Files
platform-external-webrtc/webrtc/modules/bitrate_controller/bitrate_controller_impl.cc
Stefan Holmer e590416722 Moving the pacer and the pacer thread to ChannelGroup.
This means all channels within the same group will share the same pacing queue and scheduler. It also means padding will be computed and sent by a single pacer. To accomplish this I also introduce a PacketRouter which finds the RTP module which owns the packet to be paced out.

BUG=4323
R=mflodman@webrtc.org, pbos@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/45549004

Cr-Commit-Position: refs/heads/master@{#8864}
2015-03-26 10:11:22 +00:00

223 lines
7.3 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/bitrate_controller/bitrate_controller_impl.h"
#include <algorithm>
#include <utility>
#include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp_defines.h"
namespace webrtc {
class BitrateControllerImpl::RtcpBandwidthObserverImpl
: public RtcpBandwidthObserver {
public:
explicit RtcpBandwidthObserverImpl(BitrateControllerImpl* owner)
: owner_(owner) {
}
virtual ~RtcpBandwidthObserverImpl() {
}
// Received RTCP REMB or TMMBR.
void OnReceivedEstimatedBitrate(uint32_t bitrate) override {
owner_->OnReceivedEstimatedBitrate(bitrate);
}
// Received RTCP receiver block.
void OnReceivedRtcpReceiverReport(const ReportBlockList& report_blocks,
int64_t rtt,
int64_t now_ms) override {
if (report_blocks.empty())
return;
int fraction_lost_aggregate = 0;
int total_number_of_packets = 0;
// Compute the a weighted average of the fraction loss from all report
// blocks.
for (ReportBlockList::const_iterator it = report_blocks.begin();
it != report_blocks.end(); ++it) {
std::map<uint32_t, uint32_t>::iterator seq_num_it =
ssrc_to_last_received_extended_high_seq_num_.find(it->sourceSSRC);
int number_of_packets = 0;
if (seq_num_it != ssrc_to_last_received_extended_high_seq_num_.end())
number_of_packets = it->extendedHighSeqNum -
seq_num_it->second;
fraction_lost_aggregate += number_of_packets * it->fractionLost;
total_number_of_packets += number_of_packets;
// Update last received for this SSRC.
ssrc_to_last_received_extended_high_seq_num_[it->sourceSSRC] =
it->extendedHighSeqNum;
}
if (total_number_of_packets == 0)
fraction_lost_aggregate = 0;
else
fraction_lost_aggregate = (fraction_lost_aggregate +
total_number_of_packets / 2) / total_number_of_packets;
if (fraction_lost_aggregate > 255)
return;
owner_->OnReceivedRtcpReceiverReport(fraction_lost_aggregate, rtt,
total_number_of_packets, now_ms);
}
private:
std::map<uint32_t, uint32_t> ssrc_to_last_received_extended_high_seq_num_;
BitrateControllerImpl* owner_;
};
BitrateController* BitrateController::CreateBitrateController(
Clock* clock,
BitrateObserver* observer) {
return new BitrateControllerImpl(clock, observer);
}
BitrateControllerImpl::BitrateControllerImpl(Clock* clock,
BitrateObserver* observer)
: clock_(clock),
observer_(observer),
last_bitrate_update_ms_(clock_->TimeInMilliseconds()),
critsect_(CriticalSectionWrapper::CreateCriticalSection()),
bandwidth_estimation_(),
reserved_bitrate_bps_(0),
last_bitrate_bps_(0),
last_fraction_loss_(0),
last_rtt_ms_(0),
last_reserved_bitrate_bps_(0) {
// This calls the observer_, which means that the observer provided by the
// user must be ready to accept a bitrate update when it constructs the
// controller. We do this to avoid having to keep synchronized initial values
// in both the controller and the allocator.
