
Broke tests in Chrome for some reason: [ RUN ] WebRtcAecDumpBrowserTest.CallWithAecDump [80131:1287:0129/074432:30561723987517:ERROR:vt_video_decode_accelerator.cc(132)] Failed to create VTDecompressionSession: codecOpenErr (-8973) [80129:1287:0129/074432:30562276677373:INFO:CONSOLE(64)] "Looking at video in element remote-view-1", source: http://127.0.0.1:61401/media/webrtc_test_utilities.js (64) [80129:1287:0129/074432:30562281435788:INFO:CONSOLE(64)] "Looking at video in element remote-view-2", source: http://127.0.0.1:61401/media/webrtc_test_utilities.js (64) [80129:1287:0129/074432:30562315329399:INFO:CONSOLE(800)] "Negotiating call...", source: http://127.0.0.1:61401/media/peerconnection-call.html (800) [80133:29187:0129/074432:30562402039578:FATAL:overuse_frame_detector.cc(388)] Check failed: processing_thread_.CalledOnValidThread(). 0 libbase.dylib 0x000000010dfd688f base::debug::StackTrace::StackTrace() + 47 1 libbase.dylib 0x000000010dfd68e3 base::debug::StackTrace::StackTrace() + 35 2 libbase.dylib 0x000000010e030076 logging::LogMessage::~LogMessage() + 70 3 libbase.dylib 0x000000010e02f0c3 logging::LogMessage::~LogMessage() + 35 4 libcontent.dylib 0x000000011d8c0cd5 webrtc::OveruseFrameDetector::TimeUntilNextProcess() + 245 5 libcontent.dylib 0x000000011d31ddfd webrtc::ProcessThreadImpl::Process() + 525 6 libcontent.dylib 0x000000011d31d836 webrtc::ProcessThreadImpl::Run(void*) + 38 7 libcontent.dylib 0x000000011d10c390 webrtc::ThreadPosix::Run() + 288 8 libcontent.dylib 0x000000011d10c076 webrtc::StartThread(void*) + 38 9 libsystem_pthread.dylib 0x00007fff8e667899 _pthread_body + 138 10 libsystem_pthread.dylib 0x00007fff8e66772a _pthread_struct_init + 0 11 libsystem_pthread.dylib 0x00007fff8e66bfc9 thread_start + 13 > Reducing locking in OveruseFrameDetector and increasing constness. > > I also added a few TODOs there to see what we can do to reduce the chance of contention. > To catch regressions, I've started using the ThreadChecker class on the processing thread but it might also be a good idea to add similar checks for other known threads such as the thread we receive frames on. I'm sure we can reduce locking even further. > > BUG=2822 > R=asapersson@webrtc.org > > Review URL: https://webrtc-codereview.appspot.com/33129004 TBR=tommi@webrtc.org Review URL: https://webrtc-codereview.appspot.com/34079004 Cr-Commit-Position: refs/heads/master@{#8206} git-svn-id: http://webrtc.googlecode.com/svn/trunk@8206 4adac7df-926f-26a2-2b94-8c16560cd09d
573 lines
18 KiB
C++
573 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/video_engine/overuse_frame_detector.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <map>
|
|
|
|
#include "webrtc/base/exp_filter.h"
|
|
#include "webrtc/system_wrappers/interface/clock.h"
|
|
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
|
|
#include "webrtc/system_wrappers/interface/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// TODO(mflodman) Test different values for all of these to trigger correctly,
|
|
// avoid fluctuations etc.
|
|
namespace {
|
|
const int64_t kProcessIntervalMs = 5000;
|
|
|
|
// Weight factor to apply to the standard deviation.
|
|
const float kWeightFactor = 0.997f;
|
|
// Weight factor to apply to the average.
|
|
const float kWeightFactorMean = 0.98f;
|
|
|
|
// Delay between consecutive rampups. (Used for quick recovery.)
|
|
const int kQuickRampUpDelayMs = 10 * 1000;
|
|
// Delay between rampup attempts. Initially uses standard, scales up to max.
|
|
const int kStandardRampUpDelayMs = 40 * 1000;
|
|
const int kMaxRampUpDelayMs = 240 * 1000;
|
|
// Expontential back-off factor, to prevent annoying up-down behaviour.
|
|
const double kRampUpBackoffFactor = 2.0;
|
|
|
|
// Max number of overuses detected before always applying the rampup delay.
