Files
platform-external-webrtc/webrtc/modules/audio_coding/neteq/audio_decoder_unittest.cc
kwiberg@webrtc.org e102e8147b Enable the iSACfix AudioDecoder test (and make it work again)
As far as I can tell, the test should have been enabled again once
https://code.google.com/p/webrtc/issues/detail?id=1353 was fixed, but
it wasn't, and has rotted a bit as a result. I'm not sure why the
number of encoded bytes have changed, but the output seems to be
correct (EncodeDecodeTest encodes, decodes, and compares the result
with the original).

The DecodePlc change is necessary because r7912 added support for that
to the iSACfix AudioDecoder.

BUG=1353, 3926
R=henrik.lundin@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/28309004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7927 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-12-17 07:30:23 +00:00

657 lines
24 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/neteq/audio_decoder_impl.h"
#include <assert.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/audio_coding/codecs/g711/include/audio_encoder_pcm.h"
#include "webrtc/modules/audio_coding/codecs/g722/include/audio_encoder_g722.h"
#include "webrtc/modules/audio_coding/codecs/ilbc/interface/audio_encoder_ilbc.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/interface/audio_encoder_isacfix.h"
#include "webrtc/modules/audio_coding/codecs/isac/main/interface/audio_encoder_isac.h"
#include "webrtc/modules/audio_coding/codecs/opus/interface/audio_encoder_opus.h"
#include "webrtc/modules/audio_coding/codecs/pcm16b/include/audio_encoder_pcm16b.h"
#include "webrtc/modules/audio_coding/neteq/tools/resample_input_audio_file.h"
#include "webrtc/system_wrappers/interface/data_log.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
namespace {
// The absolute difference between the input and output (the first channel) is
// compared vs |tolerance|. The parameter |delay| is used to correct for codec
// delays.
void CompareInputOutput(const std::vector<int16_t>& input,
const std::vector<int16_t>& output,
size_t num_samples,
size_t channels,
int tolerance,
int delay) {
ASSERT_LE(num_samples, input.size());
ASSERT_LE(num_samples * channels, output.size());
for (unsigned int n = 0; n < num_samples - delay; ++n) {
ASSERT_NEAR(input[n], output[channels * n + delay], tolerance)
<< "Exit test on first diff; n = " << n;
DataLog::InsertCell("CodecTest", "input", input[n]);
DataLog::InsertCell("CodecTest", "output", output[channels * n]);
DataLog::NextRow("CodecTest");
}
}
// The absolute difference between the first two channels in |output| is
// compared vs |tolerance|.
void CompareTwoChannels(const std::vector<int16_t>& output,
size_t samples_per_channel,
size_t channels,
int tolerance) {
ASSERT_GE(channels, 2u);
ASSERT_LE(samples_per_channel * channels, output.size());
for (unsigned int n = 0; n < samples_per_channel; ++n)
ASSERT_NEAR(output[channels * n], output[channels * n + 1], tolerance)
<< "Stereo samples differ.";
}
// Calculates mean-squared error between input and output (the first channel).
// The parameter |delay| is used to correct for codec delays.
double MseInputOutput(const std::vector<int16_t>& input,
const std::vector<int16_t>& output,
size_t num_samples,
size_t channels,
int delay) {
assert(delay < static_cast<int>(num_samples));
assert(num_samples <= input.size());
assert(num_samples * channels <= output.size());
if (num_samples == 0)
return 0.0;
double squared_sum = 0.0;
for (unsigned int n = 0; n < num_samples - delay; ++n) {
squared_sum += (input[n] - output[channels * n + delay]) *
(input[n] - output[channels * n + delay]);
}
return squared_sum / (num_samples - delay);
}
} // namespace
class AudioDecoderTest : public ::testing::Test {
protected:
AudioDecoderTest()
: input_audio_(webrtc::test::ProjectRootPath() +
"resources/audio_coding/testfile32kHz.pcm",
32000),
codec_input_rate_hz_(32000), // Legacy default value.
encoded_(NULL),
frame_size_(0),
data_length_(0),
encoded_bytes_(0),
channels_(1),
payload_type_(17),
decoder_(NULL) {}
virtual ~AudioDecoderTest() {}
virtual void SetUp() {
if (audio_encoder_)
codec_input_rate_hz_ = audio_encoder_->sample_rate_hz();
// Create arrays.
