Add code for doing block-based frequency domain processing. Developed and reviewed in isolation. Corresponding export CL: https://chromereviews.googleplex.com/95187013/ R=bercic@google.com, kjellander@webrtc.org, turaj@webrtc.org Review URL: https://webrtc-codereview.appspot.com/31539004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7359 4adac7df-926f-26a2-2b94-8c16560cd09d
246 lines
8.2 KiB
C++
246 lines
8.2 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/common_audio/blocker.h"
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
namespace {
|
|
|
|
// Callback Function to add 3 to every sample in the signal.
|
|
class SimpleBlockerCallback : public webrtc::BlockerCallback {
|
|
public:
|
|
virtual void ProcessBlock(const float* const* input,
|
|
int num_frames,
|
|
int num_input_channels,
|
|
int num_output_channels,
|
|
float* const* output) OVERRIDE {
|
|
for (int i = 0; i < num_output_channels; ++i) {
|
|
for (int j = 0; j < num_frames; ++j) {
|
|
output[i][j] = input[i][j] + 3;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace webrtc {
|
|
|
|
// Tests blocking with a window that multiplies the signal by 2, a callback
|
|
// that adds 3 to each sample in the signal, and different combinations of chunk
|
|
// size, block size, and shift amount.
|
|
class BlockerTest : public ::testing::Test {
|
|
protected:
|
|
void RunTest(Blocker* blocker,
|
|
int chunk_size,
|
|
int num_frames,
|
|
const float* const* input,
|
|
float* const* input_chunk,
|
|
float* const* output,
|
|
float* const* output_chunk,
|
|
int num_input_channels,
|
|
int num_output_channels) {
|
|
int start = 0;
|
|
int end = chunk_size - 1;
|
|
while (end < num_frames) {
|
|
CopyTo(input_chunk, 0, start, num_input_channels, chunk_size, input);
|
|
blocker->ProcessChunk(input_chunk,
|
|
chunk_size,
|
|
num_input_channels,
|
|
num_output_channels,
|
|
output_chunk);
|
|
CopyTo(output, start, 0, num_output_channels, chunk_size, output_chunk);
|
|
|
|
start = start + chunk_size;
|
|
end = end + chunk_size;
|
|
}
|
|
}
|
|
|
|
void ValidateSignalEquality(const float* const* expected,
|
|
const float* const* actual,
|
|
int num_channels,
|
|
int num_frames) {
|
|
for (int i = 0; i < num_channels; ++i) {
|
|
for (int j = 0; j < num_frames; ++j) {
|
|
EXPECT_FLOAT_EQ(expected[i][j], actual[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void CopyTo(float* const* dst,
|
|
int start_index_dst,
|
|
int start_index_src,
|
|
int num_channels,
|
|
int num_frames,
|
|
const float* const* src) {
|
|
for (int i = 0; i < num_channels; ++i) {
|
|
memcpy(&dst[i][start_index_dst],
|
|
&src[i][start_index_src],
|
|
num_frames * sizeof(float));
|
|
}
|
|
}
|
|
};
|
|
|
|
TEST_F(BlockerTest, TestBlockerMutuallyPrimeChunkandBlockSize) {
|
|
const int kNumInputChannels = 3;
|
|
const int kNumOutputChannels = 2;
|
|
const int kNumFrames = 10;
|
|
const int kBlockSize = 4;
|
|
const int kChunkSize = 5;
|
|
const int kShiftAmount = 2;
|
|
|
|
const float kInput[kNumInputChannels][kNumFrames] = {
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
|
|
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
|
|
const ChannelBuffer<float> input_cb(kInput[0], kNumFrames, kNumInputChannels);
|
|
|
|
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
|
|
{6, 6, 12, 12, 20, 20, 20, 20, 20, 20},
|
|
{6, 6, 12, 12, 28, 28, 28, 28, 28, 28}};
|
|
const ChannelBuffer<float> expected_output_cb(
|
|
kExpectedOutput[0], kNumFrames, kNumInputChannels);
|
|
|
|
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
|
|
|
|
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
|
|
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
|
|
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
|
|
|
|
SimpleBlockerCallback callback;
