loopback address.";
return false;
}
RTC_LOG(LS_INFO) << ToString() << ": Redirecting from TURN server ["
<< server_address_.address.ToSensitiveString()
<< "] to TURN server [" << address.ToSensitiveString()
<< "]";
server_address_ = ProtocolAddress(address, server_address_.proto);
// Insert the current address to prevent redirection pingpong.
attempted_server_addresses_.insert(server_address_.address);
return true;
}
void TurnPort::ResolveTurnAddress(const rtc::SocketAddress& address) {
if (resolver_)
return;
RTC_LOG(LS_INFO) << ToString() << ": Starting TURN host lookup for "
<< address.ToSensitiveString();
resolver_ = socket_factory()->CreateAsyncDnsResolver();
resolver_->Start(address, [this] {
// If DNS resolve is failed when trying to connect to the server using TCP,
// one of the reason could be due to DNS queries blocked by firewall.
// In such cases we will try to connect to the server with hostname,
// assuming socket layer will resolve the hostname through a HTTP proxy (if
// any).
auto& result = resolver_->result();
if (result.GetError() != 0 && (server_address_.proto == PROTO_TCP ||
server_address_.proto == PROTO_TLS)) {
if (!CreateTurnClientSocket()) {
OnAllocateError(SERVER_NOT_REACHABLE_ERROR,
"TURN host lookup received error.");
}
return;
}
// Copy the original server address in `resolved_address`. For TLS based
// sockets we need hostname along with resolved address.
rtc::SocketAddress resolved_address = server_address_.address;
if (result.GetError() != 0 ||
!result.GetResolvedAddress(Network()->GetBestIP().family(),
&resolved_address)) {
RTC_LOG(LS_WARNING) << ToString() << ": TURN host lookup received error "
<< result.GetError();
error_ = result.GetError();
OnAllocateError(SERVER_NOT_REACHABLE_ERROR,
"TURN host lookup received error.");
return;
}
// Signal needs both resolved and unresolved address. After signal is sent
// we can copy resolved address back into `server_address_`.
SignalResolvedServerAddress(this, server_address_.address,
resolved_address);
server_address_.address = resolved_address;
PrepareAddress();
});
}
void TurnPort::OnSendStunPacket(const void* data,
size_t size,
StunRequest* request) {
RTC_DCHECK(connected());
rtc::PacketOptions options(StunDscpValue());
options.info_signaled_after_sent.packet_type = rtc::PacketType::kTurnMessage;
CopyPortInformationToPacketInfo(&options.info_signaled_after_sent);
if (Send(data, size, options) < 0) {
RTC_LOG(LS_ERROR) << ToString() << ": Failed to send TURN message, error: "
<< socket_->GetError();
}
}
void TurnPort::OnStunAddress(const rtc::SocketAddress& address) {
// STUN Port will discover STUN candidate, as it's supplied with first TURN
// server address.
// Why not using this address? - P2PTransportChannel will start creating
// connections after first candidate, which means it could start creating the
// connections before TURN candidate added. For that to handle, we need to
// supply STUN candidate from this port to UDPPort, and TurnPort should have
// handle to UDPPort to pass back the address.
}
void TurnPort::OnAllocateSuccess(const rtc::SocketAddress& address,
const rtc::SocketAddress& stun_address) {
state_ = STATE_READY;
rtc::SocketAddress related_address = stun_address;
// For relayed candidate, Base is the candidate itself.
AddAddress(address, // Candidate address.
address, // Base address.
related_address, // Related address.
UDP_PROTOCOL_NAME,
ProtoToString(server_address_.proto), // The first hop protocol.
"", // TCP candidate type, empty for turn candidates.
RELAY_PORT_TYPE, GetRelayPreference(server_address_.proto),
server_priority_, ReconstructedServerUrl(), true);
}
void TurnPort::OnAllocateError(int error_code, const std::string& reason) {
// We will send SignalPortError asynchronously as this can be sent during
// port initialization. This way it will not be blocking other port
// creation.
thread()->Post(RTC_FROM_HERE, this, MSG_ALLOCATE_ERROR);
std::string address = GetLocalAddress().HostAsSensitiveURIString();
int port = GetLocalAddress().port();
if (server_address_.proto == PROTO_TCP &&
server_address_.address.IsPrivateIP()) {
address.clear();
port = 0;
}
SignalCandidateError(
this, IceCandidateErrorEvent(address, port, ReconstructedServerUrl(),
error_code, reason));
}
void TurnPort::OnRefreshError() {
// Need to clear the requests asynchronously because otherwise, the refresh
// request may be deleted twice: once at the end of the message processing
// and the other in HandleRefreshError().
thread()->Post(RTC_FROM_HERE, this, MSG_REFRESH_ERROR);
}
void TurnPort::HandleRefreshError() {
request_manager_.Clear();
state_ = STATE_RECEIVEONLY;
// Fail and prune all connections; stop sending data.
for (auto kv : connections()) {
kv.second->FailAndPrune();
}
}
void TurnPort::Release() {
// Remove any pending refresh requests.
request_manager_.Clear();
// Send refresh with lifetime 0.
