This CL removes all external access to the integer sample data in the AudioBuffer class. It also removes the API in AudioBuffer that provides this. The purpose of this is to pave the way for removing the sample duplicating and implicit conversions between integer and floating point sample formats which is done inside the AudioBuffer. Bug: webrtc:10882 Change-Id: I1438b691bcef98278aef8e3c63624c367c2d12e9 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/149162 Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org> Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org> Commit-Queue: Per Åhgren <peah@webrtc.org> Cr-Commit-Position: refs/heads/master@{#28912}
337 lines
14 KiB
C++
337 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "common_audio/resampler/push_sinc_resampler.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <memory>
|
|
|
|
#include "common_audio/include/audio_util.h"
|
|
#include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
// Almost all conversions have an RMS error of around -14 dbFS.
|
|
const double kResamplingRMSError = -14.42;
|
|
|
|
// Used to convert errors to dbFS.
|
|
template <typename T>
|
|
T DBFS(T x) {
|
|
return 20 * std::log10(x);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class PushSincResamplerTest : public ::testing::TestWithParam<
|
|
::testing::tuple<int, int, double, double>> {
|
|
public:
|
|
PushSincResamplerTest()
|
|
: input_rate_(::testing::get<0>(GetParam())),
|
|
output_rate_(::testing::get<1>(GetParam())),
|
|
rms_error_(::testing::get<2>(GetParam())),
|
|
low_freq_error_(::testing::get<3>(GetParam())) {}
|
|
|
|
~PushSincResamplerTest() override {}
|
|
|
|
protected:
|
|
void ResampleBenchmarkTest(bool int_format);
|
|
void ResampleTest(bool int_format);
|
|
|
|
int input_rate_;
|
|
int output_rate_;
|
|
double rms_error_;
|
|
double low_freq_error_;
|
|
};
|
|
|
|
class ZeroSource : public SincResamplerCallback {
|
|
public:
|
|
void Run(size_t frames, float* destination) override {
|
|
std::memset(destination, 0, sizeof(float) * frames);
|
|
}
|
|
};
|
|
|
|
void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) {
|
|
const size_t input_samples = static_cast<size_t>(input_rate_ / 100);
|
|
const size_t output_samples = static_cast<size_t>(output_rate_ / 100);
|
|
const int kResampleIterations = 500000;
|
|
|
|
// Source for data to be resampled.
|
|
ZeroSource resampler_source;
|
|
|
|
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
|
|
std::unique_ptr<float[]> source(new float[input_samples]);
|
|
std::unique_ptr<int16_t[]> source_int(new int16_t[input_samples]);
|
|
std::unique_ptr<int16_t[]> destination_int(new int16_t[output_samples]);
|
|
|
|
resampler_source.Run(input_samples, source.get());
|
|
for (size_t i = 0; i < input_samples; ++i) {
|
|
source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5));
|
|
}
|
|
|
|
printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n", kResampleIterations,
|
|
input_rate_, output_rate_);
|
|
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
|
|
SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize,
|
|
&resampler_source);
|
|
int64_t start = rtc::TimeNanos();
|
|
for (int i = 0; i < kResampleIterations; ++i) {
|
|
sinc_resampler.Resample(output_samples, resampled_destination.get());
|
|
}
|
|
double total_time_sinc_us =
|
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
|
printf("SincResampler took %.2f us per frame.\n",
|
|
total_time_sinc_us / kResampleIterations);
|
|
|
|
PushSincResampler resampler(input_samples, output_samples);
|
|
start = rtc::TimeNanos();
|
|
if (int_format) {
|
|
for (int i = 0; i < kResampleIterations; ++i) {
|
|
EXPECT_EQ(output_samples,
|
|
resampler.Resample(source_int.get(), input_samples,
|
|
destination_int.get(), output_samples));
|
|
}
|
|
} else {
|
|
for (int i = 0; i < kResampleIterations; ++i) {
|
|
EXPECT_EQ(output_samples, resampler.Resample(source.get(), input_samples,
|
|
resampled_destination.get(),
|
|
output_samples));
|
|
}
|
|
}
|
|
double total_time_us =
|
|
(rtc::TimeNanos() - start) / rtc::kNumNanosecsPerMicrosec;
|
|
printf(
|
|
"PushSincResampler took %.2f us per frame; which is a %.1f%% overhead "
|
|
"on SincResampler.\n\n",
|
|
total_time_us / kResampleIterations,
|
|
(total_time_us - total_time_sinc_us) / total_time_sinc_us * 100);
|
|
}
|
|
|
|
// Disabled because it takes too long to run routinely. Use for performance
|
|
// benchmarking when needed.
