
- New option for computing variance that is more adaptive with lower complexity. - Fixed related off-by-one errors. - Added intelligibility unittests. - Do not enhance if experiencing variance underflow. R=andrew@webrtc.org, henrik.lundin@webrtc.org Review URL: https://codereview.webrtc.org/1207353002 . Cr-Commit-Position: refs/heads/master@{#9567}
206 lines
7.8 KiB
C++
206 lines
7.8 KiB
C++
/*
|
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
//
|
|
// Unit tests for intelligibility enhancer.
|
|
//
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "webrtc/base/arraysize.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
// Target output for ERB create test. Generated with matlab.
|
|
const float kTestCenterFreqs[] = {
|
|
13.169f, 26.965f, 41.423f, 56.577f, 72.461f, 89.113f, 106.57f, 124.88f,
|
|
144.08f, 164.21f, 185.34f, 207.5f, 230.75f, 255.16f, 280.77f, 307.66f,
|
|
335.9f, 365.56f, 396.71f, 429.44f, 463.84f, 500.f};
|
|
const float kTestFilterBank[][2] = {{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.f},
|
|
{0.055556f, 0.2f},
|
|
{0, 0.2f},
|
|
{0, 0.2f},
|
|
{0, 0.2f},
|
|
{0, 0.2f}};
|
|
static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank),
|
|
"Test filterbank badly initialized.");
|
|
|
|
// Target output for gain solving test. Generated with matlab.
|
|
const int kTestStartFreq = 12; // Lowest integral frequency for ERBs.
|
|
const float kTestZeroVar[] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f,
|
|
1.f, 1.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
|
|
static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar),
|
|
"Variance test data badly initialized.");
|
|
const float kTestNonZeroVarLambdaTop[] = {
|
|
1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f,
|
|
1.f, 1.f, 1.f, 0.f, 0.f, 0.0351f, 0.0636f, 0.0863f,
|
|
0.1037f, 0.1162f, 0.1236f, 0.1251f, 0.1189f, 0.0993f};
|
|
static_assert(arraysize(kTestCenterFreqs) ==
|
|
arraysize(kTestNonZeroVarLambdaTop),
|
|
"Variance test data badly initialized.");
|
|
const float kMaxTestError = 0.005f;
|
|
|
|
// Enhancer initialization parameters.
|
|
const int kSamples = 2000;
|
|
const int kErbResolution = 2;
|
|
const int kSampleRate = 1000;
|
|
const int kFragmentSize = kSampleRate / 100;
|
|
const int kNumChannels = 1;
|
|
const float kDecayRate = 0.9f;
|
|
const int kWindowSize = 800;
|
|
const int kAnalyzeRate = 800;
|
|
const int kVarianceRate = 2;
|
|
const float kGainLimit = 0.1f;
|
|
|
|
} // namespace
|
|
|
|
using std::vector;
|
|
using intelligibility::VarianceArray;
|
|
|
|
class IntelligibilityEnhancerTest : public ::testing::Test {
|
|
protected:
|
|
IntelligibilityEnhancerTest()
|
|
: enh_(kErbResolution,
|
|
kSampleRate,
|
|
kNumChannels,
|
|
VarianceArray::kStepInfinite,
|
|
kDecayRate,
|
|
kWindowSize,
|
|
kAnalyzeRate,
|
|
kVarianceRate,
|
|
kGainLimit),
|
|
clear_data_(kSamples),
|
|
noise_data_(kSamples),
|
|
orig_data_(kSamples) {}
|
|
|
|
bool CheckUpdate(VarianceArray::StepType step_type) {
|
|
IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels,
|
|
step_type, kDecayRate, kWindowSize,
|
|
kAnalyzeRate, kVarianceRate, kGainLimit);
|
|
float* clear_cursor = &clear_data_[0];
|
|
float* noise_cursor = &noise_data_[0];
|
|
for (int i = 0; i < kSamples; i += kFragmentSize) {
|
|
enh.ProcessCaptureAudio(&noise_cursor);
|
|
enh.ProcessRenderAudio(&clear_cursor);
|
|
clear_cursor += kFragmentSize;
|
|
noise_cursor += kFragmentSize;
|
|
}
|
|
for (int i = 0; i < kSamples; i++) {
|
|
if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
IntelligibilityEnhancer enh_;
|
|
vector<float> clear_data_;
|
|
vector<float> noise_data_;
|
|
vector<float> orig_data_;
|
|
};
|
|
|
|
// For each class of generated data, tests that render stream is
|
|
// updated when it should be for each variance update method.
|
|
TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) {
|
|
vector<VarianceArray::StepType> step_types;
|
|
step_types.push_back(VarianceArray::kStepInfinite);
|
|
step_types.push_back(VarianceArray::kStepDecaying);
|
|
step_types.push_back(VarianceArray::kStepWindowed);
|
|
step_types.push_back(VarianceArray::kStepBlocked);
|
|
step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
|
|
std::fill(noise_data_.begin(), noise_data_.end(), 0.0f);
|
|
std::fill(orig_data_.begin(), orig_data_.end(), 0.0f);
|
|
for (auto step_type : step_types) {
|
|
std::fill(clear_data_.begin(), clear_data_.end(), 0.0f);
|
|
EXPECT_FALSE(CheckUpdate(step_type));
|
|
}
|
|
std::srand(1);
|
|
auto float_rand = []() { return std::rand() * 2.f / RAND_MAX - 1; };
|
|
std::generate(noise_data_.begin(), noise_data_.end(), float_rand);
|
|
for (auto step_type : step_types) {
|
|
EXPECT_FALSE(CheckUpdate(step_type));
|
|
}
|
|
for (auto step_type : step_types) {
|
|
std::generate(clear_data_.begin(), clear_data_.end(), float_rand);
|
|
orig_data_ = clear_data_;
|
|
EXPECT_TRUE(CheckUpdate(step_type));
|
|
}
|
|
}
|
|
|
|
// Tests ERB bank creation, comparing against matlab output.
|
|
TEST_F(IntelligibilityEnhancerTest, TestErbCreation) {
|
|
ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_);
|
|
for (int i = 0; i < enh_.bank_size_; ++i) {
|
|
EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError);
|
|
ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_);
|
|
for (int j = 0; j < enh_.freqs_; ++j) {
|
|
EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j],
|
|
kMaxTestError);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests analytic solution for optimal gains, comparing
|
|
// against matlab output.
|
|
TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) {
|
|
ASSERT_EQ(kTestStartFreq, enh_.start_freq_);
|
|
vector<float> sols(enh_.bank_size_);
|
|
float lambda = -0.001f;
|
|
for (int i = 0; i < enh_.bank_size_; i++) {
|
|
enh_.filtered_clear_var_[i] = 0.0f;
|
|
enh_.filtered_noise_var_[i] = 0.0f;
|
|
enh_.rho_[i] = 0.02f;
|
|
}
|
|
enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
|
|
for (int i = 0; i < enh_.bank_size_; i++) {
|
|
EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
|
|
}
|
|
for (int i = 0; i < enh_.bank_size_; i++) {
|
|
enh_.filtered_clear_var_[i] = static_cast<float>(i + 1);
|
|
enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i);
|
|
}
|
|
enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
|
|
for (int i = 0; i < enh_.bank_size_; i++) {
|
|
EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError);
|
|
}
|
|
lambda = -1.0;
|
|
enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
|
|
for (int i = 0; i < enh_.bank_size_; i++) {
|
|
EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|