|
|
const int kMaxOverusesBeforeApplyRampupDelay = 4;
|
|
|
|
// The maximum exponent to use in VCMExpFilter.
|
|
const float kSampleDiffMs = 33.0f;
|
|
const float kMaxExp = 7.0f;
|
|
|
|
} // namespace
|
|
|
|
// TODO(asapersson): Remove this class. Not used.
|
|
Statistics::Statistics() :
|
|
sum_(0.0),
|
|
count_(0),
|
|
filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)),
|
|
filtered_variance_(new rtc::ExpFilter(kWeightFactor)) {
|
|
Reset();
|
|
}
|
|
|
|
void Statistics::SetOptions(const CpuOveruseOptions& options) {
|
|
options_ = options;
|
|
}
|
|
|
|
void Statistics::Reset() {
|
|
sum_ = 0.0;
|
|
count_ = 0;
|
|
filtered_variance_->Reset(kWeightFactor);
|
|
filtered_variance_->Apply(1.0f, InitialVariance());
|
|
}
|
|
|
|
void Statistics::AddSample(float sample_ms) {
|
|
sum_ += sample_ms;
|
|
++count_;
|
|
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
// Initialize filtered samples.
|
|
filtered_samples_->Reset(kWeightFactorMean);
|
|
filtered_samples_->Apply(1.0f, InitialMean());
|
|
return;
|
|
}
|
|
|
|
float exp = sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_samples_->Apply(exp, sample_ms);
|
|
filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) *
|
|
(sample_ms - filtered_samples_->filtered()));
|
|
}
|
|
|
|
float Statistics::InitialMean() const {
|
|
if (count_ == 0)
|
|
return 0.0;
|
|
return sum_ / count_;
|
|
}
|
|
|
|
float Statistics::InitialVariance() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
float average_stddev = (options_.low_capture_jitter_threshold_ms +
|
|
options_.high_capture_jitter_threshold_ms) / 2.0f;
|
|
return average_stddev * average_stddev;
|
|
}
|
|
|
|
float Statistics::Mean() const { return filtered_samples_->filtered(); }
|
|
|
|
float Statistics::StdDev() const {
|
|
return sqrt(std::max(filtered_variance_->filtered(), 0.0f));
|
|
}
|
|
|
|
uint64_t Statistics::Count() const { return count_; }
|
|
|
|
|
|
// Class for calculating the average encode time.
|
|
class OveruseFrameDetector::EncodeTimeAvg {
|
|
public:
|
|
EncodeTimeAvg()
|
|
: kWeightFactor(0.5f),
|
|
kInitialAvgEncodeTimeMs(5.0f),
|
|
filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) {
|
|
filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
|
|
}
|
|
~EncodeTimeAvg() {}
|
|
|
|
void AddSample(float encode_time_ms, int64_t diff_last_sample_ms) {
|
|
float exp = diff_last_sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
|
|
}
|
|
|
|
int Value() const {
|
|
return static_cast<int>(filtered_encode_time_ms_->filtered() + 0.5);
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactor;
|
|
const float kInitialAvgEncodeTimeMs;
|
|
scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_;
|
|
};
|
|
|
|
// Class for calculating the processing usage on the send-side (the average
|
|
// processing time of a frame divided by the average time difference between
|
|
// captured frames).
|
|
class OveruseFrameDetector::SendProcessingUsage {
|
|
public:
|
|
SendProcessingUsage()
|
|
: kWeightFactorFrameDiff(0.998f),
|
|
kWeightFactorProcessing(0.995f),
|
|
kInitialSampleDiffMs(40.0f),
|
|
kMaxSampleDiffMs(45.0f),
|
|
count_(0),
|
|
filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
|
|
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
|
|
Reset();
|
|
}
|
|
~SendProcessingUsage() {}
|
|
|
|
void SetOptions(const CpuOveruseOptions& options) {
|
|
options_ = options;
|
|
}
|
|
|
|
void Reset() {
|
|
count_ = 0;
|
|
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
|
|
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
|
|
filtered_processing_ms_->Reset(kWeightFactorProcessing);
|
|
filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
|
|
}
|
|
|
|
void AddCaptureSample(float sample_ms) {
|
|
float exp = sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_frame_diff_ms_->Apply(exp, sample_ms);
|
|
}
|
|
|
|
void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
|
|
++count_;
|
|
float exp = diff_last_sample_ms / kSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_processing_ms_->Apply(exp, processing_ms);
|
|
}
|
|
|
|
int Value() const {
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
return static_cast<int>(InitialUsageInPercent() + 0.5f);
|
|
}
|
|
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
|
|
frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs);
|
|
float encode_usage_percent =
|
|
100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
|
|
return static_cast<int>(encode_usage_percent + 0.5);
|
|
}
|
|
|
|
private:
|
|
float InitialUsageInPercent() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
return (options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) / 2.0f;
|
|
}
|
|
|
|
float InitialProcessingMs() const {
|
|
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
|
|
}
|
|
|
|
const float kWeightFactorFrameDiff;
|
|
const float kWeightFactorProcessing;
|
|
const float kInitialSampleDiffMs;
|
|
const float kMaxSampleDiffMs;
|
|
uint64_t count_;
|
|
CpuOveruseOptions options_;
|
|
scoped_ptr<rtc::ExpFilter> filtered_processing_ms_;
|
|
scoped_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
|
|
};
|
|
|
|
// Class for calculating the processing time of frames.