ASSERT_GT(data_length_, 0u) << "The test must set data_length_ > 0";
// Longest encoded data is produced by PCM16b with 2 bytes per sample.
encoded_ = new uint8_t[data_length_ * 2];
// Logging to view input and output in Matlab.
// Use 'gyp -Denable_data_logging=1' to enable logging.
DataLog::CreateLog();
DataLog::AddTable("CodecTest");
DataLog::AddColumn("CodecTest", "input", 1);
DataLog::AddColumn("CodecTest", "output", 1);
}
virtual void TearDown() {
delete decoder_;
decoder_ = NULL;
// Delete arrays.
delete [] encoded_;
encoded_ = NULL;
// Close log.
DataLog::ReturnLog();
}
virtual void InitEncoder() { }
// TODO(henrik.lundin) Change return type to size_t once most/all overriding
// implementations are gone.
virtual int EncodeFrame(const int16_t* input,
size_t input_len_samples,
uint8_t* output) {
encoded_info_.encoded_bytes = 0;
const size_t samples_per_10ms = audio_encoder_->sample_rate_hz() / 100;
CHECK_EQ(samples_per_10ms * audio_encoder_->Num10MsFramesInNextPacket(),
input_len_samples);
scoped_ptr<int16_t[]> interleaved_input(
new int16_t[channels_ * samples_per_10ms]);
for (int i = 0; i < audio_encoder_->Num10MsFramesInNextPacket(); ++i) {
EXPECT_EQ(0u, encoded_info_.encoded_bytes);
// Duplicate the mono input signal to however many channels the test
// wants.
test::InputAudioFile::DuplicateInterleaved(input + i * samples_per_10ms,
samples_per_10ms, channels_,
interleaved_input.get());
EXPECT_TRUE(audio_encoder_->Encode(
0, interleaved_input.get(), audio_encoder_->sample_rate_hz() / 100,
data_length_ * 2, output, &encoded_info_));
}
EXPECT_EQ(payload_type_, encoded_info_.payload_type);
return static_cast<int>(encoded_info_.encoded_bytes);
}
// Encodes and decodes audio. The absolute difference between the input and
// output is compared vs |tolerance|, and the mean-squared error is compared
// with |mse|. The encoded stream should contain |expected_bytes|. For stereo
// audio, the absolute difference between the two channels is compared vs
// |channel_diff_tolerance|.
void EncodeDecodeTest(size_t expected_bytes, int tolerance, double mse,
int delay = 0, int channel_diff_tolerance = 0) {
ASSERT_GE(tolerance, 0) << "Test must define a tolerance >= 0";
ASSERT_GE(channel_diff_tolerance, 0) <<
"Test must define a channel_diff_tolerance >= 0";
size_t processed_samples = 0u;
encoded_bytes_ = 0u;
InitEncoder();
EXPECT_EQ(0, decoder_->Init());
std::vector<int16_t> input;
std::vector<int16_t> decoded;
while (processed_samples + frame_size_ <= data_length_) {
// Extend input vector with |frame_size_|.
input.resize(input.size() + frame_size_, 0);
// Read from input file.
ASSERT_GE(input.size() - processed_samples, frame_size_);
ASSERT_TRUE(input_audio_.Read(
frame_size_, codec_input_rate_hz_, &input[processed_samples]));
size_t enc_len = EncodeFrame(
&input[processed_samples], frame_size_, &encoded_[encoded_bytes_]);
// Make sure that frame_size_ * channels_ samples are allocated and free.
decoded.resize((processed_samples + frame_size_) * channels_, 0);
AudioDecoder::SpeechType speech_type;
size_t dec_len = decoder_->Decode(&encoded_[encoded_bytes_],
enc_len,
&decoded[processed_samples * channels_],
&speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
encoded_bytes_ += enc_len;
processed_samples += frame_size_;
}
// For some codecs it doesn't make sense to check expected number of bytes,
// since the number can vary for different platforms. Opus and iSAC are
// such codecs. In this case expected_bytes is set to 0.