TurnRefreshRequest* req = new TurnRefreshRequest(this);
req->set_lifetime(0);
SendRequest(req, 0);
state_ = STATE_RECEIVEONLY;
}
void TurnPort::Close() {
if (!ready()) {
OnAllocateError(SERVER_NOT_REACHABLE_ERROR, "");
}
request_manager_.Clear();
// Stop the port from creating new connections.
state_ = STATE_DISCONNECTED;
// Delete all existing connections; stop sending data.
DestroyAllConnections();
SignalTurnPortClosed(this);
}
rtc::DiffServCodePoint TurnPort::StunDscpValue() const {
return stun_dscp_value_;
}
// static
bool TurnPort::AllowedTurnPort(int port) {
// Port 53, 80 and 443 are used for existing deployments.
// Ports above 1024 are assumed to be OK to use.
if (port == 53 || port == 80 || port == 443 || port >= 1024) {
return true;
}
// Allow any port if relevant field trial is set. This allows disabling the
// check.
if (webrtc::field_trial::IsEnabled("WebRTC-Turn-AllowSystemPorts")) {
return true;
}
return false;
}
void TurnPort::OnMessage(rtc::Message* message) {
switch (message->message_id) {
case MSG_ALLOCATE_ERROR:
SignalPortError(this);
break;
case MSG_ALLOCATE_MISMATCH:
OnAllocateMismatch();
break;
case MSG_REFRESH_ERROR:
HandleRefreshError();
break;
case MSG_TRY_ALTERNATE_SERVER:
if (server_address().proto == PROTO_UDP) {
// Send another allocate request to alternate server, with the received
// realm and nonce values.
SendRequest(new TurnAllocateRequest(this), 0);
} else {
// Since it's TCP, we have to delete the connected socket and reconnect
// with the alternate server. PrepareAddress will send stun binding once
// the new socket is connected.
RTC_DCHECK(server_address().proto == PROTO_TCP ||
server_address().proto == PROTO_TLS);
RTC_DCHECK(!SharedSocket());
delete socket_;
socket_ = NULL;
PrepareAddress();
}
break;
case MSG_ALLOCATION_RELEASED:
Close();
break;
default:
Port::OnMessage(message);
}
}
void TurnPort::OnAllocateRequestTimeout() {
OnAllocateError(SERVER_NOT_REACHABLE_ERROR,
"TURN allocate request timed out.");
}
void TurnPort::HandleDataIndication(const char* data,
size_t size,
int64_t packet_time_us) {
// Read in the message, and process according to RFC5766, Section 10.4.
rtc::ByteBufferReader buf(data, size);
TurnMessage msg;
if (!msg.Read(&buf)) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Received invalid TURN data indication";
return;
}
// Check mandatory attributes.
const StunAddressAttribute* addr_attr =
msg.GetAddress(STUN_ATTR_XOR_PEER_ADDRESS);
if (!addr_attr) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Missing STUN_ATTR_XOR_PEER_ADDRESS attribute "
"in data indication.";
return;
}
const StunByteStringAttribute* data_attr = msg.GetByteString(STUN_ATTR_DATA);
if (!data_attr) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Missing STUN_ATTR_DATA attribute in "
"data indication.";
return;
}
// Log a warning if the data didn't come from an address that we think we have
// a permission for.
rtc::SocketAddress ext_addr(addr_attr->GetAddress());
if (!HasPermission(ext_addr.ipaddr())) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Received TURN data indication with unknown "
"peer address, addr: "
<< ext_addr.ToSensitiveString();
}
DispatchPacket(data_attr->bytes(), data_attr->length(), ext_addr, PROTO_UDP,
packet_time_us);
}
void TurnPort::HandleChannelData(int channel_id,
const char* data,
size_t size,
int64_t packet_time_us) {
// Read the message, and process according to RFC5766, Section 11.6.
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | Channel Number | Length |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// | |
// / Application Data /
// / /
// | |
// | +-------------------------------+
// | |
// +-------------------------------+
// Extract header fields from the message.
uint16_t len = rtc::GetBE16(data + 2);
if (len > size - TURN_CHANNEL_HEADER_SIZE) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Received TURN channel data message with "
"incorrect length, len: "
<< len;
return;
}
// Allowing messages larger than `len`, as ChannelData can be padded.
