Files
platform-external-webrtc/modules/pacing/paced_sender.cc
Sebastian Jansson 45d9c1de9c Added congestion control functionality to pacer.
This adds the ability to the pacer to apply a congestion window by
tracking sent data. This makes it more reliable when the congestion
window is small enough to be filled at a high rate as there are less
thread context switches that might affect the timing and performance.

Outstanding data is not reduced by the pacer as it has no information
about acknowledged packet feedback. This is by design as the pacer would
also need to keep track of on which connection packets were sent or
received, requiring a larger, more complex, change to the pacer.

Bug: webrtc:8415
Change-Id: I4ecd303e835552ced042cd21186da910288a8258
Reviewed-on: https://webrtc-review.googlesource.com/51764
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#22371}
2018-03-09 17:40:24 +00:00

429 lines
15 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/paced_sender.h"
#include <algorithm>
#include <map>
#include <queue>
#include <set>
#include <vector>
#include <utility>
#include "modules/include/module_common_types.h"
#include "modules/pacing/alr_detector.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "modules/pacing/round_robin_packet_queue.h"
#include "modules/utility/include/process_thread.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/ptr_util.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/runtime_enabled_features.h"
namespace {
// Time limit in milliseconds between packet bursts.
const int64_t kMinPacketLimitMs = 5;
const int64_t kCongestedPacketIntervalMs = 500;
const int64_t kPausedProcessIntervalMs = kCongestedPacketIntervalMs;
const int64_t kMaxElapsedTimeMs = 2000;
// Upper cap on process interval, in case process has not been called in a long
// time.
const int64_t kMaxIntervalTimeMs = 30;
} // namespace
namespace webrtc {
const int64_t PacedSender::kMaxQueueLengthMs = 2000;
const float PacedSender::kDefaultPaceMultiplier = 2.5f;
PacedSender::PacedSender(const Clock* clock,
PacketSender* packet_sender,
RtcEventLog* event_log)
: PacedSender(clock,
packet_sender,
event_log,
rtc::MakeUnique<RoundRobinPacketQueue>(clock)) {}
PacedSender::PacedSender(const Clock* clock,
PacketSender* packet_sender,
RtcEventLog* event_log,
std::unique_ptr<PacketQueueInterface> packets)
: clock_(clock),
packet_sender_(packet_sender),
alr_detector_(rtc::MakeUnique<AlrDetector>(event_log)),
paused_(false),
media_budget_(rtc::MakeUnique<IntervalBudget>(0)),
padding_budget_(rtc::MakeUnique<IntervalBudget>(0)),
prober_(rtc::MakeUnique<BitrateProber>(event_log)),
probing_send_failure_(false),
estimated_bitrate_bps_(0),
min_send_bitrate_kbps_(0u),
max_padding_bitrate_kbps_(0u),
pacing_bitrate_kbps_(0),
time_last_process_us_(clock->TimeInMicroseconds()),
last_send_time_us_(clock->TimeInMicroseconds()),
first_sent_packet_ms_(-1),
packets_(std::move(packets)),
packet_counter_(0),
pacing_factor_(kDefaultPaceMultiplier),
queue_time_limit(kMaxQueueLengthMs),
account_for_audio_(false) {
UpdateBudgetWithElapsedTime(kMinPacketLimitMs);
}
PacedSender::~PacedSender() {}
void PacedSender::CreateProbeCluster(int bitrate_bps) {
rtc::CritScope cs(&critsect_);
prober_->CreateProbeCluster(bitrate_bps, clock_->TimeInMilliseconds());
}
void PacedSender::Pause() {
{
rtc::CritScope cs(&critsect_);
if (!paused_)
RTC_LOG(LS_INFO) << "PacedSender paused.";
paused_ = true;
packets_->SetPauseState(true, clock_->TimeInMilliseconds());
}
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to get
// a new (longer) estimate for when to call Process().
if (process_thread_)
process_thread_->WakeUp(this);
}
void PacedSender::Resume() {
{
rtc::CritScope cs(&critsect_);
if (paused_)
RTC_LOG(LS_INFO) << "PacedSender resumed.";
paused_ = false;
packets_->SetPauseState(false, clock_->TimeInMilliseconds());
}
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to
// refresh the estimate for when to call Process().
