Files
platform-external-webrtc/webrtc/modules/audio_processing/echo_cancellation_impl.cc
peah 2ace3f9406 The audio processing module (APM) relies on two for
functionalities  doing sample-rate conversions:
-The implicit resampling done in the AudioBuffer CopyTo,
 CopyFrom, InterleaveTo and DeinterleaveFrom methods.
-The multi-band splitting scheme.

The selection of rates in these have been difficult and
complicated, partly due to that the APM API which allows
for activating the APM submodules without notifying
the APM.

This CL adds functionality that for each capture frame
polls all submodules for whether they are active or not
and compares this against a cached result.
Furthermore, new functionality is added that based on the
results of the comparison do a reinitialization of the APM.

This has several advantages
-The code deciding on whether to analysis and synthesis is
 needed for the bandsplitting can be much simplified and
 centralized.
-The selection of the processing rate can be done such as
 to avoid the implicit resampling that was in some cases
 unnecessarily done.
-The optimization for whether an output copy is needed
 that was done to improve performance due to the implicit
 resampling is no longer needed, which simplifies the
 code and makes it less error-prone in the sense that
 is no longer neccessary to keep track of whether any
 module has changed the signal.

Finally, it should be noted that the polling of the state
for all the submodules was done previously as well, but in
a less obvious and distributed manner.

BUG=webrtc:6181, webrtc:6220, webrtc:5298, webrtc:6296, webrtc:6298, webrtc:6297

Review-Url: https://codereview.webrtc.org/2304123002
Cr-Commit-Position: refs/heads/master@{#14175}
2016-09-10 11:42:36 +00:00

582 lines
18 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/echo_cancellation_impl.h"
#include <assert.h>
#include <string.h>
#include "webrtc/modules/audio_processing/aec/aec_core.h"
#include "webrtc/modules/audio_processing/aec/echo_cancellation.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
namespace webrtc {
namespace {
int16_t MapSetting(EchoCancellation::SuppressionLevel level) {
switch (level) {
case EchoCancellation::kLowSuppression:
return kAecNlpConservative;
case EchoCancellation::kModerateSuppression:
return kAecNlpModerate;
case EchoCancellation::kHighSuppression:
return kAecNlpAggressive;
}
assert(false);
return -1;
}
AudioProcessing::Error MapError(int err) {
switch (err) {
case AEC_UNSUPPORTED_FUNCTION_ERROR:
return AudioProcessing::kUnsupportedFunctionError;
case AEC_BAD_PARAMETER_ERROR:
return AudioProcessing::kBadParameterError;
case AEC_BAD_PARAMETER_WARNING:
return AudioProcessing::kBadStreamParameterWarning;
default:
// AEC_UNSPECIFIED_ERROR
// AEC_UNINITIALIZED_ERROR
// AEC_NULL_POINTER_ERROR
return AudioProcessing::kUnspecifiedError;
}
}
// Maximum length that a frame of samples can have.
static const size_t kMaxAllowedValuesOfSamplesPerFrame = 160;
// Maximum number of frames to buffer in the render queue.
// TODO(peah): Decrease this once we properly handle hugely unbalanced
// reverse and forward call numbers.
static const size_t kMaxNumFramesToBuffer = 100;
} // namespace
struct EchoCancellationImpl::StreamProperties {
StreamProperties() = delete;
StreamProperties(int sample_rate_hz,
size_t num_reverse_channels,
size_t num_output_channels,
size_t num_proc_channels)
: sample_rate_hz(sample_rate_hz),
num_reverse_channels(num_reverse_channels),
num_output_channels(num_output_channels),
num_proc_channels(num_proc_channels) {}
const int sample_rate_hz;
const size_t num_reverse_channels;
const size_t num_output_channels;
const size_t num_proc_channels;
};
class EchoCancellationImpl::Canceller {
public:
Canceller() {
state_ = WebRtcAec_Create();
RTC_DCHECK(state_);
}
~Canceller() {
RTC_CHECK(state_);
WebRtcAec_Free(state_);
}
void* state() { return state_; }
void Initialize(int sample_rate_hz) {
// TODO(ajm): Drift compensation is disabled in practice. If restored, it
// should be managed internally and not depend on the hardware sample rate.
