Files
platform-external-webrtc/webrtc/modules/bitrate_controller/bitrate_allocator.cc
Stefan Holmer e590416722 Moving the pacer and the pacer thread to ChannelGroup.
This means all channels within the same group will share the same pacing queue and scheduler. It also means padding will be computed and sent by a single pacer. To accomplish this I also introduce a PacketRouter which finds the RTP module which owns the packet to be paced out.

BUG=4323
R=mflodman@webrtc.org, pbos@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/45549004

Cr-Commit-Position: refs/heads/master@{#8864}
2015-03-26 10:11:22 +00:00

211 lines
7.7 KiB
C++

/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/bitrate_controller/include/bitrate_allocator.h"
#include <algorithm>
#include <utility>
#include "webrtc/modules/bitrate_controller/include/bitrate_controller.h"
namespace webrtc {
// Allow packets to be transmitted in up to 2 times max video bitrate if the
// bandwidth estimate allows it.
const int kTransmissionMaxBitrateMultiplier = 2;
const int kDefaultBitrateBps = 300000;
BitrateAllocator::BitrateAllocator()
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
bitrate_observers_(),
enforce_min_bitrate_(true),
last_bitrate_bps_(kDefaultBitrateBps),
last_fraction_loss_(0),
last_rtt_(0) {
}
void BitrateAllocator::OnNetworkChanged(uint32_t bitrate,
uint8_t fraction_loss,
int64_t rtt) {
CriticalSectionScoped lock(crit_sect_.get());
last_bitrate_bps_ = bitrate;
last_fraction_loss_ = fraction_loss;
last_rtt_ = rtt;
ObserverBitrateMap allocation = AllocateBitrates();
for (const auto& kv : allocation)
kv.first->OnNetworkChanged(kv.second, last_fraction_loss_, last_rtt_);
}
BitrateAllocator::ObserverBitrateMap BitrateAllocator::AllocateBitrates() {
if (bitrate_observers_.empty())
return ObserverBitrateMap();
uint32_t sum_min_bitrates = 0;
for (const auto& observer : bitrate_observers_)
sum_min_bitrates += observer.second.min_bitrate_;
if (last_bitrate_bps_ <= sum_min_bitrates)
return LowRateAllocation(last_bitrate_bps_);
else
return NormalRateAllocation(last_bitrate_bps_, sum_min_bitrates);
}
int BitrateAllocator::AddBitrateObserver(BitrateObserver* observer,
uint32_t start_bitrate_bps,
uint32_t min_bitrate_bps,
uint32_t max_bitrate_bps,
int* new_observer_bitrate_bps) {
CriticalSectionScoped lock(crit_sect_.get());
BitrateObserverConfList::iterator it =
FindObserverConfigurationPair(observer);
// Allow the max bitrate to be exceeded for FEC and retransmissions.
// TODO(holmer): We have to get rid of this hack as it makes it difficult to
// properly allocate bitrate. The allocator should instead distribute any
// extra bitrate after all streams have maxed out.
max_bitrate_bps *= kTransmissionMaxBitrateMultiplier;
int new_bwe_candidate_bps = 0;
if (it != bitrate_observers_.end()) {
// Update current configuration.
it->second.start_bitrate_ = start_bitrate_bps;
it->second.min_bitrate_ = min_bitrate_bps;
it->second.max_bitrate_ = max_bitrate_bps;
// Set the send-side bandwidth to the max of the sum of start bitrates and
// the current estimate, so that if the user wants to immediately use more
// bandwidth, that can be enforced.
for (const auto& observer : bitrate_observers_)
new_bwe_candidate_bps += observer.second.start_bitrate_;
} else {
// Add new settings.
bitrate_observers_.push_back(BitrateObserverConfiguration(
observer, BitrateConfiguration(start_bitrate_bps, min_bitrate_bps,
max_bitrate_bps)));
bitrate_observers_modified_ = true;
// TODO(andresp): This is a ugly way to set start bitrate.
//
// Only change start bitrate if we have exactly one observer. By definition