TurnEntry* entry = FindEntry(channel_id);
if (!entry) {
RTC_LOG(LS_WARNING) << ToString()
<< ": Received TURN channel data message for invalid "
"channel, channel_id: "
<< channel_id;
return;
}
DispatchPacket(data + TURN_CHANNEL_HEADER_SIZE, len, entry->address(),
PROTO_UDP, packet_time_us);
}
void TurnPort::DispatchPacket(const char* data,
size_t size,
const rtc::SocketAddress& remote_addr,
ProtocolType proto,
int64_t packet_time_us) {
if (Connection* conn = GetConnection(remote_addr)) {
conn->OnReadPacket(data, size, packet_time_us);
} else {
Port::OnReadPacket(data, size, remote_addr, proto);
}
}
bool TurnPort::ScheduleRefresh(uint32_t lifetime) {
// Lifetime is in seconds, delay is in milliseconds.
int delay = 1 * 60 * 1000;
// Cutoff lifetime bigger than 1h.
constexpr uint32_t max_lifetime = 60 * 60;
if (lifetime < 2 * 60) {
// The RFC does not mention a lower limit on lifetime.
// So if server sends a value less than 2 minutes, we schedule a refresh
// for half lifetime.
RTC_LOG(LS_WARNING) << ToString()
<< ": Received response with short lifetime: "
<< lifetime << " seconds.";
delay = (lifetime * 1000) / 2;
} else if (lifetime > max_lifetime) {
// Make 1 hour largest delay, and then we schedule a refresh for one minute
// less than max lifetime.
RTC_LOG(LS_WARNING) << ToString()
<< ": Received response with long lifetime: "
<< lifetime << " seconds.";
delay = (max_lifetime - 60) * 1000;
} else {
// Normal case,
// we schedule a refresh for one minute less than requested lifetime.
delay = (lifetime - 60) * 1000;
}
SendRequest(new TurnRefreshRequest(this), delay);
RTC_LOG(LS_INFO) << ToString() << ": Scheduled refresh in " << delay << "ms.";
return true;
}
void TurnPort::SendRequest(StunRequest* req, int delay) {
request_manager_.SendDelayed(req, delay);
}
void TurnPort::AddRequestAuthInfo(StunMessage* msg) {
// If we've gotten the necessary data from the server, add it to our request.
RTC_DCHECK(!hash_.empty());
msg->AddAttribute(std::make_unique<StunByteStringAttribute>(
STUN_ATTR_USERNAME, credentials_.username));
msg->AddAttribute(
std::make_unique<StunByteStringAttribute>(STUN_ATTR_REALM, realm_));
msg->AddAttribute(
std::make_unique<StunByteStringAttribute>(STUN_ATTR_NONCE, nonce_));
const bool success = msg->AddMessageIntegrity(hash());
RTC_DCHECK(success);
}
int TurnPort::Send(const void* data,
size_t len,
const rtc::PacketOptions& options) {
return socket_->SendTo(data, len, server_address_.address, options);
}
void TurnPort::UpdateHash() {
const bool success = ComputeStunCredentialHash(credentials_.username, realm_,
credentials_.password, &hash_);
RTC_DCHECK(success);
}
bool TurnPort::UpdateNonce(StunMessage* response) {
// When stale nonce error received, we should update
// hash and store realm and nonce.
// Check the mandatory attributes.
const StunByteStringAttribute* realm_attr =
response->GetByteString(STUN_ATTR_REALM);
if (!realm_attr) {
RTC_LOG(LS_ERROR) << "Missing STUN_ATTR_REALM attribute in "
"stale nonce error response.";
return false;
}
set_realm(realm_attr->GetString());
const StunByteStringAttribute* nonce_attr =
response->GetByteString(STUN_ATTR_NONCE);
if (!nonce_attr) {
RTC_LOG(LS_ERROR) << "Missing STUN_ATTR_NONCE attribute in "
"stale nonce error response.";
return false;
}
set_nonce(nonce_attr->GetString());
return true;
}
void TurnPort::ResetNonce() {
hash_.clear();
nonce_.clear();
realm_.clear();
}
bool TurnPort::HasPermission(const rtc::IPAddress& ipaddr) const {
return absl::c_any_of(entries_, [&ipaddr](const TurnEntry* e) {
return e->address().ipaddr() == ipaddr;
});
}
TurnEntry* TurnPort::FindEntry(const rtc::SocketAddress& addr) const {
auto it = absl::c_find_if(
entries_, [&addr](const TurnEntry* e) { return e->address() == addr; });
return (it != entries_.end()) ? *it : NULL;
}
TurnEntry* TurnPort::FindEntry(int channel_id) const {
auto it = absl::c_find_if(entries_, [&channel_id](const TurnEntry* e) {
return e->channel_id() == channel_id;
});
return (it != entries_.end()) ? *it : NULL;
}
bool TurnPort::EntryExists(TurnEntry* e) {
return absl::c_linear_search(entries_, e);
}
bool TurnPort::CreateOrRefreshEntry(const rtc::SocketAddress& addr,
int channel_number) {
return CreateOrRefreshEntry(addr, channel_number, "");
}
bool TurnPort::CreateOrRefreshEntry(const rtc::SocketAddress& addr,
int channel_number,
const std::string& remote_ufrag) {
TurnEntry* entry = FindEntry(addr);
if (entry == nullptr) {
entry = new TurnEntry(this, channel_number, addr, remote_ufrag);
entries_.push_back(entry);
return true;
} else {
if (entry->destruction_timestamp()) {
// Destruction should have only been scheduled (indicated by
// destruction_timestamp being set) if there were no connections using
// this address.