// For now, just hardcode a 48 kHz value.
const int error = WebRtcAec_Init(state_, sample_rate_hz, 48000);
RTC_DCHECK_EQ(0, error);
}
private:
void* state_;
};
EchoCancellationImpl::EchoCancellationImpl(rtc::CriticalSection* crit_render,
rtc::CriticalSection* crit_capture)
: crit_render_(crit_render),
crit_capture_(crit_capture),
drift_compensation_enabled_(false),
metrics_enabled_(false),
suppression_level_(kModerateSuppression),
stream_drift_samples_(0),
was_stream_drift_set_(false),
stream_has_echo_(false),
delay_logging_enabled_(false),
extended_filter_enabled_(false),
delay_agnostic_enabled_(false),
aec3_enabled_(false),
render_queue_element_max_size_(0) {
RTC_DCHECK(crit_render);
RTC_DCHECK(crit_capture);
}
EchoCancellationImpl::~EchoCancellationImpl() {}
int EchoCancellationImpl::ProcessRenderAudio(const AudioBuffer* audio) {
rtc::CritScope cs_render(crit_render_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
RTC_DCHECK(stream_properties_);
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(),
stream_properties_->num_reverse_channels);
RTC_DCHECK_GE(cancellers_.size(), stream_properties_->num_output_channels *
audio->num_channels());
int err = AudioProcessing::kNoError;
// The ordering convention must be followed to pass to the correct AEC.
size_t handle_index = 0;
render_queue_buffer_.clear();
for (size_t i = 0; i < stream_properties_->num_output_channels; i++) {
for (size_t j = 0; j < audio->num_channels(); j++) {
// Retrieve any error code produced by the buffering of the farend
// signal.
err = WebRtcAec_GetBufferFarendError(
cancellers_[handle_index++]->state(),
audio->split_bands_const_f(j)[kBand0To8kHz],
audio->num_frames_per_band());
if (err != AudioProcessing::kNoError) {
return MapError(err); // TODO(ajm): warning possible?
}
// Buffer the samples in the render queue.
render_queue_buffer_.insert(render_queue_buffer_.end(),
audio->split_bands_const_f(j)[kBand0To8kHz],
(audio->split_bands_const_f(j)[kBand0To8kHz] +
audio->num_frames_per_band()));
}
}
// Insert the samples into the queue.
if (!render_signal_queue_->Insert(&render_queue_buffer_)) {
// The data queue is full and needs to be emptied.
ReadQueuedRenderData();
// Retry the insert (should always work).
RTC_DCHECK_EQ(render_signal_queue_->Insert(&render_queue_buffer_), true);
}
return AudioProcessing::kNoError;
}
// Read chunks of data that were received and queued on the render side from
// a queue. All the data chunks are buffered into the farend signal of the AEC.
void EchoCancellationImpl::ReadQueuedRenderData() {
rtc::CritScope cs_capture(crit_capture_);
if (!enabled_) {
return;
}
RTC_DCHECK(stream_properties_);
while (render_signal_queue_->Remove(&capture_queue_buffer_)) {
size_t handle_index = 0;
size_t buffer_index = 0;
const size_t num_frames_per_band =
capture_queue_buffer_.size() /
(stream_properties_->num_output_channels *
stream_properties_->num_reverse_channels);
for (size_t i = 0; i < stream_properties_->num_output_channels; i++) {
for (size_t j = 0; j < stream_properties_->num_reverse_channels; j++) {
WebRtcAec_BufferFarend(cancellers_[handle_index++]->state(),
&capture_queue_buffer_[buffer_index],
num_frames_per_band);
buffer_index += num_frames_per_band;
}
}
}
}
int EchoCancellationImpl::ProcessCaptureAudio(AudioBuffer* audio,
int stream_delay_ms) {
rtc::CritScope cs_capture(crit_capture_);
if (!enabled_) {
return AudioProcessing::kNoError;
}
if (drift_compensation_enabled_ && !was_stream_drift_set_) {
return AudioProcessing::kStreamParameterNotSetError;
}
RTC_DCHECK(stream_properties_);
RTC_DCHECK_GE(160u, audio->num_frames_per_band());
RTC_DCHECK_EQ(audio->num_channels(), stream_properties_->num_proc_channels);
int err = AudioProcessing::kNoError;
// The ordering convention must be followed to pass to the correct AEC.