|
|
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkInt) {
|
|
ResampleBenchmarkTest(true);
|
|
}
|
|
|
|
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) {
|
|
ResampleBenchmarkTest(false);
|
|
}
|
|
|
|
// Tests resampling using a given input and output sample rate.
|
|
void PushSincResamplerTest::ResampleTest(bool int_format) {
|
|
// Make comparisons using one second of data.
|
|
static const double kTestDurationSecs = 1;
|
|
// 10 ms blocks.
|
|
const size_t kNumBlocks = static_cast<size_t>(kTestDurationSecs * 100);
|
|
const size_t input_block_size = static_cast<size_t>(input_rate_ / 100);
|
|
const size_t output_block_size = static_cast<size_t>(output_rate_ / 100);
|
|
const size_t input_samples =
|
|
static_cast<size_t>(kTestDurationSecs * input_rate_);
|
|
const size_t output_samples =
|
|
static_cast<size_t>(kTestDurationSecs * output_rate_);
|
|
|
|
// Nyquist frequency for the input sampling rate.
|
|
const double input_nyquist_freq = 0.5 * input_rate_;
|
|
|
|
// Source for data to be resampled.
|
|
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
|
|
input_nyquist_freq, 0);
|
|
|
|
PushSincResampler resampler(input_block_size, output_block_size);
|
|
|
|
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
|
|
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
|
|
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
|
|
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
|
|
std::unique_ptr<float[]> source(new float[input_samples]);
|
|
std::unique_ptr<int16_t[]> source_int(new int16_t[input_block_size]);
|
|
std::unique_ptr<int16_t[]> destination_int(new int16_t[output_block_size]);
|
|
|
|
// The sinc resampler has an implicit delay of approximately half the kernel
|
|
// size at the input sample rate. By moving to a push model, this delay
|
|
// becomes explicit and is managed by zero-stuffing in PushSincResampler. We
|
|
// deal with it in the test by delaying the "pure" source to match. It must be
|
|
// checked before the first call to Resample(), because ChunkSize() will
|
|
// change afterwards.
|
|
const size_t output_delay_samples =
|
|
output_block_size - resampler.get_resampler_for_testing()->ChunkSize();
|
|
|
|
// Generate resampled signal.
|
|
// With the PushSincResampler, we produce the signal block-by-10ms-block
|
|
// rather than in a single pass, to exercise how it will be used in WebRTC.
|
|
resampler_source.Run(input_samples, source.get());
|
|
if (int_format) {
|
|
for (size_t i = 0; i < kNumBlocks; ++i) {
|
|
FloatToS16(&source[i * input_block_size], input_block_size,
|
|
source_int.get());
|
|
EXPECT_EQ(output_block_size,
|
|
resampler.Resample(source_int.get(), input_block_size,
|
|
destination_int.get(), output_block_size));
|
|
S16ToFloat(destination_int.get(), output_block_size,
|
|
&resampled_destination[i * output_block_size]);
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < kNumBlocks; ++i) {
|
|
EXPECT_EQ(
|
|
output_block_size,
|
|
resampler.Resample(&source[i * input_block_size], input_block_size,
|
|
&resampled_destination[i * output_block_size],
|
|
output_block_size));
|
|
}
|
|
}
|
|
|
|
// Generate pure signal.
|
|
SinusoidalLinearChirpSource pure_source(
|
|
output_rate_, output_samples, input_nyquist_freq, output_delay_samples);
|
|
pure_source.Run(output_samples, pure_destination.get());
|
|
|
|
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
|
|
// we refer to as low and high.
|
|
static const double kLowFrequencyNyquistRange = 0.7;
|
|
static const double kHighFrequencyNyquistRange = 0.9;
|
|
|
|
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
|
|
double sum_of_squares = 0;
|
|
double low_freq_max_error = 0;
|
|
double high_freq_max_error = 0;
|
|
int minimum_rate = std::min(input_rate_, output_rate_);
|
|
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
|
|
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
|
|
|
|
for (size_t i = 0; i < output_samples; ++i) {
|
|
double error = fabs(resampled_destination[i] - pure_destination[i]);
|
|
|
|
if (pure_source.Frequency(i) < low_frequency_range) {
|
|
if (error > low_freq_max_error)
|
|
low_freq_max_error = error;
|
|
} else if (pure_source.Frequency(i) < high_frequency_range) {
|
|
if (error > high_freq_max_error)
|
|
high_freq_max_error = error;
|
|
}
|
|
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
|
|
|
|
sum_of_squares += error * error;
|
|
}
|
|
|
|
double rms_error = sqrt(sum_of_squares / output_samples);
|
|
|
|
rms_error = DBFS(rms_error);
|
|
// In order to keep the thresholds in this test identical to SincResamplerTest
|
|
// we must account for the quantization error introduced by truncating from
|
|
// float to int. This happens twice (once at input and once at output) and we
|
|
// allow for the maximum possible error (1 / 32767) for each step.
