
In practice, we have been doing this since time immemorial, but have relied on the user to do the downmixing (first voice engine then Chromium). It's more logical for this burden to fall on AudioProcessing, however, who can be expected to know that this is a reasonable approach for AEC. Permitting two render channels results in running two AECs serially. Critically, in my recent change to have Chromium adopt the float interface: https://codereview.chromium.org/420603004 I removed the downmixing by Chromium, forgetting that we hadn't yet enabled this feature in AudioProcessing. This corrects that oversight. The change in paths hit by production users is very minor. As commented it required adding downmixing to the int16_t path to satisfy bit-exactness tests. For reference, find the ApmTest.Process errors here: https://paste.googleplex.com/6372007910309888 BUG=webrtc:3853 TESTED=listened to the files output from the Process test, and verified that they sound as expected: higher echo while the AEC is adapting, but afterwards very close. R=aluebs@webrtc.org, bjornv@webrtc.org, kwiberg@webrtc.org Review URL: https://webrtc-codereview.appspot.com/31459004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7292 4adac7df-926f-26a2-2b94-8c16560cd09d
474 lines
15 KiB
C++
474 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
void StereoToMono(const float* left, const float* right, float* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
}
|
|
|
|
void StereoToMono(const int16_t* left, const int16_t* right, int16_t* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) >> 1;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
|
|
// broken when someone requests write access to either ChannelBuffer, and
|
|
// reestablished when someone requests the outdated ChannelBuffer. It is
|
|
// therefore safe to use the return value of ibuf_const() and fbuf_const()
|
|
// until the next call to ibuf() or fbuf(), and the return value of ibuf() and
|
|
// fbuf() until the next call to any of the other functions.
|
|
class IFChannelBuffer {
|
|
public:
|
|
IFChannelBuffer(int samples_per_channel, int num_channels)
|
|
: ivalid_(true),
|
|
ibuf_(samples_per_channel, num_channels),
|
|
fvalid_(true),
|
|
fbuf_(samples_per_channel, num_channels) {}
|
|
|
|
ChannelBuffer<int16_t>* ibuf() { return ibuf(false); }
|
|
ChannelBuffer<float>* fbuf() { return fbuf(false); }
|
|
const ChannelBuffer<int16_t>* ibuf_const() { return ibuf(true); }
|
|
const ChannelBuffer<float>* fbuf_const() { return fbuf(true); }
|
|
|
|
private:
|
|
ChannelBuffer<int16_t>* ibuf(bool readonly) {
|
|
RefreshI();
|
|
fvalid_ = readonly;
|
|
return &ibuf_;
|
|
}
|
|
|
|
ChannelBuffer<float>* fbuf(bool readonly) {
|
|
RefreshF();
|
|
ivalid_ = readonly;
|
|
return &fbuf_;
|
|
}
|
|
|
|
void RefreshF() {
|
|
if (!fvalid_) {
|
|
assert(ivalid_);
|
|
const int16_t* const int_data = ibuf_.data();
|
|
float* const float_data = fbuf_.data();
|
|
const int length = fbuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
float_data[i] = int_data[i];
|
|
fvalid_ = true;
|
|
}
|
|
}
|
|
|
|
void RefreshI() {
|
|
if (!ivalid_) {
|
|
assert(fvalid_);
|
|
const float* const float_data = fbuf_.data();
|
|
int16_t* const int_data = ibuf_.data();
|
|
const int length = ibuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
int_data[i] = WEBRTC_SPL_SAT(std::numeric_limits<int16_t>::max(),
|
|
float_data[i],
|
|
std::numeric_limits<int16_t>::min());
|
|
ivalid_ = true;
|
|
}
|
|
}
|
|
|
|
bool ivalid_;
|
|
ChannelBuffer<int16_t> ibuf_;
|
|
bool fvalid_;
|
|
ChannelBuffer<float> fbuf_;
|
|
};
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
mixed_low_pass_valid_(false),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
keyboard_data_(NULL),
|
|
channels_(new IFChannelBuffer(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
split_channels_low_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
split_channels_high_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
filter_states_.reset(new SplitFilterStates[num_proc_channels_]);
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to int16.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleAndRoundToInt16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->ibuf()->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to float.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleToFloat(channels_->ibuf()->channel(i),
|
|
proc_samples_per_channel_,
|
|
data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
keyboard_data_ = NULL;
|
|
mixed_low_pass_valid_ = false;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data(int channel) const {
|
|
return channels_->ibuf_const()->channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->ibuf()->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::data_f(int channel) const {
|
|
return channels_->fbuf_const()->channel(channel);
|
|
}
|
|
|
|
float* AudioBuffer::data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->fbuf()->channel(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf_const()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::low_pass_split_data_f(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf_const()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
float* AudioBuffer::low_pass_split_data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf_const()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const float* AudioBuffer::high_pass_split_data_f(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf_const()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
float* AudioBuffer::high_pass_split_data_f(int channel) {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data() {
|
|
// Currently only mixing stereo to mono is supported.
|
|
assert(num_proc_channels_ == 1 || num_proc_channels_ == 2);
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
return low_pass_split_data(0);
|
|
}
|
|
|
|
if (!mixed_low_pass_valid_) {
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_, 1));
|
|
}
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_->data(),
|
|
samples_per_split_channel_);
|
|
mixed_low_pass_valid_ = true;
|
|
}
|
|
return mixed_low_pass_channels_->data();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
SplitFilterStates* AudioBuffer::filter_states(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return &filter_states_[channel];
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(frame->num_channels_ == num_input_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
// Downmix directly; no explicit deinterleaving needed.
|
|
int16_t* downmixed = channels_->ibuf()->channel(0);
|
|
for (int i = 0; i < input_samples_per_channel_; ++i) {
|
|
// HACK(ajm): The downmixing in the int16_t path is in practice never
|
|
// called from production code. We do this weird scaling to and from float
|
|
// to satisfy tests checking for bit-exactness with the float path.
|
|
float downmix_float = (ScaleToFloat(frame->data_[i * 2]) +
|
|
ScaleToFloat(frame->data_[i * 2 + 1])) / 2;
|
|
downmixed[i] = ScaleAndRoundToInt16(downmix_float);
|
|
}
|
|
} else {
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; ++j) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|