|
|
Blocker blocker(kChunkSize,
|
|
kBlockSize,
|
|
kNumInputChannels,
|
|
kNumOutputChannels,
|
|
kWindow,
|
|
kShiftAmount,
|
|
&callback);
|
|
|
|
RunTest(&blocker,
|
|
kChunkSize,
|
|
kNumFrames,
|
|
input_cb.channels(),
|
|
input_chunk_cb.channels(),
|
|
actual_output_cb.channels(),
|
|
output_chunk_cb.channels(),
|
|
kNumInputChannels,
|
|
kNumOutputChannels);
|
|
|
|
ValidateSignalEquality(expected_output_cb.channels(),
|
|
actual_output_cb.channels(),
|
|
kNumOutputChannels,
|
|
kNumFrames);
|
|
}
|
|
|
|
TEST_F(BlockerTest, TestBlockerMutuallyPrimeShiftAndBlockSize) {
|
|
const int kNumInputChannels = 3;
|
|
const int kNumOutputChannels = 2;
|
|
const int kNumFrames = 12;
|
|
const int kBlockSize = 4;
|
|
const int kChunkSize = 6;
|
|
const int kShiftAmount = 3;
|
|
|
|
const float kInput[kNumInputChannels][kNumFrames] = {
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
|
|
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
|
|
const ChannelBuffer<float> input_cb(kInput[0], kNumFrames, kNumInputChannels);
|
|
|
|
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
|
|
{6, 6, 6, 12, 10, 10, 20, 10, 10, 20, 10, 10},
|
|
{6, 6, 6, 12, 14, 14, 28, 14, 14, 28, 14, 14}};
|
|
const ChannelBuffer<float> expected_output_cb(
|
|
kExpectedOutput[0], kNumFrames, kNumInputChannels);
|
|
|
|
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
|
|
|
|
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
|
|
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
|
|
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
|
|
|
|
SimpleBlockerCallback callback;
|
|
Blocker blocker(kChunkSize,
|
|
kBlockSize,
|
|
kNumInputChannels,
|
|
kNumOutputChannels,
|
|
kWindow,
|
|
kShiftAmount,
|
|
&callback);
|
|
|
|
RunTest(&blocker,
|
|
kChunkSize,
|
|
kNumFrames,
|
|
input_cb.channels(),
|
|
input_chunk_cb.channels(),
|
|
actual_output_cb.channels(),
|
|
output_chunk_cb.channels(),
|
|
kNumInputChannels,
|
|
kNumOutputChannels);
|
|
|
|
ValidateSignalEquality(expected_output_cb.channels(),
|
|
actual_output_cb.channels(),
|
|
kNumOutputChannels,
|
|
kNumFrames);
|
|
}
|
|
|
|
TEST_F(BlockerTest, TestBlockerNoOverlap) {
|
|
const int kNumInputChannels = 3;
|
|
const int kNumOutputChannels = 2;
|
|
const int kNumFrames = 12;
|
|
const int kBlockSize = 4;
|
|
const int kChunkSize = 4;
|
|
const int kShiftAmount = 4;
|
|
|
|
const float kInput[kNumInputChannels][kNumFrames] = {
|
|
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
|
|
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
|
|
const ChannelBuffer<float> input_cb(kInput[0], kNumFrames, kNumInputChannels);
|
|
|
|
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
|
|
{6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10},
|
|
{6, 6, 6, 6, 14, 14, 14, 14, 14, 14, 14, 14}};
|
|
const ChannelBuffer<float> expected_output_cb(
|
|
kExpectedOutput[0], kNumFrames, kNumInputChannels);
|
|
|
|
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
|
|
|
|
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
|
|
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
|
|
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
|
|
|
|
SimpleBlockerCallback callback;
|
|
Blocker blocker(kChunkSize,
|
|
kBlockSize,
|
|
kNumInputChannels,
|
|
kNumOutputChannels,
|
|
kWindow,
|
|
kShiftAmount,
|
|
&callback);
|
|
|
|
RunTest(&blocker,
|
|
kChunkSize,
|
|
kNumFrames,
|
|
input_cb.channels(),
|
|
input_chunk_cb.channels(),
|
|
actual_output_cb.channels(),
|
|
output_chunk_cb.channels(),
|
|
kNumInputChannels,
|
|
kNumOutputChannels);
|
|
|
|
ValidateSignalEquality(expected_output_cb.channels(),
|
|
actual_output_cb.channels(),
|
|
kNumOutputChannels,
|
|
kNumFrames);
|
|
}
|
|
|
|
} // namespace webrtc
|