size_t handle_index = 0;
stream_has_echo_ = false;
for (size_t i = 0; i < audio->num_channels(); i++) {
for (size_t j = 0; j < stream_properties_->num_reverse_channels; j++) {
err = WebRtcAec_Process(
cancellers_[handle_index]->state(), audio->split_bands_const_f(i),
audio->num_bands(), audio->split_bands_f(i),
audio->num_frames_per_band(), stream_delay_ms, stream_drift_samples_);
if (err != AudioProcessing::kNoError) {
err = MapError(err);
// TODO(ajm): Figure out how to return warnings properly.
if (err != AudioProcessing::kBadStreamParameterWarning) {
return err;
}
}
int status = 0;
err = WebRtcAec_get_echo_status(cancellers_[handle_index]->state(),
&status);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
if (status == 1) {
stream_has_echo_ = true;
}
handle_index++;
}
}
was_stream_drift_set_ = false;
return AudioProcessing::kNoError;
}
int EchoCancellationImpl::Enable(bool enable) {
// Run in a single-threaded manner.
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
if (enable && !enabled_) {
enabled_ = enable; // Must be set before Initialize() is called.
// TODO(peah): Simplify once the Enable function has been removed from
// the public APM API.
RTC_DCHECK(stream_properties_);
Initialize(stream_properties_->sample_rate_hz,
stream_properties_->num_reverse_channels,
stream_properties_->num_output_channels,
stream_properties_->num_proc_channels);
} else {
enabled_ = enable;
}
return AudioProcessing::kNoError;
}
bool EchoCancellationImpl::is_enabled() const {
rtc::CritScope cs(crit_capture_);
return enabled_;
}
int EchoCancellationImpl::set_suppression_level(SuppressionLevel level) {
{
if (MapSetting(level) == -1) {
return AudioProcessing::kBadParameterError;
}
rtc::CritScope cs(crit_capture_);
suppression_level_ = level;
}
return Configure();
}
EchoCancellation::SuppressionLevel EchoCancellationImpl::suppression_level()
const {
rtc::CritScope cs(crit_capture_);
return suppression_level_;
}
int EchoCancellationImpl::enable_drift_compensation(bool enable) {
{
rtc::CritScope cs(crit_capture_);
drift_compensation_enabled_ = enable;
}
return Configure();
}
bool EchoCancellationImpl::is_drift_compensation_enabled() const {
rtc::CritScope cs(crit_capture_);
return drift_compensation_enabled_;
}
void EchoCancellationImpl::set_stream_drift_samples(int drift) {
rtc::CritScope cs(crit_capture_);
was_stream_drift_set_ = true;
stream_drift_samples_ = drift;
}
int EchoCancellationImpl::stream_drift_samples() const {
rtc::CritScope cs(crit_capture_);
return stream_drift_samples_;
}
int EchoCancellationImpl::enable_metrics(bool enable) {
{
rtc::CritScope cs(crit_capture_);
metrics_enabled_ = enable;
}
return Configure();
}
bool EchoCancellationImpl::are_metrics_enabled() const {
rtc::CritScope cs(crit_capture_);
return metrics_enabled_;
}
// TODO(ajm): we currently just use the metrics from the first AEC. Think more
// aboue the best way to extend this to multi-channel.