RTC_DCHECK(!GetConnection(addr));
// Resetting the destruction timestamp will ensure that any queued
// destruction tasks, when executed, will see that the timestamp doesn't
// match and do nothing. We do this because (currently) there's not a
// convenient way to cancel queued tasks.
entry->reset_destruction_timestamp();
} else {
// The only valid reason for destruction not being scheduled is that
// there's still one connection.
RTC_DCHECK(GetConnection(addr));
}
if (webrtc::field_trial::IsEnabled("WebRTC-TurnAddMultiMapping")) {
if (entry->get_remote_ufrag() != remote_ufrag) {
RTC_LOG(LS_INFO) << ToString()
<< ": remote ufrag updated."
" Sending new permission request";
entry->set_remote_ufrag(remote_ufrag);
entry->SendCreatePermissionRequest(0);
}
}
}
return false;
}
void TurnPort::DestroyEntry(TurnEntry* entry) {
RTC_DCHECK(entry != NULL);
entry->SignalDestroyed(entry);
entries_.remove(entry);
delete entry;
}
void TurnPort::DestroyEntryIfNotCancelled(TurnEntry* entry, int64_t timestamp) {
if (!EntryExists(entry)) {
return;
}
// The destruction timestamp is used to manage pending destructions. Proceed
// with destruction if it's set, and matches the timestamp from the posted
// task. Note that CreateOrRefreshEntry will unset the timestamp, canceling
// destruction.
if (entry->destruction_timestamp() &&
timestamp == *entry->destruction_timestamp()) {
DestroyEntry(entry);
}
}
void TurnPort::HandleConnectionDestroyed(Connection* conn) {
// Schedule an event to destroy TurnEntry for the connection, which is
// already destroyed.
const rtc::SocketAddress& remote_address = conn->remote_candidate().address();
TurnEntry* entry = FindEntry(remote_address);
RTC_DCHECK(entry != NULL);
RTC_DCHECK(!entry->destruction_timestamp().has_value());
int64_t timestamp = rtc::TimeMillis();
entry->set_destruction_timestamp(timestamp);
thread()->PostDelayedTask(ToQueuedTask(task_safety_.flag(),
[this, entry, timestamp] {
DestroyEntryIfNotCancelled(
entry, timestamp);
}),
TURN_PERMISSION_TIMEOUT);
}
bool TurnPort::SetEntryChannelId(const rtc::SocketAddress& address,
int channel_id) {
TurnEntry* entry = FindEntry(address);
if (!entry) {
return false;
}
entry->set_channel_id(channel_id);
return true;
}
std::string TurnPort::ReconstructedServerUrl() {
// draft-petithuguenin-behave-turn-uris-01
// turnURI = scheme ":" turn-host [ ":" turn-port ]
// [ "?transport=" transport ]
// scheme = "turn" / "turns"
// transport = "udp" / "tcp" / transport-ext
// transport-ext = 1*unreserved
// turn-host = IP-literal / IPv4address / reg-name
// turn-port = *DIGIT
std::string scheme = "turn";
std::string transport = "tcp";
switch (server_address_.proto) {
case PROTO_SSLTCP:
case PROTO_TLS:
scheme = "turns";
break;
case PROTO_UDP:
transport = "udp";
break;
case PROTO_TCP:
break;
}
rtc::StringBuilder url;
url << scheme << ":" << server_address_.address.hostname() << ":"
<< server_address_.address.port() << "?transport=" << transport;
return url.Release();
}
void TurnPort::TurnCustomizerMaybeModifyOutgoingStunMessage(
StunMessage* message) {
if (turn_customizer_ == nullptr) {
return;
}
turn_customizer_->MaybeModifyOutgoingStunMessage(this, message);
}
bool TurnPort::TurnCustomizerAllowChannelData(const void* data,
size_t size,
bool payload) {
if (turn_customizer_ == nullptr) {
return true;
}
return turn_customizer_->AllowChannelData(this, data, size, payload);
}
void TurnPort::MaybeAddTurnLoggingId(StunMessage* msg) {
if (!turn_logging_id_.empty()) {
msg->AddAttribute(std::make_unique<StunByteStringAttribute>(
STUN_ATTR_TURN_LOGGING_ID, turn_logging_id_));
}
}
TurnAllocateRequest::TurnAllocateRequest(TurnPort* port)
: StunRequest(new TurnMessage()), port_(port) {}
void TurnAllocateRequest::Prepare(StunMessage* request) {
// Create the request as indicated in RFC 5766, Section 6.1.