if (expected_bytes) {
EXPECT_EQ(expected_bytes, encoded_bytes_);
}
CompareInputOutput(
input, decoded, processed_samples, channels_, tolerance, delay);
if (channels_ == 2)
CompareTwoChannels(
decoded, processed_samples, channels_, channel_diff_tolerance);
EXPECT_LE(
MseInputOutput(input, decoded, processed_samples, channels_, delay),
mse);
}
// Encodes a payload and decodes it twice with decoder re-init before each
// decode. Verifies that the decoded result is the same.
void ReInitTest() {
InitEncoder();
scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
size_t dec_len;
AudioDecoder::SpeechType speech_type1, speech_type2;
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output1(new int16_t[frame_size_ * channels_]);
dec_len = decoder_->Decode(encoded_, enc_len, output1.get(), &speech_type1);
ASSERT_LE(dec_len, frame_size_ * channels_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Re-init decoder and decode again.
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output2(new int16_t[frame_size_ * channels_]);
dec_len = decoder_->Decode(encoded_, enc_len, output2.get(), &speech_type2);
ASSERT_LE(dec_len, frame_size_ * channels_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
for (unsigned int n = 0; n < frame_size_; ++n) {
ASSERT_EQ(output1[n], output2[n]) << "Exit test on first diff; n = " << n;
}
EXPECT_EQ(speech_type1, speech_type2);
}
// Call DecodePlc and verify that the correct number of samples is produced.
void DecodePlcTest() {
InitEncoder();
scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output(new int16_t[frame_size_ * channels_]);
size_t dec_len =
decoder_->Decode(encoded_, enc_len, output.get(), &speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Call DecodePlc and verify that we get one frame of data.
// (Overwrite the output from the above Decode call, but that does not
// matter.)
dec_len = decoder_->DecodePlc(1, output.get());
EXPECT_EQ(frame_size_ * channels_, dec_len);
}
test::ResampleInputAudioFile input_audio_;
int codec_input_rate_hz_;
uint8_t* encoded_;
size_t frame_size_;
size_t data_length_;
size_t encoded_bytes_;
size_t channels_;
const int payload_type_;
AudioEncoder::EncodedInfo encoded_info_;
AudioDecoder* decoder_;
scoped_ptr<AudioEncoder> audio_encoder_;
};
class AudioDecoderPcmUTest : public AudioDecoderTest {
protected:
AudioDecoderPcmUTest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmU;
AudioEncoderPcmU::Config config;
config.frame_size_ms = static_cast<int>(frame_size_ / 8);
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderPcmU(config));
}
};
class AudioDecoderPcmATest : public AudioDecoderTest {
protected:
AudioDecoderPcmATest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmA;
AudioEncoderPcmA::Config config;
config.frame_size_ms = static_cast<int>(frame_size_ / 8);
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderPcmA(config));
}
};
class AudioDecoderPcm16BTest : public AudioDecoderTest {
protected:
AudioDecoderPcm16BTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 20 * codec_input_rate_hz_ / 1000;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcm16B;
assert(decoder_);
AudioEncoderPcm16B::Config config;
config.sample_rate_hz = codec_input_rate_hz_;
config.frame_size_ms =
static_cast<int>(frame_size_ / (config.sample_rate_hz / 1000));
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderPcm16B(config));
}
};
class AudioDecoderIlbcTest : public AudioDecoderTest {
protected:
AudioDecoderIlbcTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 8000;
frame_size_ = 240;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIlbc;
assert(decoder_);
AudioEncoderIlbc::Config config;
config.frame_size_ms = 30;
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderIlbc(config));
}
// Overload the default test since iLBC's function WebRtcIlbcfix_NetEqPlc does
// not return any data. It simply resets a few states and returns 0.
void DecodePlcTest() {
InitEncoder();
scoped_ptr<int16_t[]> input(new int16_t[frame_size_]);
ASSERT_TRUE(
input_audio_.Read(frame_size_, codec_input_rate_hz_, input.get()));
size_t enc_len = EncodeFrame(input.get(), frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
scoped_ptr<int16_t[]> output(new int16_t[frame_size_ * channels_]);
size_t dec_len =
decoder_->Decode(encoded_, enc_len, output.get(), &speech_type);
EXPECT_EQ(frame_size_, dec_len);
// Simply call DecodePlc and verify that we get 0 as return value.