int EchoCancellationImpl::GetMetrics(Metrics* metrics) {
rtc::CritScope cs(crit_capture_);
if (metrics == NULL) {
return AudioProcessing::kNullPointerError;
}
if (!enabled_ || !metrics_enabled_) {
return AudioProcessing::kNotEnabledError;
}
AecMetrics my_metrics;
memset(&my_metrics, 0, sizeof(my_metrics));
memset(metrics, 0, sizeof(Metrics));
const int err = WebRtcAec_GetMetrics(cancellers_[0]->state(), &my_metrics);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
metrics->residual_echo_return_loss.instant = my_metrics.rerl.instant;
metrics->residual_echo_return_loss.average = my_metrics.rerl.average;
metrics->residual_echo_return_loss.maximum = my_metrics.rerl.max;
metrics->residual_echo_return_loss.minimum = my_metrics.rerl.min;
metrics->echo_return_loss.instant = my_metrics.erl.instant;
metrics->echo_return_loss.average = my_metrics.erl.average;
metrics->echo_return_loss.maximum = my_metrics.erl.max;
metrics->echo_return_loss.minimum = my_metrics.erl.min;
metrics->echo_return_loss_enhancement.instant = my_metrics.erle.instant;
metrics->echo_return_loss_enhancement.average = my_metrics.erle.average;
metrics->echo_return_loss_enhancement.maximum = my_metrics.erle.max;
metrics->echo_return_loss_enhancement.minimum = my_metrics.erle.min;
metrics->a_nlp.instant = my_metrics.aNlp.instant;
metrics->a_nlp.average = my_metrics.aNlp.average;
metrics->a_nlp.maximum = my_metrics.aNlp.max;
metrics->a_nlp.minimum = my_metrics.aNlp.min;
metrics->divergent_filter_fraction = my_metrics.divergent_filter_fraction;
return AudioProcessing::kNoError;
}
bool EchoCancellationImpl::stream_has_echo() const {
rtc::CritScope cs(crit_capture_);
return stream_has_echo_;
}
int EchoCancellationImpl::enable_delay_logging(bool enable) {
{
rtc::CritScope cs(crit_capture_);
delay_logging_enabled_ = enable;
}
return Configure();
}
bool EchoCancellationImpl::is_delay_logging_enabled() const {
rtc::CritScope cs(crit_capture_);
return delay_logging_enabled_;
}
bool EchoCancellationImpl::is_delay_agnostic_enabled() const {
rtc::CritScope cs(crit_capture_);
return delay_agnostic_enabled_;
}
bool EchoCancellationImpl::is_aec3_enabled() const {
rtc::CritScope cs(crit_capture_);
return aec3_enabled_;
}
std::string EchoCancellationImpl::GetExperimentsDescription() {
rtc::CritScope cs(crit_capture_);
std::string description = (aec3_enabled_ ? "AEC3;" : "");
if (refined_adaptive_filter_enabled_) {
description += "RefinedAdaptiveFilter;";
}
return description;
}
bool EchoCancellationImpl::is_refined_adaptive_filter_enabled() const {
rtc::CritScope cs(crit_capture_);
return refined_adaptive_filter_enabled_;
}
bool EchoCancellationImpl::is_extended_filter_enabled() const {
rtc::CritScope cs(crit_capture_);
return extended_filter_enabled_;
}
// TODO(bjornv): How should we handle the multi-channel case?
int EchoCancellationImpl::GetDelayMetrics(int* median, int* std) {
rtc::CritScope cs(crit_capture_);
float fraction_poor_delays = 0;
return GetDelayMetrics(median, std, &fraction_poor_delays);
}
int EchoCancellationImpl::GetDelayMetrics(int* median, int* std,
float* fraction_poor_delays) {
rtc::CritScope cs(crit_capture_);
if (median == NULL) {
return AudioProcessing::kNullPointerError;
}
if (std == NULL) {
return AudioProcessing::kNullPointerError;
}
if (!enabled_ || !delay_logging_enabled_) {
return AudioProcessing::kNotEnabledError;
}
const int err = WebRtcAec_GetDelayMetrics(cancellers_[0]->state(), median,
std, fraction_poor_delays);
if (err != AudioProcessing::kNoError) {
return MapError(err);
}
return AudioProcessing::kNoError;
}
struct AecCore* EchoCancellationImpl::aec_core() const {
rtc::CritScope cs(crit_capture_);
if (!enabled_) {
return NULL;
}
return WebRtcAec_aec_core(cancellers_[0]->state());
}
void EchoCancellationImpl::Initialize(int sample_rate_hz,
size_t num_reverse_channels,
size_t num_output_channels,
size_t num_proc_channels) {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
stream_properties_.reset(
new StreamProperties(sample_rate_hz, num_reverse_channels,
num_output_channels, num_proc_channels));
if (!enabled_) {
return;
}
if (NumCancellersRequired() > cancellers_.size()) {
const size_t cancellers_old_size = cancellers_.size();
cancellers_.resize(NumCancellersRequired());
for (size_t i = cancellers_old_size; i < cancellers_.size(); ++i) {
cancellers_[i].reset(new Canceller());
}
}
for (auto& canceller : cancellers_) {
canceller->Initialize(sample_rate_hz);
}
Configure();
AllocateRenderQueue();
}
int EchoCancellationImpl::GetSystemDelayInSamples() const {
rtc::CritScope cs(crit_capture_);
RTC_DCHECK(enabled_);
// Report the delay for the first AEC component.