|
|
class OveruseFrameDetector::FrameQueue {
|
|
public:
|
|
FrameQueue() : last_processing_time_ms_(-1) {}
|
|
~FrameQueue() {}
|
|
|
|
// Called when a frame is captured.
|
|
// Starts the measuring of the processing time of the frame.
|
|
void Start(int64_t capture_time, int64_t now) {
|
|
const size_t kMaxSize = 90; // Allows for processing time of 1.5s at 60fps.
|
|
if (frame_times_.size() > kMaxSize) {
|
|
LOG(LS_WARNING) << "Max size reached, removed oldest frame.";
|
|
frame_times_.erase(frame_times_.begin());
|
|
}
|
|
if (frame_times_.find(capture_time) != frame_times_.end()) {
|
|
// Frame should not exist.
|
|
assert(false);
|
|
return;
|
|
}
|
|
frame_times_[capture_time] = now;
|
|
}
|
|
|
|
// Called when the processing of a frame has finished.
|
|
// Returns the processing time of the frame.
|
|
int End(int64_t capture_time, int64_t now) {
|
|
std::map<int64_t, int64_t>::iterator it = frame_times_.find(capture_time);
|
|
if (it == frame_times_.end()) {
|
|
return -1;
|
|
}
|
|
// Remove any old frames up to current.
|
|
// Old frames have been skipped by the capture process thread.
|
|
// TODO(asapersson): Consider measuring time from first frame in list.
|
|
last_processing_time_ms_ = now - (*it).second;
|
|
frame_times_.erase(frame_times_.begin(), ++it);
|
|
return last_processing_time_ms_;
|
|
}
|
|
|
|
void Reset() { frame_times_.clear(); }
|
|
int NumFrames() const { return frame_times_.size(); }
|
|
int last_processing_time_ms() const { return last_processing_time_ms_; }
|
|
|
|
private:
|
|
// Captured frames mapped by the capture time.
|
|
std::map<int64_t, int64_t> frame_times_;
|
|
int last_processing_time_ms_;
|
|
};
|
|
|
|
// TODO(asapersson): Remove this class. Not used.
|
|
// Class for calculating the capture queue delay change.