EXPECT_EQ(0, decoder_->DecodePlc(1, output.get()));
}
};
class AudioDecoderIsacFloatTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFloatTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
AudioEncoderDecoderIsac::Config config;
config.payload_type = payload_type_;
config.sample_rate_hz = codec_input_rate_hz_;
config.frame_size_ms =
1000 * static_cast<int>(frame_size_) / codec_input_rate_hz_;
// We need to create separate AudioEncoderDecoderIsac objects for encoding
// and decoding, because the test class destructor destroys them both.
audio_encoder_.reset(new AudioEncoderDecoderIsac(config));
decoder_ = new AudioEncoderDecoderIsac(config);
}
};
class AudioDecoderIsacSwbTest : public AudioDecoderTest {
protected:
AudioDecoderIsacSwbTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 32000;
frame_size_ = 960;
data_length_ = 10 * frame_size_;
AudioEncoderDecoderIsac::Config config;
config.payload_type = payload_type_;
config.sample_rate_hz = codec_input_rate_hz_;
config.frame_size_ms =
1000 * static_cast<int>(frame_size_) / codec_input_rate_hz_;
// We need to create separate AudioEncoderDecoderIsac objects for encoding
// and decoding, because the test class destructor destroys them both.
audio_encoder_.reset(new AudioEncoderDecoderIsac(config));
decoder_ = new AudioEncoderDecoderIsac(config);
}
};
class AudioDecoderIsacFixTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFixTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
AudioEncoderDecoderIsacFix::Config config;
config.payload_type = payload_type_;
config.sample_rate_hz = codec_input_rate_hz_;
config.frame_size_ms =
1000 * static_cast<int>(frame_size_) / codec_input_rate_hz_;
// We need to create separate AudioEncoderDecoderIsacFix objects for
// encoding and decoding, because the test class destructor destroys them
// both.
audio_encoder_.reset(new AudioEncoderDecoderIsacFix(config));
decoder_ = new AudioEncoderDecoderIsacFix(config);
}
};
class AudioDecoderG722Test : public AudioDecoderTest {
protected:
AudioDecoderG722Test() : AudioDecoderTest() {
codec_input_rate_hz_ = 16000;
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderG722;
assert(decoder_);
AudioEncoderG722::Config config;
config.frame_size_ms = 10;
config.payload_type = payload_type_;
config.num_channels = 1;
audio_encoder_.reset(new AudioEncoderG722(config));
}
};
class AudioDecoderG722StereoTest : public AudioDecoderTest {
protected:
AudioDecoderG722StereoTest() : AudioDecoderTest() {
channels_ = 2;
codec_input_rate_hz_ = 16000;
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderG722Stereo;
assert(decoder_);
AudioEncoderG722::Config config;
config.frame_size_ms = 10;
config.payload_type = payload_type_;
config.num_channels = 2;
audio_encoder_.reset(new AudioEncoderG722(config));
}
};
class AudioDecoderOpusTest : public AudioDecoderTest {
protected:
AudioDecoderOpusTest() : AudioDecoderTest() {
codec_input_rate_hz_ = 48000;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderOpus(1);
AudioEncoderOpus::Config config;
config.frame_size_ms = static_cast<int>(frame_size_) / 48;
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderOpus(config));
}
};
class AudioDecoderOpusStereoTest : public AudioDecoderOpusTest {
protected:
AudioDecoderOpusStereoTest() : AudioDecoderOpusTest() {
channels_ = 2;
delete decoder_;
decoder_ = new AudioDecoderOpus(2);
AudioEncoderOpus::Config config;
config.frame_size_ms = static_cast<int>(frame_size_) / 48;
config.num_channels = 2;
config.payload_type = payload_type_;
audio_encoder_.reset(new AudioEncoderOpus(config));
}
};
TEST_F(AudioDecoderPcmUTest, EncodeDecode) {
int tolerance = 251;
double mse = 1734.0;
EXPECT_TRUE(CodecSupported(kDecoderPCMu));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcmATest, EncodeDecode) {
int tolerance = 308;
double mse = 1931.0;
EXPECT_TRUE(CodecSupported(kDecoderPCMa));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcm16BTest, EncodeDecode) {
int tolerance = 0;
double mse = 0.0;
EXPECT_TRUE(CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb48kHz));
EncodeDecodeTest(2 * data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderIlbcTest, EncodeDecode) {
int tolerance = 6808;
double mse = 2.13e6;
int delay = 80; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderILBC));
EncodeDecodeTest(500, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFloatTest, EncodeDecode) {