if (process_thread_)
process_thread_->WakeUp(this);
}
void PacedSender::SetCongestionWindow(int64_t congestion_window_bytes) {
rtc::CritScope cs(&critsect_);
congestion_window_bytes_ = congestion_window_bytes;
}
void PacedSender::UpdateOutstandingData(int64_t outstanding_bytes) {
rtc::CritScope cs(&critsect_);
outstanding_bytes_ = outstanding_bytes;
}
bool PacedSender::Congested() const {
if (congestion_window_bytes_ == kNoCongestionWindow)
return false;
return outstanding_bytes_ >= congestion_window_bytes_;
}
void PacedSender::SetProbingEnabled(bool enabled) {
rtc::CritScope cs(&critsect_);
RTC_CHECK_EQ(0, packet_counter_);
prober_->SetEnabled(enabled);
}
void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) {
if (bitrate_bps == 0)
RTC_LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate.";
rtc::CritScope cs(&critsect_);
estimated_bitrate_bps_ = bitrate_bps;
padding_budget_->set_target_rate_kbps(
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
pacing_bitrate_kbps_ =
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
pacing_factor_;
alr_detector_->SetEstimatedBitrate(bitrate_bps);
}
void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps,
int padding_bitrate) {
rtc::CritScope cs(&critsect_);
min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000;
pacing_bitrate_kbps_ =
std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) *
pacing_factor_;
max_padding_bitrate_kbps_ = padding_bitrate / 1000;
padding_budget_->set_target_rate_kbps(
std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_));
}
void PacedSender::SetPacingRates(uint32_t pacing_rate_bps,
uint32_t padding_rate_bps) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_rate_bps > 0);
pacing_bitrate_kbps_ = pacing_rate_bps / 1000;
padding_budget_->set_target_rate_kbps(padding_rate_bps / 1000);
}
void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t bytes,
bool retransmission) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_bitrate_kbps_ > 0)
<< "SetPacingRate must be called before InsertPacket.";
int64_t now_ms = clock_->TimeInMilliseconds();
prober_->OnIncomingPacket(bytes);
if (capture_time_ms < 0)
capture_time_ms = now_ms;
packets_->Push(PacketQueueInterface::Packet(priority, ssrc, sequence_number,
capture_time_ms, now_ms, bytes,
retransmission, packet_counter_++));
}
void PacedSender::SetAccountForAudioPackets(bool account_for_audio) {
rtc::CritScope cs(&critsect_);
account_for_audio_ = account_for_audio;
}
int64_t PacedSender::ExpectedQueueTimeMs() const {
rtc::CritScope cs(&critsect_);
RTC_DCHECK_GT(pacing_bitrate_kbps_, 0);
return static_cast<int64_t>(packets_->SizeInBytes() * 8 /
pacing_bitrate_kbps_);
}
rtc::Optional<int64_t> PacedSender::GetApplicationLimitedRegionStartTime()
const {
rtc::CritScope cs(&critsect_);
return alr_detector_->GetApplicationLimitedRegionStartTime();
}
size_t PacedSender::QueueSizePackets() const {
rtc::CritScope cs(&critsect_);
return packets_->SizeInPackets();
}
int64_t PacedSender::FirstSentPacketTimeMs() const {
rtc::CritScope cs(&critsect_);
return first_sent_packet_ms_;
}
int64_t PacedSender::QueueInMs() const {
rtc::CritScope cs(&critsect_);
int64_t oldest_packet = packets_->OldestEnqueueTimeMs();
if (oldest_packet == 0)
return 0;
return clock_->TimeInMilliseconds() - oldest_packet;
}
int64_t PacedSender::TimeUntilNextProcess() {
rtc::CritScope cs(&critsect_);
int64_t elapsed_time_us =
clock_->TimeInMicroseconds() - time_last_process_us_;
int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000;
// When paused we wake up every 500 ms to send a padding packet to ensure
// we won't get stuck in the paused state due to no feedback being received.
if (paused_)
return std::max<int64_t>(kPausedProcessIntervalMs - elapsed_time_ms, 0);
if (prober_->IsProbing()) {
int64_t ret = prober_->TimeUntilNextProbe(clock_->TimeInMilliseconds());
if (ret > 0 || (ret == 0 && !probing_send_failure_))
return ret;
}
return std::max<int64_t>(kMinPacketLimitMs - elapsed_time_ms, 0);
}
void PacedSender::Process() {
int64_t now_us = clock_->TimeInMicroseconds();
rtc::CritScope cs(&critsect_);
time_last_process_us_ = now_us;
int64_t elapsed_time_ms = (now_us - last_send_time_us_ + 500) / 1000;
if (elapsed_time_ms > kMaxElapsedTimeMs) {
RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time_ms
<< " ms) longer than expected, limiting to "
<< kMaxElapsedTimeMs << " ms";
elapsed_time_ms = kMaxElapsedTimeMs;
}
// When congested we send a padding packet every 500 ms to ensure we won't get
// stuck in the congested state due to no feedback being received.
// TODO(srte): Stop sending packet in paused state when pause is no longer
// used for congestion windows.
if (paused_ || Congested()) {
// We can not send padding unless a normal packet has first been sent. If we
// do, timestamps get messed up.
if (elapsed_time_ms >= kCongestedPacketIntervalMs && packet_counter_ > 0) {
PacedPacketInfo pacing_info;
size_t bytes_sent = SendPadding(1, pacing_info);
alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
last_send_time_us_ = clock_->TimeInMicroseconds();
}
return;
}
int target_bitrate_kbps = pacing_bitrate_kbps_;
if (elapsed_time_ms > 0) {
size_t queue_size_bytes = packets_->SizeInBytes();
if (queue_size_bytes > 0) {
// Assuming equal size packets and input/output rate, the average packet
// has avg_time_left_ms left to get queue_size_bytes out of the queue, if
// time constraint shall be met. Determine bitrate needed for that.