request->SetType(TURN_ALLOCATE_REQUEST);
auto transport_attr =
StunAttribute::CreateUInt32(STUN_ATTR_REQUESTED_TRANSPORT);
transport_attr->SetValue(IPPROTO_UDP << 24);
request->AddAttribute(std::move(transport_attr));
if (!port_->hash().empty()) {
port_->AddRequestAuthInfo(request);
}
port_->MaybeAddTurnLoggingId(request);
port_->TurnCustomizerMaybeModifyOutgoingStunMessage(request);
}
void TurnAllocateRequest::OnSent() {
RTC_LOG(LS_INFO) << port_->ToString() << ": TURN allocate request sent, id="
<< rtc::hex_encode(id());
StunRequest::OnSent();
}
void TurnAllocateRequest::OnResponse(StunMessage* response) {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": TURN allocate requested successfully, id="
<< rtc::hex_encode(id())
<< ", code=0" // Makes logging easier to parse.
", rtt="
<< Elapsed();
// Check mandatory attributes as indicated in RFC5766, Section 6.3.
const StunAddressAttribute* mapped_attr =
response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
if (!mapped_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_XOR_MAPPED_ADDRESS "
"attribute in allocate success response";
return;
}
// Using XOR-Mapped-Address for stun.
port_->OnStunAddress(mapped_attr->GetAddress());
const StunAddressAttribute* relayed_attr =
response->GetAddress(STUN_ATTR_XOR_RELAYED_ADDRESS);
if (!relayed_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_XOR_RELAYED_ADDRESS "
"attribute in allocate success response";
return;
}
const StunUInt32Attribute* lifetime_attr =
response->GetUInt32(STUN_ATTR_TURN_LIFETIME);
if (!lifetime_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_TURN_LIFETIME attribute in "
"allocate success response";
return;
}
// Notify the port the allocate succeeded, and schedule a refresh request.
port_->OnAllocateSuccess(relayed_attr->GetAddress(),
mapped_attr->GetAddress());
port_->ScheduleRefresh(lifetime_attr->value());
}
void TurnAllocateRequest::OnErrorResponse(StunMessage* response) {
// Process error response according to RFC5766, Section 6.4.
int error_code = response->GetErrorCodeValue();
RTC_LOG(LS_INFO) << port_->ToString()
<< ": Received TURN allocate error response, id="
<< rtc::hex_encode(id()) << ", code=" << error_code
<< ", rtt=" << Elapsed();
switch (error_code) {
case STUN_ERROR_UNAUTHORIZED: // Unauthrorized.
OnAuthChallenge(response, error_code);
break;
case STUN_ERROR_TRY_ALTERNATE:
OnTryAlternate(response, error_code);
break;
case STUN_ERROR_ALLOCATION_MISMATCH:
// We must handle this error async because trying to delete the socket in
// OnErrorResponse will cause a deadlock on the socket.
port_->thread()->Post(RTC_FROM_HERE, port_,
TurnPort::MSG_ALLOCATE_MISMATCH);
break;
default:
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Received TURN allocate error response, id="
<< rtc::hex_encode(id()) << ", code=" << error_code
<< ", rtt=" << Elapsed();
const StunErrorCodeAttribute* attr = response->GetErrorCode();
port_->OnAllocateError(error_code, attr ? attr->reason() : "");
}
}
void TurnAllocateRequest::OnTimeout() {
RTC_LOG(LS_WARNING) << port_->ToString() << ": TURN allocate request "
<< rtc::hex_encode(id()) << " timeout";
port_->OnAllocateRequestTimeout();
}
void TurnAllocateRequest::OnAuthChallenge(StunMessage* response, int code) {
// If we failed to authenticate even after we sent our credentials, fail hard.
if (code == STUN_ERROR_UNAUTHORIZED && !port_->hash().empty()) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Failed to authenticate with the server "
"after challenge.";
const StunErrorCodeAttribute* attr = response->GetErrorCode();
port_->OnAllocateError(STUN_ERROR_UNAUTHORIZED, attr ? attr->reason() : "");
return;
}
// Check the mandatory attributes.
const StunByteStringAttribute* realm_attr =
response->GetByteString(STUN_ATTR_REALM);
if (!realm_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_REALM attribute in "
"allocate unauthorized response.";
return;
}
port_->set_realm(realm_attr->GetString());
const StunByteStringAttribute* nonce_attr =
response->GetByteString(STUN_ATTR_NONCE);
if (!nonce_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_NONCE attribute in "
"allocate unauthorized response.";
return;
}
port_->set_nonce(nonce_attr->GetString());
// Send another allocate request, with the received realm and nonce values.
port_->SendRequest(new TurnAllocateRequest(port_), 0);
}
void TurnAllocateRequest::OnTryAlternate(StunMessage* response, int code) {
// According to RFC 5389 section 11, there are use cases where
// authentication of response is not possible, we're not validating
// message integrity.