return WebRtcAec_system_delay(
WebRtcAec_aec_core(cancellers_[0]->state()));
}
void EchoCancellationImpl::AllocateRenderQueue() {
const size_t new_render_queue_element_max_size = std::max<size_t>(
static_cast<size_t>(1),
kMaxAllowedValuesOfSamplesPerFrame * NumCancellersRequired());
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
// Reallocate the queue if the queue item size is too small to fit the
// data to put in the queue.
if (render_queue_element_max_size_ < new_render_queue_element_max_size) {
render_queue_element_max_size_ = new_render_queue_element_max_size;
std::vector<float> template_queue_element(render_queue_element_max_size_);
render_signal_queue_.reset(
new SwapQueue<std::vector<float>, RenderQueueItemVerifier<float>>(
kMaxNumFramesToBuffer, template_queue_element,
RenderQueueItemVerifier<float>(render_queue_element_max_size_)));
render_queue_buffer_.resize(render_queue_element_max_size_);
capture_queue_buffer_.resize(render_queue_element_max_size_);
} else {
render_signal_queue_->Clear();
}
}
void EchoCancellationImpl::SetExtraOptions(const webrtc::Config& config) {
{
rtc::CritScope cs(crit_capture_);
extended_filter_enabled_ = config.Get<ExtendedFilter>().enabled;
delay_agnostic_enabled_ = config.Get<DelayAgnostic>().enabled;
refined_adaptive_filter_enabled_ =
config.Get<RefinedAdaptiveFilter>().enabled;
aec3_enabled_ = config.Get<EchoCanceller3>().enabled;
}
Configure();
}
int EchoCancellationImpl::Configure() {
rtc::CritScope cs_render(crit_render_);
rtc::CritScope cs_capture(crit_capture_);
AecConfig config;
config.metricsMode = metrics_enabled_;
config.nlpMode = MapSetting(suppression_level_);
config.skewMode = drift_compensation_enabled_;
config.delay_logging = delay_logging_enabled_;
int error = AudioProcessing::kNoError;
for (auto& canceller : cancellers_) {
WebRtcAec_enable_extended_filter(WebRtcAec_aec_core(canceller->state()),
extended_filter_enabled_ ? 1 : 0);
WebRtcAec_enable_delay_agnostic(WebRtcAec_aec_core(canceller->state()),
delay_agnostic_enabled_ ? 1 : 0);
WebRtcAec_enable_aec3(WebRtcAec_aec_core(canceller->state()),
aec3_enabled_ ? 1 : 0);
WebRtcAec_enable_refined_adaptive_filter(
WebRtcAec_aec_core(canceller->state()),
refined_adaptive_filter_enabled_);
const int handle_error = WebRtcAec_set_config(canceller->state(), config);
if (handle_error != AudioProcessing::kNoError) {
error = AudioProcessing::kNoError;
}
}
return error;
}
size_t EchoCancellationImpl::NumCancellersRequired() const {
RTC_DCHECK(stream_properties_);
return stream_properties_->num_output_channels *
stream_properties_->num_reverse_channels;
}
} // namespace webrtc