MaybeTriggerOnNetworkChanged();
}
RtcpBandwidthObserver* BitrateControllerImpl::CreateRtcpBandwidthObserver() {
return new RtcpBandwidthObserverImpl(this);
}
void BitrateControllerImpl::SetStartBitrate(int start_bitrate_bps) {
{
CriticalSectionScoped cs(critsect_.get());
bandwidth_estimation_.SetSendBitrate(start_bitrate_bps);
}
MaybeTriggerOnNetworkChanged();
}
void BitrateControllerImpl::SetMinMaxBitrate(int min_bitrate_bps,
int max_bitrate_bps) {
{
CriticalSectionScoped cs(critsect_.get());
bandwidth_estimation_.SetMinMaxBitrate(min_bitrate_bps, max_bitrate_bps);
}
MaybeTriggerOnNetworkChanged();
}
void BitrateControllerImpl::SetReservedBitrate(uint32_t reserved_bitrate_bps) {
{
CriticalSectionScoped cs(critsect_.get());
reserved_bitrate_bps_ = reserved_bitrate_bps;
}
MaybeTriggerOnNetworkChanged();
}
void BitrateControllerImpl::OnReceivedEstimatedBitrate(uint32_t bitrate) {
{
CriticalSectionScoped cs(critsect_.get());
bandwidth_estimation_.UpdateReceiverEstimate(bitrate);
}
MaybeTriggerOnNetworkChanged();
}
int64_t BitrateControllerImpl::TimeUntilNextProcess() {
const int64_t kBitrateControllerUpdateIntervalMs = 25;
CriticalSectionScoped cs(critsect_.get());
int64_t time_since_update_ms =
clock_->TimeInMilliseconds() - last_bitrate_update_ms_;
return std::max<int64_t>(
kBitrateControllerUpdateIntervalMs - time_since_update_ms, 0);
}
int32_t BitrateControllerImpl::Process() {
if (TimeUntilNextProcess() > 0)
return 0;
{
CriticalSectionScoped cs(critsect_.get());
bandwidth_estimation_.UpdateEstimate(clock_->TimeInMilliseconds());
}
MaybeTriggerOnNetworkChanged();
last_bitrate_update_ms_ = clock_->TimeInMilliseconds();
return 0;
}
void BitrateControllerImpl::OnReceivedRtcpReceiverReport(
uint8_t fraction_loss,
int64_t rtt,
int number_of_packets,
int64_t now_ms) {
{
CriticalSectionScoped cs(critsect_.get());
bandwidth_estimation_.UpdateReceiverBlock(fraction_loss, rtt,
number_of_packets, now_ms);
}
MaybeTriggerOnNetworkChanged();
}
void BitrateControllerImpl::MaybeTriggerOnNetworkChanged() {
uint32_t bitrate;
uint8_t fraction_loss;
int64_t rtt;
if (GetNetworkParameters(&bitrate, &fraction_loss, &rtt))
observer_->OnNetworkChanged(bitrate, fraction_loss, rtt);
}
bool BitrateControllerImpl::GetNetworkParameters(uint32_t* bitrate,
uint8_t* fraction_loss,
int64_t* rtt) {
CriticalSectionScoped cs(critsect_.get());
int current_bitrate;
bandwidth_estimation_.CurrentEstimate(&current_bitrate, fraction_loss, rtt);
*bitrate = current_bitrate;
*bitrate -= std::min(*bitrate, reserved_bitrate_bps_);
*bitrate =
std::max<uint32_t>(*bitrate, bandwidth_estimation_.GetMinBitrate());
bool new_bitrate = false;
if (*bitrate != last_bitrate_bps_ || *fraction_loss != last_fraction_loss_ ||
*rtt != last_rtt_ms_ ||
last_reserved_bitrate_bps_ != reserved_bitrate_bps_) {
last_bitrate_bps_ = *bitrate;
last_fraction_loss_ = *fraction_loss;
last_rtt_ms_ = *rtt;
last_reserved_bitrate_bps_ = reserved_bitrate_bps_;
new_bitrate = true;
}
return new_bitrate;
}
bool BitrateControllerImpl::AvailableBandwidth(uint32_t* bandwidth) const {
CriticalSectionScoped cs(critsect_.get());
int bitrate;
uint8_t fraction_loss;
int64_t rtt;
bandwidth_estimation_.CurrentEstimate(&bitrate, &fraction_loss, &rtt);
if (bitrate > 0) {
bitrate = bitrate - std::min<int>(bitrate, reserved_bitrate_bps_);
bitrate = std::max(bitrate, bandwidth_estimation_.GetMinBitrate());
*bandwidth = bitrate;
return true;
}
return false;
}
} // namespace webrtc