const StunErrorCodeAttribute* error_code_attr = response->GetErrorCode();
// Get the alternate server address attribute value.
const StunAddressAttribute* alternate_server_attr =
response->GetAddress(STUN_ATTR_ALTERNATE_SERVER);
if (!alternate_server_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_ALTERNATE_SERVER "
"attribute in try alternate error response";
port_->OnAllocateError(STUN_ERROR_TRY_ALTERNATE,
error_code_attr ? error_code_attr->reason() : "");
return;
}
if (!port_->SetAlternateServer(alternate_server_attr->GetAddress())) {
port_->OnAllocateError(STUN_ERROR_TRY_ALTERNATE,
error_code_attr ? error_code_attr->reason() : "");
return;
}
// Check the attributes.
const StunByteStringAttribute* realm_attr =
response->GetByteString(STUN_ATTR_REALM);
if (realm_attr) {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": Applying STUN_ATTR_REALM attribute in "
"try alternate error response.";
port_->set_realm(realm_attr->GetString());
}
const StunByteStringAttribute* nonce_attr =
response->GetByteString(STUN_ATTR_NONCE);
if (nonce_attr) {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": Applying STUN_ATTR_NONCE attribute in "
"try alternate error response.";
port_->set_nonce(nonce_attr->GetString());
}
// For TCP, we can't close the original Tcp socket during handling a 300 as
// we're still inside that socket's event handler. Doing so will cause
// deadlock.
port_->thread()->Post(RTC_FROM_HERE, port_,
TurnPort::MSG_TRY_ALTERNATE_SERVER);
}
TurnRefreshRequest::TurnRefreshRequest(TurnPort* port)
: StunRequest(new TurnMessage()), port_(port), lifetime_(-1) {}
void TurnRefreshRequest::Prepare(StunMessage* request) {
// Create the request as indicated in RFC 5766, Section 7.1.
// No attributes need to be included.
request->SetType(TURN_REFRESH_REQUEST);
if (lifetime_ > -1) {
request->AddAttribute(
std::make_unique<StunUInt32Attribute>(STUN_ATTR_LIFETIME, lifetime_));
}
port_->AddRequestAuthInfo(request);
port_->TurnCustomizerMaybeModifyOutgoingStunMessage(request);
}
void TurnRefreshRequest::OnSent() {
RTC_LOG(LS_INFO) << port_->ToString() << ": TURN refresh request sent, id="
<< rtc::hex_encode(id());
StunRequest::OnSent();
}
void TurnRefreshRequest::OnResponse(StunMessage* response) {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": TURN refresh requested successfully, id="
<< rtc::hex_encode(id())
<< ", code=0" // Makes logging easier to parse.
", rtt="
<< Elapsed();
// Check mandatory attributes as indicated in RFC5766, Section 7.3.
const StunUInt32Attribute* lifetime_attr =
response->GetUInt32(STUN_ATTR_TURN_LIFETIME);
if (!lifetime_attr) {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Missing STUN_ATTR_TURN_LIFETIME attribute in "
"refresh success response.";
return;
}
if (lifetime_attr->value() > 0) {
// Schedule a refresh based on the returned lifetime value.
port_->ScheduleRefresh(lifetime_attr->value());
} else {
// If we scheduled a refresh with lifetime 0, we're releasing this
// allocation; see TurnPort::Release.
port_->thread()->Post(RTC_FROM_HERE, port_,
TurnPort::MSG_ALLOCATION_RELEASED);
}
port_->SignalTurnRefreshResult(port_, TURN_SUCCESS_RESULT_CODE);
}
void TurnRefreshRequest::OnErrorResponse(StunMessage* response) {
int error_code = response->GetErrorCodeValue();
if (error_code == STUN_ERROR_STALE_NONCE) {
if (port_->UpdateNonce(response)) {
// Send RefreshRequest immediately.
port_->SendRequest(new TurnRefreshRequest(port_), 0);
}
} else {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Received TURN refresh error response, id="
<< rtc::hex_encode(id()) << ", code=" << error_code
<< ", rtt=" << Elapsed();
port_->OnRefreshError();
port_->SignalTurnRefreshResult(port_, error_code);
}
}
void TurnRefreshRequest::OnTimeout() {
RTC_LOG(LS_WARNING) << port_->ToString() << ": TURN refresh timeout "
<< rtc::hex_encode(id());
port_->OnRefreshError();
}
TurnCreatePermissionRequest::TurnCreatePermissionRequest(
TurnPort* port,
TurnEntry* entry,
const rtc::SocketAddress& ext_addr,
const std::string& remote_ufrag)
: StunRequest(new TurnMessage()),
port_(port),
entry_(entry),
ext_addr_(ext_addr),
remote_ufrag_(remote_ufrag) {
entry_->SignalDestroyed.connect(
this, &TurnCreatePermissionRequest::OnEntryDestroyed);
}
void TurnCreatePermissionRequest::Prepare(StunMessage* request) {
// Create the request as indicated in RFC5766, Section 9.1.
