Files
platform-external-webrtc/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer_unittest.cc
ekm 35b72fbceb Add new variance update option and unittests for intelligibility
- New option for computing variance that is more adaptive with lower complexity.
- Fixed related off-by-one errors.
- Added intelligibility unittests.
- Do not enhance if experiencing variance underflow.

R=andrew@webrtc.org, henrik.lundin@webrtc.org

Review URL: https://codereview.webrtc.org/1207353002 .

Cr-Commit-Position: refs/heads/master@{#9567}
2015-07-10 21:11:57 +00:00

206 lines
7.8 KiB
C++

/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
//
// Unit tests for intelligibility enhancer.
//
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/arraysize.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
namespace webrtc {
namespace {
// Target output for ERB create test. Generated with matlab.
const float kTestCenterFreqs[] = {
13.169f, 26.965f, 41.423f, 56.577f, 72.461f, 89.113f, 106.57f, 124.88f,
144.08f, 164.21f, 185.34f, 207.5f, 230.75f, 255.16f, 280.77f, 307.66f,
335.9f, 365.56f, 396.71f, 429.44f, 463.84f, 500.f};
const float kTestFilterBank[][2] = {{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.f},
{0.055556f, 0.2f},
{0, 0.2f},
{0, 0.2f},
{0, 0.2f},
{0, 0.2f}};
static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestFilterBank),
"Test filterbank badly initialized.");
// Target output for gain solving test. Generated with matlab.
const int kTestStartFreq = 12; // Lowest integral frequency for ERBs.
const float kTestZeroVar[] = {1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f,
1.f, 1.f, 1.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f};
static_assert(arraysize(kTestCenterFreqs) == arraysize(kTestZeroVar),
"Variance test data badly initialized.");
const float kTestNonZeroVarLambdaTop[] = {
1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f,
1.f, 1.f, 1.f, 0.f, 0.f, 0.0351f, 0.0636f, 0.0863f,
0.1037f, 0.1162f, 0.1236f, 0.1251f, 0.1189f, 0.0993f};
static_assert(arraysize(kTestCenterFreqs) ==
arraysize(kTestNonZeroVarLambdaTop),
"Variance test data badly initialized.");
const float kMaxTestError = 0.005f;
// Enhancer initialization parameters.
const int kSamples = 2000;
const int kErbResolution = 2;
const int kSampleRate = 1000;
const int kFragmentSize = kSampleRate / 100;
const int kNumChannels = 1;
const float kDecayRate = 0.9f;
const int kWindowSize = 800;
const int kAnalyzeRate = 800;
const int kVarianceRate = 2;
const float kGainLimit = 0.1f;
} // namespace
using std::vector;
using intelligibility::VarianceArray;
class IntelligibilityEnhancerTest : public ::testing::Test {
protected:
IntelligibilityEnhancerTest()
: enh_(kErbResolution,
kSampleRate,
kNumChannels,
VarianceArray::kStepInfinite,
kDecayRate,
kWindowSize,
kAnalyzeRate,
kVarianceRate,
kGainLimit),
clear_data_(kSamples),
noise_data_(kSamples),
orig_data_(kSamples) {}
bool CheckUpdate(VarianceArray::StepType step_type) {
IntelligibilityEnhancer enh(kErbResolution, kSampleRate, kNumChannels,
step_type, kDecayRate, kWindowSize,
kAnalyzeRate, kVarianceRate, kGainLimit);
float* clear_cursor = &clear_data_[0];
float* noise_cursor = &noise_data_[0];
for (int i = 0; i < kSamples; i += kFragmentSize) {
enh.ProcessCaptureAudio(&noise_cursor);
enh.ProcessRenderAudio(&clear_cursor);
clear_cursor += kFragmentSize;
noise_cursor += kFragmentSize;
}
for (int i = 0; i < kSamples; i++) {
if (std::fabs(clear_data_[i] - orig_data_[i]) > kMaxTestError) {
return true;
}
}
return false;
}
IntelligibilityEnhancer enh_;
vector<float> clear_data_;
vector<float> noise_data_;
vector<float> orig_data_;
};
// For each class of generated data, tests that render stream is
// updated when it should be for each variance update method.
TEST_F(IntelligibilityEnhancerTest, TestRenderUpdate) {
vector<VarianceArray::StepType> step_types;
step_types.push_back(VarianceArray::kStepInfinite);
step_types.push_back(VarianceArray::kStepDecaying);
step_types.push_back(VarianceArray::kStepWindowed);
step_types.push_back(VarianceArray::kStepBlocked);
step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
std::fill(noise_data_.begin(), noise_data_.end(), 0.0f);
std::fill(orig_data_.begin(), orig_data_.end(), 0.0f);
for (auto step_type : step_types) {
std::fill(clear_data_.begin(), clear_data_.end(), 0.0f);
EXPECT_FALSE(CheckUpdate(step_type));
}
std::srand(1);
auto float_rand = []() { return std::rand() * 2.f / RAND_MAX - 1; };
std::generate(noise_data_.begin(), noise_data_.end(), float_rand);
for (auto step_type : step_types) {
EXPECT_FALSE(CheckUpdate(step_type));
}
for (auto step_type : step_types) {
std::generate(clear_data_.begin(), clear_data_.end(), float_rand);
orig_data_ = clear_data_;
EXPECT_TRUE(CheckUpdate(step_type));
}
}
// Tests ERB bank creation, comparing against matlab output.
TEST_F(IntelligibilityEnhancerTest, TestErbCreation) {
ASSERT_EQ(static_cast<int>(arraysize(kTestCenterFreqs)), enh_.bank_size_);
for (int i = 0; i < enh_.bank_size_; ++i) {
EXPECT_NEAR(kTestCenterFreqs[i], enh_.center_freqs_[i], kMaxTestError);
ASSERT_EQ(static_cast<int>(arraysize(kTestFilterBank[0])), enh_.freqs_);
for (int j = 0; j < enh_.freqs_; ++j) {
EXPECT_NEAR(kTestFilterBank[i][j], enh_.filter_bank_[i][j],
kMaxTestError);
}
}
}
// Tests analytic solution for optimal gains, comparing
// against matlab output.
TEST_F(IntelligibilityEnhancerTest, TestSolveForGains) {
ASSERT_EQ(kTestStartFreq, enh_.start_freq_);
vector<float> sols(enh_.bank_size_);
float lambda = -0.001f;
for (int i = 0; i < enh_.bank_size_; i++) {
enh_.filtered_clear_var_[i] = 0.0f;
enh_.filtered_noise_var_[i] = 0.0f;
enh_.rho_[i] = 0.02f;
}
enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
for (int i = 0; i < enh_.bank_size_; i++) {
EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
}
for (int i = 0; i < enh_.bank_size_; i++) {
enh_.filtered_clear_var_[i] = static_cast<float>(i + 1);
enh_.filtered_noise_var_[i] = static_cast<float>(enh_.bank_size_ - i);
}
enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
for (int i = 0; i < enh_.bank_size_; i++) {
EXPECT_NEAR(kTestNonZeroVarLambdaTop[i], sols[i], kMaxTestError);
}
lambda = -1.0;
enh_.SolveForGainsGivenLambda(lambda, enh_.start_freq_, &sols[0]);
for (int i = 0; i < enh_.bank_size_; i++) {
EXPECT_NEAR(kTestZeroVar[i], sols[i], kMaxTestError);
}
}
} // namespace webrtc