// you can only have one start bitrate, once we have our first estimate we
// will adapt from there.
if (bitrate_observers_.size() == 1)
new_bwe_candidate_bps = start_bitrate_bps;
}
last_bitrate_bps_ = std::max<int>(new_bwe_candidate_bps, last_bitrate_bps_);
ObserverBitrateMap allocation = AllocateBitrates();
*new_observer_bitrate_bps = 0;
for (auto& kv : allocation) {
kv.first->OnNetworkChanged(kv.second, last_fraction_loss_, last_rtt_);
if (kv.first == observer)
*new_observer_bitrate_bps = kv.second;
}
return last_bitrate_bps_;
}
void BitrateAllocator::RemoveBitrateObserver(BitrateObserver* observer) {
CriticalSectionScoped lock(crit_sect_.get());
BitrateObserverConfList::iterator it =
FindObserverConfigurationPair(observer);
if (it != bitrate_observers_.end()) {
bitrate_observers_.erase(it);
bitrate_observers_modified_ = true;
}
}
void BitrateAllocator::GetMinMaxBitrateSumBps(int* min_bitrate_sum_bps,
int* max_bitrate_sum_bps) const {
*min_bitrate_sum_bps = 0;
*max_bitrate_sum_bps = 0;
CriticalSectionScoped lock(crit_sect_.get());
for (const auto& observer : bitrate_observers_) {
*min_bitrate_sum_bps += observer.second.min_bitrate_;
*max_bitrate_sum_bps += observer.second.max_bitrate_;
}
}
BitrateAllocator::BitrateObserverConfList::iterator
BitrateAllocator::FindObserverConfigurationPair(
const BitrateObserver* observer) {
for (auto it = bitrate_observers_.begin(); it != bitrate_observers_.end();
++it) {
if (it->first == observer)
return it;
}
return bitrate_observers_.end();
}
void BitrateAllocator::EnforceMinBitrate(bool enforce_min_bitrate) {
CriticalSectionScoped lock(crit_sect_.get());
enforce_min_bitrate_ = enforce_min_bitrate;
}
BitrateAllocator::ObserverBitrateMap BitrateAllocator::NormalRateAllocation(
uint32_t bitrate,
uint32_t sum_min_bitrates) {
uint32_t number_of_observers = bitrate_observers_.size();
uint32_t bitrate_per_observer =
(bitrate - sum_min_bitrates) / number_of_observers;
// Use map to sort list based on max bitrate.
ObserverSortingMap list_max_bitrates;
for (const auto& observer : bitrate_observers_) {
list_max_bitrates.insert(std::pair<uint32_t, ObserverConfiguration>(
observer.second.max_bitrate_,
ObserverConfiguration(observer.first, observer.second.min_bitrate_)));
}
ObserverBitrateMap allocation;
ObserverSortingMap::iterator max_it = list_max_bitrates.begin();
while (max_it != list_max_bitrates.end()) {
number_of_observers--;
uint32_t observer_allowance =
max_it->second.min_bitrate_ + bitrate_per_observer;
if (max_it->first < observer_allowance) {
// We have more than enough for this observer.
// Carry the remainder forward.
uint32_t remainder = observer_allowance - max_it->first;
if (number_of_observers != 0) {
bitrate_per_observer += remainder / number_of_observers;
}
allocation[max_it->second.observer_] = max_it->first;
} else {
allocation[max_it->second.observer_] = observer_allowance;
}
list_max_bitrates.erase(max_it);
// Prepare next iteration.
max_it = list_max_bitrates.begin();
}
return allocation;
}
BitrateAllocator::ObserverBitrateMap BitrateAllocator::LowRateAllocation(
uint32_t bitrate) {
ObserverBitrateMap allocation;
if (enforce_min_bitrate_) {
// Min bitrate to all observers.
for (const auto& observer : bitrate_observers_)
allocation[observer.first] = observer.second.min_bitrate_;
} else {
// Allocate up to |min_bitrate_| to one observer at a time, until
// |bitrate| is depleted.
uint32_t remainder = bitrate;
for (const auto& observer : bitrate_observers_) {
uint32_t allocated_bitrate =
std::min(remainder, observer.second.min_bitrate_);
allocation[observer.first] = allocated_bitrate;
remainder -= allocated_bitrate;
}
}
return allocation;
}
} // namespace webrtc