|
|
//
|
|
// The quantization error is insignificant in the RMS calculation so does not
|
|
// need to be accounted for there.
|
|
low_freq_max_error = DBFS(low_freq_max_error - 2.0 / 32767);
|
|
high_freq_max_error = DBFS(high_freq_max_error - 2.0 / 32767);
|
|
|
|
EXPECT_LE(rms_error, rms_error_);
|
|
EXPECT_LE(low_freq_max_error, low_freq_error_);
|
|
|
|
// All conversions currently have a high frequency error around -6 dbFS.
|
|
static const double kHighFrequencyMaxError = -6.02;
|
|
EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
|
|
}
|
|
|
|
TEST_P(PushSincResamplerTest, ResampleInt) {
|
|
ResampleTest(true);
|
|
}
|
|
|
|
TEST_P(PushSincResamplerTest, ResampleFloat) {
|
|
ResampleTest(false);
|
|
}
|
|
|
|
// Thresholds chosen arbitrarily based on what each resampling reported during
|
|
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
PushSincResamplerTest,
|
|
PushSincResamplerTest,
|
|
::testing::Values(
|
|
// First run through the rates tested in SincResamplerTest. The
|
|
// thresholds are identical.
|
|
//
|
|
// We don't test rates which fail to provide an integer number of
|
|
// samples in a 10 ms block (22050 and 11025 Hz). WebRTC doesn't support
|
|
// these rates in any case (for the same reason).
|
|
|
|
// To 44.1kHz
|
|
::testing::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
|
|
::testing::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
|
|
::testing::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
|
|
::testing::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
|
|
::testing::make_tuple(48000, 44100, -15.01, -64.04),
|
|
::testing::make_tuple(96000, 44100, -18.49, -25.51),
|
|
::testing::make_tuple(192000, 44100, -20.50, -13.31),
|
|
|
|
// To 48kHz
|
|
::testing::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
|
|
::testing::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
|
|
::testing::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
|
|
::testing::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
|
|
::testing::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(96000, 48000, -18.40, -28.44),
|
|
::testing::make_tuple(192000, 48000, -20.43, -14.11),
|
|
|
|
// To 96kHz
|
|
::testing::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
|
|
::testing::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
|
|
::testing::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
|
|
::testing::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
|
|
::testing::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
|
|
|
|
// To 192kHz
|
|
::testing::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
|
|
::testing::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
|
|
::testing::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
|
|
::testing::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
|
|
::testing::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
|
|
::testing::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
|
|
::testing::make_tuple(192000, 192000, kResamplingRMSError, -73.52),
|
|
|
|
// Next run through some additional cases interesting for WebRTC.
|
|
// We skip some extreme downsampled cases (192 -> {8, 16}, 96 -> 8)
|
|
// because they violate |kHighFrequencyMaxError|, which is not
|
|
// unexpected. It's very unlikely that we'll see these conversions in
|
|
// practice anyway.
|
|
|
|
// To 8 kHz
|
|
::testing::make_tuple(8000, 8000, kResamplingRMSError, -75.50),
|
|
::testing::make_tuple(16000, 8000, -18.56, -28.79),
|
|
::testing::make_tuple(32000, 8000, -20.36, -14.13),
|
|
::testing::make_tuple(44100, 8000, -21.00, -11.39),
|
|
::testing::make_tuple(48000, 8000, -20.96, -11.04),
|
|
|
|
// To 16 kHz
|
|
::testing::make_tuple(8000, 16000, kResamplingRMSError, -70.30),
|
|
::testing::make_tuple(16000, 16000, kResamplingRMSError, -75.51),
|
|
::testing::make_tuple(32000, 16000, -18.48, -28.59),
|
|
::testing::make_tuple(44100, 16000, -19.30, -19.67),
|
|
::testing::make_tuple(48000, 16000, -19.81, -18.11),
|
|
::testing::make_tuple(96000, 16000, -20.95, -10.9596),
|
|
|
|
// To 32 kHz
|
|
::testing::make_tuple(8000, 32000, kResamplingRMSError, -70.30),
|
|
::testing::make_tuple(16000, 32000, kResamplingRMSError, -75.51),
|
|
::testing::make_tuple(32000, 32000, kResamplingRMSError, -75.51),
|
|
::testing::make_tuple(44100, 32000, -16.44, -51.0349),
|
|
::testing::make_tuple(48000, 32000, -16.90, -43.9967),
|
|
::testing::make_tuple(96000, 32000, -19.61, -18.04),
|
|
::testing::make_tuple(192000, 32000, -21.02, -10.94)));
|
|
|
|
} // namespace webrtc
|