packets_->UpdateQueueTime(clock_->TimeInMilliseconds());
int64_t avg_time_left_ms = std::max<int64_t>(
1, queue_time_limit - packets_->AverageQueueTimeMs());
int min_bitrate_needed_kbps =
static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms);
if (min_bitrate_needed_kbps > target_bitrate_kbps)
target_bitrate_kbps = min_bitrate_needed_kbps;
}
media_budget_->set_target_rate_kbps(target_bitrate_kbps);
UpdateBudgetWithElapsedTime(elapsed_time_ms);
}
last_send_time_us_ = clock_->TimeInMicroseconds();
bool is_probing = prober_->IsProbing();
PacedPacketInfo pacing_info;
size_t bytes_sent = 0;
size_t recommended_probe_size = 0;
if (is_probing) {
pacing_info = prober_->CurrentCluster();
recommended_probe_size = prober_->RecommendedMinProbeSize();
}
// The paused state is checked in the loop since SendPacket leaves the
// critical section allowing the paused state to be changed from other code.
while (!packets_->Empty() && !paused_ && !Congested()) {
// Since we need to release the lock in order to send, we first pop the
// element from the priority queue but keep it in storage, so that we can
// reinsert it if send fails.
const PacketQueueInterface::Packet& packet = packets_->BeginPop();
if (SendPacket(packet, pacing_info)) {
bytes_sent += packet.bytes;
// Send succeeded, remove it from the queue.
packets_->FinalizePop(packet);
if (is_probing && bytes_sent > recommended_probe_size)
break;
} else {
// Send failed, put it back into the queue.
packets_->CancelPop(packet);
break;
}
}
if (packets_->Empty() && !Congested()) {
// We can not send padding unless a normal packet has first been sent. If we
// do, timestamps get messed up.
if (packet_counter_ > 0) {
int padding_needed =
static_cast<int>(is_probing ? (recommended_probe_size - bytes_sent)
: padding_budget_->bytes_remaining());
if (padding_needed > 0) {
bytes_sent += SendPadding(padding_needed, pacing_info);
}
}
}
if (is_probing) {
probing_send_failure_ = bytes_sent == 0;
if (!probing_send_failure_)
prober_->ProbeSent(clock_->TimeInMilliseconds(), bytes_sent);
}
alr_detector_->OnBytesSent(bytes_sent, elapsed_time_ms);
}
void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) {
RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << std::hex << process_thread;
rtc::CritScope cs(&process_thread_lock_);
process_thread_ = process_thread;
}
bool PacedSender::SendPacket(const PacketQueueInterface::Packet& packet,
const PacedPacketInfo& pacing_info) {
RTC_DCHECK(!paused_);
if (media_budget_->bytes_remaining() == 0 &&
pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe) {
return false;
}
critsect_.Leave();
const bool success = packet_sender_->TimeToSendPacket(
packet.ssrc, packet.sequence_number, packet.capture_time_ms,
packet.retransmission, pacing_info);
critsect_.Enter();
if (success) {
if (first_sent_packet_ms_ == -1)
first_sent_packet_ms_ = clock_->TimeInMilliseconds();
if (packet.priority != kHighPriority || account_for_audio_) {
// Update media bytes sent.
// TODO(eladalon): TimeToSendPacket() can also return |true| in some
// situations where nothing actually ended up being sent to the network,
// and we probably don't want to update the budget in such cases.
// https://bugs.chromium.org/p/webrtc/issues/detail?id=8052
UpdateBudgetWithBytesSent(packet.bytes);
}
}
return success;
}
size_t PacedSender::SendPadding(size_t padding_needed,
const PacedPacketInfo& pacing_info) {
RTC_DCHECK_GT(packet_counter_, 0);
critsect_.Leave();
size_t bytes_sent =
packet_sender_->TimeToSendPadding(padding_needed, pacing_info);
critsect_.Enter();
if (bytes_sent > 0) {
UpdateBudgetWithBytesSent(bytes_sent);
}
return bytes_sent;
}
void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) {
delta_time_ms = std::min(kMaxIntervalTimeMs, delta_time_ms);
media_budget_->IncreaseBudget(delta_time_ms);
padding_budget_->IncreaseBudget(delta_time_ms);
}
void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) {
outstanding_bytes_ += bytes_sent;
media_budget_->UseBudget(bytes_sent);
padding_budget_->UseBudget(bytes_sent);
}
void PacedSender::SetPacingFactor(float pacing_factor) {
rtc::CritScope cs(&critsect_);
pacing_factor_ = pacing_factor;
// Make sure new padding factor is applied immediately, otherwise we need to
// wait for the send bitrate estimate to be updated before this takes effect.
SetEstimatedBitrate(estimated_bitrate_bps_);
}
void PacedSender::SetQueueTimeLimit(int limit_ms) {
rtc::CritScope cs(&critsect_);
queue_time_limit = limit_ms;
}
} // namespace webrtc