request->SetType(TURN_CREATE_PERMISSION_REQUEST);
request->AddAttribute(std::make_unique<StunXorAddressAttribute>(
STUN_ATTR_XOR_PEER_ADDRESS, ext_addr_));
if (webrtc::field_trial::IsEnabled("WebRTC-TurnAddMultiMapping")) {
request->AddAttribute(std::make_unique<cricket::StunByteStringAttribute>(
STUN_ATTR_MULTI_MAPPING, remote_ufrag_));
}
port_->AddRequestAuthInfo(request);
port_->TurnCustomizerMaybeModifyOutgoingStunMessage(request);
}
void TurnCreatePermissionRequest::OnSent() {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": TURN create permission request sent, id="
<< rtc::hex_encode(id());
StunRequest::OnSent();
}
void TurnCreatePermissionRequest::OnResponse(StunMessage* response) {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": TURN permission requested successfully, id="
<< rtc::hex_encode(id())
<< ", code=0" // Makes logging easier to parse.
", rtt="
<< Elapsed();
if (entry_) {
entry_->OnCreatePermissionSuccess();
}
}
void TurnCreatePermissionRequest::OnErrorResponse(StunMessage* response) {
int error_code = response->GetErrorCodeValue();
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Received TURN create permission error response, id="
<< rtc::hex_encode(id()) << ", code=" << error_code
<< ", rtt=" << Elapsed();
if (entry_) {
entry_->OnCreatePermissionError(response, error_code);
}
}
void TurnCreatePermissionRequest::OnTimeout() {
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": TURN create permission timeout "
<< rtc::hex_encode(id());
if (entry_) {
entry_->OnCreatePermissionTimeout();
}
}
void TurnCreatePermissionRequest::OnEntryDestroyed(TurnEntry* entry) {
RTC_DCHECK(entry_ == entry);
entry_ = NULL;
}
TurnChannelBindRequest::TurnChannelBindRequest(
TurnPort* port,
TurnEntry* entry,
int channel_id,
const rtc::SocketAddress& ext_addr)
: StunRequest(new TurnMessage()),
port_(port),
entry_(entry),
channel_id_(channel_id),
ext_addr_(ext_addr) {
entry_->SignalDestroyed.connect(this,
&TurnChannelBindRequest::OnEntryDestroyed);
}
void TurnChannelBindRequest::Prepare(StunMessage* request) {
// Create the request as indicated in RFC5766, Section 11.1.
request->SetType(TURN_CHANNEL_BIND_REQUEST);
request->AddAttribute(std::make_unique<StunUInt32Attribute>(
STUN_ATTR_CHANNEL_NUMBER, channel_id_ << 16));
request->AddAttribute(std::make_unique<StunXorAddressAttribute>(
STUN_ATTR_XOR_PEER_ADDRESS, ext_addr_));
port_->AddRequestAuthInfo(request);
port_->TurnCustomizerMaybeModifyOutgoingStunMessage(request);
}
void TurnChannelBindRequest::OnSent() {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": TURN channel bind request sent, id="
<< rtc::hex_encode(id());
StunRequest::OnSent();
}
void TurnChannelBindRequest::OnResponse(StunMessage* response) {
RTC_LOG(LS_INFO) << port_->ToString()
<< ": TURN channel bind requested successfully, id="
<< rtc::hex_encode(id())
<< ", code=0" // Makes logging easier to parse.
", rtt="
<< Elapsed();
if (entry_) {
entry_->OnChannelBindSuccess();
// Refresh the channel binding just under the permission timeout
// threshold. The channel binding has a longer lifetime, but
// this is the easiest way to keep both the channel and the
// permission from expiring.
int delay = TURN_PERMISSION_TIMEOUT - 60000;
entry_->SendChannelBindRequest(delay);
RTC_LOG(LS_INFO) << port_->ToString() << ": Scheduled channel bind in "
<< delay << "ms.";
}
}
void TurnChannelBindRequest::OnErrorResponse(StunMessage* response) {
int error_code = response->GetErrorCodeValue();
RTC_LOG(LS_WARNING) << port_->ToString()
<< ": Received TURN channel bind error response, id="
<< rtc::hex_encode(id()) << ", code=" << error_code
<< ", rtt=" << Elapsed();
if (entry_) {
entry_->OnChannelBindError(response, error_code);
}
}
void TurnChannelBindRequest::OnTimeout() {
RTC_LOG(LS_WARNING) << port_->ToString() << ": TURN channel bind timeout "
<< rtc::hex_encode(id());
if (entry_) {
entry_->OnChannelBindTimeout();
}
}
void TurnChannelBindRequest::OnEntryDestroyed(TurnEntry* entry) {
RTC_DCHECK(entry_ == entry);
entry_ = NULL;
}
TurnEntry::TurnEntry(TurnPort* port,
int channel_id,
const rtc::SocketAddress& ext_addr,
const std::string remote_ufrag)
: port_(port),
channel_id_(channel_id),
ext_addr_(ext_addr),
state_(STATE_UNBOUND),
remote_ufrag_(remote_ufrag) {
// Creating permission for `ext_addr_`.