|
|
class OveruseFrameDetector::CaptureQueueDelay {
|
|
public:
|
|
CaptureQueueDelay()
|
|
: kWeightFactor(0.5f),
|
|
delay_ms_(0),
|
|
filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) {
|
|
filtered_delay_ms_per_s_->Apply(1.0f, 0.0f);
|
|
}
|
|
~CaptureQueueDelay() {}
|
|
|
|
void FrameCaptured(int64_t now) {
|
|
const size_t kMaxSize = 200;
|
|
if (frames_.size() > kMaxSize) {
|
|
frames_.pop_front();
|
|
}
|
|
frames_.push_back(now);
|
|
}
|
|
|
|
void FrameProcessingStarted(int64_t now) {
|
|
if (frames_.empty()) {
|
|
return;
|
|
}
|
|
delay_ms_ = now - frames_.front();
|
|
frames_.pop_front();
|
|
}
|
|
|
|
void CalculateDelayChange(int64_t diff_last_sample_ms) {
|
|
if (diff_last_sample_ms <= 0) {
|
|
return;
|
|
}
|
|
float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_delay_ms_per_s_->Apply(exp,
|
|
delay_ms_ * 1000.0f / diff_last_sample_ms);
|
|
ClearFrames();
|
|
}
|
|
|
|
void ClearFrames() {
|
|
frames_.clear();
|
|
}
|
|
|
|
int delay_ms() const {
|
|
return delay_ms_;
|
|
}
|
|
|
|
int Value() const {
|
|
return static_cast<int>(filtered_delay_ms_per_s_->filtered() + 0.5);
|
|
}
|
|
|
|
private:
|
|
const float kWeightFactor;
|
|
std::list<int64_t> frames_;
|
|
int delay_ms_;
|
|
scoped_ptr<rtc::ExpFilter> filtered_delay_ms_per_s_;
|
|
};
|
|
|
|
OveruseFrameDetector::OveruseFrameDetector(Clock* clock)
|
|
: crit_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
observer_(NULL),
|
|
clock_(clock),
|
|
next_process_time_(clock_->TimeInMilliseconds()),
|
|
num_process_times_(0),
|
|
last_capture_time_(0),
|
|
last_overuse_time_(0),
|
|
checks_above_threshold_(0),
|
|
num_overuse_detections_(0),
|
|
last_rampup_time_(0),
|
|
in_quick_rampup_(false),
|
|
current_rampup_delay_ms_(kStandardRampUpDelayMs),
|
|
num_pixels_(0),
|
|
last_encode_sample_ms_(0),
|
|
encode_time_(new EncodeTimeAvg()),
|
|
usage_(new SendProcessingUsage()),
|
|
frame_queue_(new FrameQueue()),
|
|
last_sample_time_ms_(0),
|
|
capture_queue_delay_(new CaptureQueueDelay()) {
|
|
}
|
|
|
|
OveruseFrameDetector::~OveruseFrameDetector() {
|
|
}
|
|
|
|
void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
observer_ = observer;
|
|
}
|
|
|
|
void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
|
|
assert(options.min_frame_samples > 0);
|
|
CriticalSectionScoped cs(crit_.get());
|
|
if (options_.Equals(options)) {
|
|
return;
|
|
}
|
|
options_ = options;
|
|
capture_deltas_.SetOptions(options);
|
|
usage_->SetOptions(options);
|
|
ResetAll(num_pixels_);
|
|
}
|
|
|
|
int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return capture_queue_delay_->delay_ms();
|
|
}
|
|
|
|
int OveruseFrameDetector::LastProcessingTimeMs() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return frame_queue_->last_processing_time_ms();
|
|
}
|
|
|
|
int OveruseFrameDetector::FramesInQueue() const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return frame_queue_->NumFrames();
|
|
}
|
|
|
|
void OveruseFrameDetector::GetCpuOveruseMetrics(
|
|
CpuOveruseMetrics* metrics) const {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
metrics->capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5);
|
|
metrics->avg_encode_time_ms = encode_time_->Value();
|
|
metrics->encode_rsd = 0;
|
|
metrics->encode_usage_percent = usage_->Value();
|
|
metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value();
|
|
}
|
|
|
|
int64_t OveruseFrameDetector::TimeUntilNextProcess() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
return next_process_time_ - clock_->TimeInMilliseconds();
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
|
|
if (num_pixels != num_pixels_) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const {
|
|
if (last_capture_time_ == 0) {
|
|
return false;
|
|
}
|
|
return (now - last_capture_time_) > options_.frame_timeout_interval_ms;
|
|
}
|
|
|
|
void OveruseFrameDetector::ResetAll(int num_pixels) {
|
|
num_pixels_ = num_pixels;
|
|
capture_deltas_.Reset();
|
|
usage_->Reset();
|
|
frame_queue_->Reset();
|
|
capture_queue_delay_->ClearFrames();
|
|
last_capture_time_ = 0;
|
|
num_process_times_ = 0;
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameCaptured(int width,
|
|
int height,
|
|
int64_t capture_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) {
|
|
ResetAll(width * height);
|
|
}
|
|
|
|
if (last_capture_time_ != 0) {
|
|
capture_deltas_.AddSample(now - last_capture_time_);
|
|