int tolerance = 3399;
double mse = 434951.0;
int delay = 48; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderISAC));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacSwbTest, EncodeDecode) {
int tolerance = 19757;
double mse = 8.18e6;
int delay = 160; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderISACswb));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFixTest, EncodeDecode) {
int tolerance = 11034;
double mse = 3.46e6;
int delay = 54; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderISAC));
#ifdef WEBRTC_ANDROID
static const int kEncodedBytes = 685;
#else
static const int kEncodedBytes = 671;
#endif
EncodeDecodeTest(kEncodedBytes, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderG722Test, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderG722));
EncodeDecodeTest(data_length_ / 2, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722StereoTest, CreateAndDestroy) {
EXPECT_TRUE(CodecSupported(kDecoderG722_2ch));
}
TEST_F(AudioDecoderG722StereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderG722_2ch));
EncodeDecodeTest(data_length_, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusTest, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderOpus));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusStereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(CodecSupported(kDecoderOpus_2ch));
EncodeDecodeTest(0, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST(AudioDecoder, CodecSampleRateHz) {
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMu));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMa));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMu_2ch));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCMa_2ch));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderILBC));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderISAC));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderISACswb));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderISACfb));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCM16B));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderPCM16Bwb));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderPCM16Bswb32kHz));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderPCM16Bswb48kHz));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCM16B_2ch));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderPCM16Bwb_2ch));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderPCM16B_5ch));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderG722));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderG722_2ch));
EXPECT_EQ(-1, CodecSampleRateHz(kDecoderRED));
EXPECT_EQ(-1, CodecSampleRateHz(kDecoderAVT));
EXPECT_EQ(8000, CodecSampleRateHz(kDecoderCNGnb));
EXPECT_EQ(16000, CodecSampleRateHz(kDecoderCNGwb));
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderCNGswb32kHz));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderOpus));
EXPECT_EQ(48000, CodecSampleRateHz(kDecoderOpus_2ch));
// TODO(tlegrand): Change 32000 to 48000 below once ACM has 48 kHz support.
EXPECT_EQ(32000, CodecSampleRateHz(kDecoderCNGswb48kHz));
EXPECT_EQ(-1, CodecSampleRateHz(kDecoderArbitrary));
}
TEST(AudioDecoder, CodecSupported) {
EXPECT_TRUE(CodecSupported(kDecoderPCMu));
EXPECT_TRUE(CodecSupported(kDecoderPCMa));
EXPECT_TRUE(CodecSupported(kDecoderPCMu_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCMa_2ch));
EXPECT_TRUE(CodecSupported(kDecoderILBC));
EXPECT_TRUE(CodecSupported(kDecoderISAC));
EXPECT_TRUE(CodecSupported(kDecoderISACswb));
EXPECT_TRUE(CodecSupported(kDecoderISACfb));
EXPECT_TRUE(CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb48kHz));
EXPECT_TRUE(CodecSupported(kDecoderPCM16B_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bwb_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_TRUE(CodecSupported(kDecoderPCM16B_5ch));
EXPECT_TRUE(CodecSupported(kDecoderG722));
EXPECT_TRUE(CodecSupported(kDecoderG722_2ch));
EXPECT_TRUE(CodecSupported(kDecoderRED));
EXPECT_TRUE(CodecSupported(kDecoderAVT));
EXPECT_TRUE(CodecSupported(kDecoderCNGnb));
EXPECT_TRUE(CodecSupported(kDecoderCNGwb));
EXPECT_TRUE(CodecSupported(kDecoderCNGswb32kHz));
EXPECT_TRUE(CodecSupported(kDecoderCNGswb48kHz));
EXPECT_TRUE(CodecSupported(kDecoderArbitrary));
EXPECT_TRUE(CodecSupported(kDecoderOpus));
EXPECT_TRUE(CodecSupported(kDecoderOpus_2ch));
}
} // namespace webrtc