SendCreatePermissionRequest(0);
}
void TurnEntry::SendCreatePermissionRequest(int delay) {
port_->SendRequest(
new TurnCreatePermissionRequest(port_, this, ext_addr_, remote_ufrag_),
delay);
}
void TurnEntry::SendChannelBindRequest(int delay) {
port_->SendRequest(
new TurnChannelBindRequest(port_, this, channel_id_, ext_addr_), delay);
}
int TurnEntry::Send(const void* data,
size_t size,
bool payload,
const rtc::PacketOptions& options) {
rtc::ByteBufferWriter buf;
if (state_ != STATE_BOUND ||
!port_->TurnCustomizerAllowChannelData(data, size, payload)) {
// If we haven't bound the channel yet, we have to use a Send Indication.
// The turn_customizer_ can also make us use Send Indication.
TurnMessage msg;
msg.SetType(TURN_SEND_INDICATION);
msg.SetTransactionID(rtc::CreateRandomString(kStunTransactionIdLength));
msg.AddAttribute(std::make_unique<StunXorAddressAttribute>(
STUN_ATTR_XOR_PEER_ADDRESS, ext_addr_));
msg.AddAttribute(
std::make_unique<StunByteStringAttribute>(STUN_ATTR_DATA, data, size));
port_->TurnCustomizerMaybeModifyOutgoingStunMessage(&msg);
const bool success = msg.Write(&buf);
RTC_DCHECK(success);
// If we're sending real data, request a channel bind that we can use later.
if (state_ == STATE_UNBOUND && payload) {
SendChannelBindRequest(0);
state_ = STATE_BINDING;
}
} else {
// If the channel is bound, we can send the data as a Channel Message.
buf.WriteUInt16(channel_id_);
buf.WriteUInt16(static_cast<uint16_t>(size));
buf.WriteBytes(reinterpret_cast<const char*>(data), size);
}
rtc::PacketOptions modified_options(options);
modified_options.info_signaled_after_sent.turn_overhead_bytes =
buf.Length() - size;
return port_->Send(buf.Data(), buf.Length(), modified_options);
}
void TurnEntry::OnCreatePermissionSuccess() {
RTC_LOG(LS_INFO) << port_->ToString() << ": Create permission for "
<< ext_addr_.ToSensitiveString() << " succeeded";
port_->SignalCreatePermissionResult(port_, ext_addr_,
TURN_SUCCESS_RESULT_CODE);
// If `state_` is STATE_BOUND, the permission will be refreshed
// by ChannelBindRequest.
if (state_ != STATE_BOUND) {
// Refresh the permission request about 1 minute before the permission
// times out.
int delay = TURN_PERMISSION_TIMEOUT - 60000;
SendCreatePermissionRequest(delay);
RTC_LOG(LS_INFO) << port_->ToString()
<< ": Scheduled create-permission-request in " << delay
<< "ms.";
}
}
void TurnEntry::OnCreatePermissionError(StunMessage* response, int code) {
if (code == STUN_ERROR_STALE_NONCE) {
if (port_->UpdateNonce(response)) {
SendCreatePermissionRequest(0);
}
} else {
bool found = port_->FailAndPruneConnection(ext_addr_);
if (found) {
RTC_LOG(LS_ERROR) << "Received TURN CreatePermission error response, "
"code="
<< code << "; pruned connection.";
}
// Send signal with error code.
port_->SignalCreatePermissionResult(port_, ext_addr_, code);
}
}
void TurnEntry::OnCreatePermissionTimeout() {
port_->FailAndPruneConnection(ext_addr_);
}
void TurnEntry::OnChannelBindSuccess() {
RTC_LOG(LS_INFO) << port_->ToString() << ": Successful channel bind for "
<< ext_addr_.ToSensitiveString();
RTC_DCHECK(state_ == STATE_BINDING || state_ == STATE_BOUND);
state_ = STATE_BOUND;
}
void TurnEntry::OnChannelBindError(StunMessage* response, int code) {
// If the channel bind fails due to errors other than STATE_NONCE,
// we will fail and prune the connection and rely on ICE restart to
// re-establish a new connection if needed.
if (code == STUN_ERROR_STALE_NONCE) {
if (port_->UpdateNonce(response)) {
// Send channel bind request with fresh nonce.
SendChannelBindRequest(0);
}
} else {
state_ = STATE_UNBOUND;
port_->FailAndPruneConnection(ext_addr_);
}
}
void TurnEntry::OnChannelBindTimeout() {
state_ = STATE_UNBOUND;
port_->FailAndPruneConnection(ext_addr_);
}
} // namespace cricket