usage_->AddCaptureSample(now - last_capture_time_);
|
|
}
|
|
last_capture_time_ = now;
|
|
|
|
capture_queue_delay_->FrameCaptured(now);
|
|
|
|
if (options_.enable_extended_processing_usage) {
|
|
frame_queue_->Start(capture_time_ms, now);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameProcessingStarted() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds());
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (last_encode_sample_ms_ != 0) {
|
|
int64_t diff_ms = now - last_encode_sample_ms_;
|
|
encode_time_->AddSample(encode_time_ms, diff_ms);
|
|
}
|
|
last_encode_sample_ms_ = now;
|
|
|
|
if (!options_.enable_extended_processing_usage) {
|
|
AddProcessingTime(encode_time_ms);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameSent(int64_t capture_time_ms) {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
if (!options_.enable_extended_processing_usage) {
|
|
return;
|
|
}
|
|
int delay_ms = frame_queue_->End(capture_time_ms,
|
|
clock_->TimeInMilliseconds());
|
|
if (delay_ms > 0) {
|
|
AddProcessingTime(delay_ms);
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::AddProcessingTime(int elapsed_ms) {
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
if (last_sample_time_ms_ != 0) {
|
|
int64_t diff_ms = now - last_sample_time_ms_;
|
|
usage_->AddSample(elapsed_ms, diff_ms);
|
|
}
|
|
last_sample_time_ms_ = now;
|
|
}
|
|
|
|
int32_t OveruseFrameDetector::Process() {
|
|
CriticalSectionScoped cs(crit_.get());
|
|
|
|
int64_t now = clock_->TimeInMilliseconds();
|
|
|
|
// Used to protect against Process() being called too often.
|
|
if (now < next_process_time_)
|
|
return 0;
|
|
|
|
int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs;
|
|
next_process_time_ = now + kProcessIntervalMs;
|
|
++num_process_times_;
|
|
|
|
capture_queue_delay_->CalculateDelayChange(diff_ms);
|
|
|
|
if (num_process_times_ <= options_.min_process_count) {
|
|
return 0;
|
|
}
|
|
|
|
if (IsOverusing()) {
|
|
// If the last thing we did was going up, and now have to back down, we need
|
|
// to check if this peak was short. If so we should back off to avoid going
|
|
// back and forth between this load, the system doesn't seem to handle it.
|
|
bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
|
|
if (check_for_backoff) {
|
|
if (now - last_rampup_time_ < kStandardRampUpDelayMs ||
|
|
num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
|
|
// Going up was not ok for very long, back off.
|
|
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
|
|
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
|
|
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
|
|
} else {
|
|
// Not currently backing off, reset rampup delay.
|
|
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
|
|
}
|
|
}
|
|
|
|
last_overuse_time_ = now;
|
|
in_quick_rampup_ = false;
|
|
checks_above_threshold_ = 0;
|
|
++num_overuse_detections_;
|
|
|
|
if (observer_ != NULL)
|
|
observer_->OveruseDetected();
|
|
} else if (IsUnderusing(now)) {
|
|
last_rampup_time_ = now;
|
|
in_quick_rampup_ = true;
|
|
|
|
if (observer_ != NULL)
|
|
observer_->NormalUsage();
|
|
}
|
|
|
|
int rampup_delay =
|
|
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean()
|
|
<< " capture stddev " << capture_deltas_.StdDev()
|
|
<< " encode usage " << usage_->Value()
|
|
<< " overuse detections " << num_overuse_detections_
|
|
<< " rampup delay " << rampup_delay;
|
|
return 0;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsOverusing() {
|
|
bool overusing = false;
|
|
if (options_.enable_capture_jitter_method) {
|
|
overusing = capture_deltas_.StdDev() >=
|
|
options_.high_capture_jitter_threshold_ms;
|
|
} else if (options_.enable_encode_usage_method) {
|
|
overusing = usage_->Value() >= options_.high_encode_usage_threshold_percent;
|
|
}
|
|
|
|
if (overusing) {
|
|
++checks_above_threshold_;
|
|
} else {
|
|
checks_above_threshold_ = 0;
|
|
}
|
|
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
|
|
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
if (time_now < last_rampup_time_ + delay)
|
|
return false;
|
|
|
|
bool underusing = false;
|
|
if (options_.enable_capture_jitter_method) {
|
|
underusing = capture_deltas_.StdDev() <
|
|
options_.low_capture_jitter_threshold_ms;
|
|
} else if (options_.enable_encode_usage_method) {
|
|
underusing = usage_->Value() < options_.low_encode_usage_threshold_percent;
|
|
}
|
|
return underusing;
|
|
}
|
|
} // namespace webrtc
|